
Unique Factorization in ACL2: Euclidean Domains

John R. Cowles
Department of Computer Science

University of Wyoming
Laramie, Wyoming

cowles@cs.uwyo.edu

Ruben Gamboa
Department of Computer Science

University of Wyoming
Laramie, Wyoming

ruben@cs.uwyo.edu

ABSTRACT
ACL2 is used to systematically study domains whose ele-
ments can be “uniquely” factored into products of “irre-
ducible” elements. The best known examples of such do-
mains are the positive integers, which can be factored into
products of primes, and univariate polynomials with ration-
al coefficients, which can be factored into products of irre-
ducible polynomials. There are many other such domains.

Euclidean domains are an algebraic abstraction, of both
the positive integers and the rational polynomials, in which
the usual proofs of unique factorization, for both the integers
and the polynomials, can be generalized.

Categories and Subject Descriptors
F.4.1 [Mathematical Logic and Formal Languages]:
Mathematical Logic—Mechanical theorem proving, Compu-
tational logic

General Terms
Verification

Keywords
Boyer-Moore logic,unique factorization, Euclidean domains,
ACL2

1. INTRODUCTION
Before the computational logic ACL2 [4], there was the

version of the Boyer-Moore Logic known as NQTHM [2],
and before NQTHM, there was the version of the logic called
THM [1]. In 1979, when the book A Computational Logic [1],
describing THM, was published, the deepest and hardest
theorem, yet verified in the logic, was the Unique Prime Fac-
torization Theorem:

Theorem 1. Every positive integer can be factored into
a finite product of primes. Moreover, this product is unique
except for the order of the primes.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACL2 ’06 Seattle, Washington USA
Copyright 2006 ACL2 Steering Committee 0-9788493-0-2/06/08.

Mathematicians have identified many domains, other than
the positive integers, that can also be said to have some form
of unique factorization. For example, polynomials, of a sin-
gle variable, with rational coefficients, can each be factored
into a product of irreducible polynomials. Moreover, this
product is essentially unique except for the order of the ir-
reducible polynomials.

We are using ACL2 to carry out a systematic study of
such domains. We begin by studying domains where the
standard proof, of unique factorization for the positive in-
tegers, can be easily generalized. This explains the second
half of our title: Mathematicians call those domains, where
the standard proof can be readily carried out, Euclidean [3,
8, 7]. Also, we anticipate eventually extending our study
to domains where unique factorization holds, but where the
proof is not a straight-forward generalization of the stan-
dard proof for the positive integers. This is part of an even
larger effort formalizing those parts of computational num-
ber theory used in modern cryptography.

2. THE STANDARD PROOF
The statement of the theorem, in both THM and ACL2,

uses finite lists of positive integers to represent factorizations
of positive integers. Explicit functions are used to overcome
the complete lack of existential quantification in THM.

The statement of the theorem has two parts.

Existence. This part states that an explicitly defined func-
tion produces a prime factorization of its positive in-
teger input argument.

Uniqueness. This part states that any two lists of primes,
whose products are equal integers, are equal when the
lists are treated as bags (or multisets). That is, the
two lists have the same members and each member
has the same multiplicity in the two lists.

Existence depends on the Proper Factor binary relation on
the positive integers being well-founded.

Definition 1. Positive integer x is a factor (or divisor) of
positive integer z just in case there is a positive integer y
such that x · y = z.

Definition 2. Positive integer x is a proper factor (or proper
divisor) of positive integer z just in case x is a factor of z
and 1 < x < z.

Thus, over the positive integers, there are no infinite chains
of proper factors.

Uniqueness depends on this key property of primes.

Theorem 2. If prime p is a factor of the product of pos-
itive integers a · b, then either p is a factor of a or p is a
factor of b.

The standard proof of this key theorem employs the theory
of the greatest common divisor of two positive integers. The
classical way to compute Greatest Common Divisors is by
use of the Euclidean Algorithm.

An ACL2 book, described in Appendix A, containing a
version of the original THM proof can be found in the file
prime-fac.lisp. An explicitly defined, but rather ineffi-
cient, function in this book can, of course, be executed and
actually produces prime factorizations of positive integers.

3. EUCLIDEAN DOMAINS
An Euclidean Domain is a set E with two binary operations,

+E and ·E, an unary operation, −E, and a set element 0E that
satisfy these expected algebraic laws: For all X, Y, Z ∈ E,

Closure. X +E Y ∈ E, X ·E Y ∈ E, −EX ∈ E, 0E ∈ E;

Commutative. X +E Y = Y +E X, X ·E Y = Y ·E X;

Associative. (X +E Y) +E Z = X +E (Y +E Z),
(X ·E Y) ·E Z = X ·E (Y ·E Z);

Distributive. X ·E (Y +E Z) = (X ·E Y) +E (X ·E Z);

Identity. 0E +E X = X:

Inverse. X +E (−EX) = 0E:

Euclidean multiplication, ·E, behaves like integer multipli-
cation to the extent that it satisfies

• if X ·E Y = 0E, then (X = 0E ∨ Y = 0E).

These domains are called Euclidean because they come
equipped with enough additional structure to implement the
Euclidean Algorithm for the computation of Greatest Com-
mon Divisors. That is, Euclidean division, with quotients
and remainders, must be possible. Thus, there are two bi-
nary functions, quot and rem, and an unary function, Size,
from E into the nonnegative integers, that satisfy: For all
X, Y ∈ E, with Y 6= 0E,

Closure. quot(X, Y) ∈ E, rem(X, Y) ∈ E:

Division Property. X = Y ·E quot(X, Y) +E rem(X, Y),
rem(X, Y) = 0E ∨ Size(rem(X, Y)) < Size(Y).

In ACL2, these properties are consistently axiomatized
using ENCAPSULATE. In fact, the ACL2 axiomatization is
slightly generalized by replacing = with an equivalence re-
lation with the appropriate congruence properties.

3.1 Multiplicative Identity

Theorem 3. Every Euclidean Domain has a multiplica-
tive identity.

Thus, there always is a domain element, 1E, so that for any
X ∈ E,

1E ·E X = X.

Proof. If the domain contains only one element 0E, then
let 1E be 0E.

Otherwise the domain contains a nonzero element. Choose
a nonzero domain element, b, of smallest possible Size.

By the Division property, b divides every domain element
(because the remainder must be 0E).

Let 1E be quot(b, b). Then b ·E 1E is b ·E quot(b, b) which
is b (since the remainder is 0E).

For any domain element x, b ·E quot(x, b) = x. Therefore

1E ·E x = 1E ·E (b ·E quot(x, b))

= (1E ·E b) ·E quot(x, b)

= b ·E quot(x, b))

= x.

Book 1, of many ACL2 Euclidean Domain books described
in Appendix A, in ed1.lisp formalizes and verifies this proof
in ACL2.

Perhaps the most interesting step to translate into ACL2
is, “Choose a nonzero domain element, b, of smallest possible
Size.” In the ACL2 proof, defchoose is first used to choose
a nonzero domain element (a) (assuming it exists). Then
for every nonnegative integer n, defchoose is used to choose
a nonzero domain element (b n) with Size n (if such an
element exists). Then at least one member of this finite list,
(b 0), (b 1), ..., (b (Size (a))), must be a nonzero
domain element satisfying (equal (Size (b j) j)). The
first such list element must, in fact, be a nonzero domain
element of smallest possible Size.

3.2 Well-founded Factors
A proof, that, over nonzero Euclidean domain elements,

there are no infinite chains of proper factors, is greatly sim-
plified if this Multiplicative Size Property holds:

• Size(x) ≤ Size(x·Ey), for all nonzero domain elements
x and y.

Unfortunately, there are Euclidean domains (see the exam-
ple below) that do not satisfy this property. However, the
next theorem shows there is no loss of generality in assum-
ing the Multiplicative Size Property always holds in a given
Euclidean domain.

Theorem 4. If the Euclidean domain

(E, +E, ·E,−E, 0E, 1E, quot1, rem1, Size1),

does not satisfy the Multiplicative Size Property, then
“new” operations quot, rem, and Size can always be defined
so that

(E, +E, ·E,−E, 0E, 1E, quot, rem, Size),

is an Euclidean domain that does satisfy the Multiplicative
Size Property.

Proof. If the domain contains only one element 0E, then
the Multiplicative Size Property holds vacuously.

Otherwise the domain contains a nonzero element. For
each nonzero domain element, x, choose a nonzero domain
element c(x) such that Size1(x·Ec(x)) is as small as possible.
Define

Size(x) = Size1(x ·E c(x))

quot(x, y) = c(y) ·E quot1(x, y ·E c(y))

rem(x, y) = rem1(x, y ·E c(y))

Then the Division Property remains true of these “new”
operations.

x = [(y ·E c(y)) ·E quot1(x, y ·E c(y))] +E rem1(x, y ·E c(y))

= y ·E [c(y) ·E quot1(x, y ·E c(y))] +E rem1(x, y ·E c(y))

= y ·E quot(x, y) +E rem(x, y)

and either rem(x, y) = rem1(x, y ·E c(y)) = 0E or

Size(rem(x, y)) = Size1(rem(x, y) ·E c(rem(x, y)))

≤ Size1(rem(x, y) ·E 1E)

= Size1(rem(x, y))

= Size1(rem1(x, y ·E c(y)))

< Size1(y ·E c(y))

= Size(y)

The “new” operations also satisfy the Multiplicative Size
Property.

Size(x) = Size1(x ·E c(x))

≤ Size1(x ·E [y ·E c(x ·E y)])

= Size1([x ·E y] ·E c(x ·E y))

= Size(x ·E y)

Book 2a, described in Appendix A, in ed2a.lisp formalizes
and verifies this proof in ACL2.

The most interesting step to translate into ACL2 is, “For
each nonzero domain element, x, choose a nonzero domain
element c(x) such that Size1(x ·E c(x)) is as small as possi-
ble.” In the ACL2 proof, for every nonzero domain element
x and every nonnegative integer n, defchoose is used to
choose a nonzero domain element (c x n) with Size1(x ·E
(c x n)) = n (if such an element exists).

Using Size1 and * e as the ACL2 names for Size1 and
·E, and observing that 1E is a nonzero domain element with
Size1(x ·E 1E) = Size1(x), it must be that (c x (Size1

x)) is a nonzero domain element with the property, (equal
(Size1 (* e x (c x (Size1 x))))(Size1 x)).

So at least one member of this finite list, (c x 0), (c x

1), ..., (c x (Size1 x)), must be a nonzero domain ele-
ment satisfying (equal (Size1 (* e x (c x j))) j). The
first such element in the list must, in fact, be a nonzero
domain element such that (Size1 (* e x (c x j))) is as
small as possible.

3.2.1 Example
Here is an example of an Euclidean domain

(E, +E, ·E,−E, 0E, 1E, quot1, rem1, Size1)

that does not satisfy the Multiplicative Size Property.
Let E be the integers, with the usual binary operations of

addition and multiplication, for +E and ·E; the usual unary
minus for −E; 0 for 0E; and 1 for 1E.

For quot1, use the Common Lisp function round and for
rem1, use rnd-rem, defined by

(rnd-rem x y) = (- x (* y (round x y))).

For Size1, use abs-3 defined by

(abs-3 x) =

2 if x = 3
|x| otherwise

Book 2b, described in Appendix A, in ed2b.lisp verifies
that, with these definitions,

(E, +E, ·E,−E, 0E, 1E, quot1, rem1, Size1)

is an Euclidean domain, but the Multiplicative Size Property
is violated: For example,

(abs-3 -3) = 3 > 2 = (abs-3 (* -3 -1)).

3.3 Greatest Common Divisors
The definition of the “is a factor of” binary relation makes

sense in any Euclidean domain, E.

Definition 3. Element x ∈ E is a factor (or divisor) of z ∈
E just in case there is a y ∈ E such that x ·E y = z.

Definition 4. Element g ∈ E is a common factor (or divi-
sor) of x ∈ E and y ∈ E just in case g is factor of both x
and y. A greatest common divisor, g, of x and y is a common
factor such that any other common factor of x and y is also
a factor of g.

In an Euclidean domain with the Multiplicative Size Prop-
erty, a greatest common divisor will have the largest size of
any of the common factors.

Theorem 5. For all nonzero x ∈ E and all y ∈ E, there
are a, b ∈ E such that a ·E x +E b ·E y is a greatest common
divisor of x and y.

Proof. Let x 6= 0E and y be elements of E and let

L = {d = a ·E x +E b ·E y | d 6= 0E ∧ a ∈ E ∧ b ∈ E}.

Since x = 1E ·E x +E 0E ·E y ∈ L, L 6= ∅. Choose a(x, y) ∈ E
and b(x, y) ∈ E so that Size(a(x, y) ·E x +E b(x, y) ·E y) is as
small as possible. Then g = a(x, y) ·E x +E b(x, y) ·E y must
be a greatest common divisor of x and y:

• g is a factor of x.
If not, then when x is divided by g, the remainder is
not zero. Then the following are contradictory.

– g ∈ L has the smallest possible Size.

– Size(rem(x, g)) < Size(g)

– rem(x, g) ∈ L, since

rem(x, g) = x−E g ·E quot(x, g)

= x−E (a(x, y) ·E x +E b(x, y) ·E y)

·E quot(x, g)

= x−E a(x, y) ·E quot(x, g) ·E x

−E b(x, y) ·E quot(x, g) ·E y

= (1E −E a(x, y) ·E quot(x, g)) ·E x

+E b(x, y) ·E (−Equot(x, g)) ·E y

• g is a factor of y.
Similar to the previous item.

• Any common factor of x and y must also be a factor
of any linear combination of x and y. Therefore any
other common factor of x and y is also a factor of g.

The most interesting step of this proof to translate into
ACL2 is, “Choose a(x, y) ∈ E and b(x, y) ∈ E so that
Size(a(x, y)·Ex+Eb(x, y)·Ey) is as small as possible.” In the
ACL2 proof, for every nonzero domain element x, every do-
main element y, and every nonnegative integer n, defchoose
is used to choose a pair of domain elements ((a x y n) (b

x y n)) with (a x y n) ·E x +E (b x y n) ·E y 6= 0E and
Size((a x y n) ·E x +E (b x y n) ·E y) = n (if such a pair
exists).

So at least one member of this finite list,

(a x y 0) ·E x +E (b x y 0) ·E y,
(a x y 1) ·E x +E (b x y 1) ·E y,

. . . ,
(a x y (Size x)) ·E x +E (b x y (Size x)) ·E y

must be a nonzero domain element satisfying

Size((a x y j) ·E x +E (b x y j) ·E y) = j.

The first such element in the list must, in fact, be a nonzero
domain element such that

Size((a x y j) ·E x +E (b x y j) ·E y)

is as small as possible.

3.3.1 Key Prime Property
Suppose p is an irreducible (or prime) element of E and

for x, y ∈ E, p is a factor of x ·E y, but p is not a factor of x.
We show that p must be a factor of y.

Proof. Since p is not a factor of x, it can be shown that
1E is a greatest common divisor of x and p. So there are
domain elements, a and b such that a ·E x +E b ·E p = 1E.
Then a ·E x ·E y +E b ·E p ·E y = 1E ·E y = y. Since p is a factor
of both x ·E y and p, p must also be a factor of y.

3.4 Verified Euclidean Domains
Book 3, described in Appendix A, in ed3.lisp uses the

Multiplicative Size Property to verify the existence of finite
factorizations into irreducible domain elements, in an arbi-
trary Euclidean domain, axiomatized using an encapsulate.
Book 3 also uses Greatest Common Divisors and the Key
Prime Property to verify the uniqueness of such factoriza-
tions. Instances of particular domains, with unique factor-
ization, can then be established via functional instanti-

ation of this general theory of Euclidean domains.
There are many choices for quotient and remainder that

turn the integers into an Euclidean domain. Two choices
are floor and mod, and also, truncate and rem. Two other
choices use ceiling or round for the quotient. In all four of
these examples, absolute value, abs, can be used for Size.
See the descriptions of Books 4aa, 4ba, 4ca, and 4da in Ap-
pendix A.

The Gaussian integers are the complex numbers with in-
teger real and imaginary parts. They can be turned into an
Euclidean domain by taking Size to be the square of the
complex absolute value and basing quotient on separately
rounding the real and imaginary parts of the complex quo-
tient.

3.4.1 Executable Skolem Functions
In Book 3, the proofs of the existence and uniqueness of

the factorizations make extensive use of defchoose and first-
order quantification in the form of defun-sk. As a conse-
quence, since the choice functions and the Skolem functions

are not executable, the above functional instantiations do
not produce executable functions that can be used to actu-
ally compute the factorizations that have just been shown
to exist. This is in contrast to the proof, for the positive in-
tegers, in prime-fac.lisp, which did provide an executable
function that factors positive integers.

We want to use functional instantiation of Book 3
to prove unique factorization in specific instances. We also
want to end up with executable functions that will actually
compute the factorizations. This can be done by replacing
certain, of the nonexecutable Skolem functions, introduced
by using first-order quantifiers, with executable versions of
those Skolem functions. That is, given a nonexecutable wit-
ness function introduced by using first-order quantification,
define an executable replacement for that witness function
that provably satisfies the same “SUFF” or “NECC” axioms
as the original witness function. This plan is carried out in
Books 4ab, 4bb, 4cb, and 4db. The theorems are verified
via functional instantiation of Book 3, but the books
contain executable factorization functions.

3.4.2 Unique Factorization
The integers and the Gaussian integers are both Euclide-

an, and hence, both have unique factorization. How, then,
do we explain the following apparently distinct factoriza-
tions? In the integers,

60 = 2 · 2 · 3 · 5
= 2 · −2 · 3 · −5

In the Gaussian integers,

60 = 2 · 2 · 3 · (2 + i) · (2− i)

= 2 · −2 · 3 · (−1 + 2i) · (1 + 2i)

The relation “is a factor of” is reflexive and transitive, but
often it is not symmetric. The symmetric closure of “is a
factor of” is an equivalence relation, “is an associate of,”
defined by

Definition 5. Element x ∈ E is an associate of y ∈ E just
in case x is a factor of y and y is a factor of x.

Notice that 2 and −2 are associates, as are 5 and −5. Also

2 + i = −i · (−1 + 2i)

−1 + 2i = i · (2 + i)

2− i = −i · (1 + 2i)

1 + 2i = i · (2− i)

Thus 2 + i and −1 + 2i are associates, and so are 2− i and
1 + 2i.

Uniqueness of factorization is restored by the following
convention: Two factorizations, whose products are equal,
are equivalent if one can be obtained from the other by re-
placing any factor with an associate of that factor. Thus,
the two factorizations of 60 in the integers are equivalent,
as are the two factorizations in the Gaussian integers.

3.4.3 Additional Euclidean Domains
As mentioned in the introduction, polynomials, of a single

variable, with rational coefficients, can be uniquely factored
into products of irreducible polynomials. This set of poly-
nomials is turned into an Euclidean domain, by taking the
Size of a polynomial to be the degree of the polynomial.

Let Z be the integers. For each negative and squarefree
d ∈ Z, let Dd be the subset of the complex numbers given
by

Dd =

(
{a + b ·

√
d | a, b ∈ Z} if d ≡ 2, 3 mod 4

{a + b · 1+
√

d
2

| a, b ∈ Z} if d ≡ 1 mod 4

The Gaussian integers is the special case where d = −1.

Theorem 6 ([8, page 697], [7, page 101]).
For negative, squarefree integers d, Dd is an Euclidean do-
main iff d ∈ {−1,−2,−3,−7,−11}.

When Dd is an Euclidean domain, the Euclidean Size func-
tion is the square of the complex absolute value, i.e., Size(x+
y · i) = x2 + y2. When Dd is not an Euclidean domain, then
it is not Euclidean for any choice of Size.

4. NON EUCLIDEAN UNIQUE FACTORS
There are non Euclidean domains with unique factoriza-

tion.
For example, polynomials, of a single variable, with coeffi-

cients from the integers, can each be factored into a product
of irreducible polynomials. Moreover, this product is essen-
tially unique except for the order of the irreducible polyno-
mials.

But there is no way to make this set of polynomials, with
integer coefficients, into an Euclidean domain: The Divi-
sion Property, requiring quotient and remainder polynomi-
als, with integer coefficients, fails, as can be seen when the
attempt is made to divide x2 + 1 by 5 · x + 2. If ration-
al coefficients are allowed, then the quotient and remainder
polynomials are easily seen to exist.

More examples of non Euclidean domains with unique fac-
torization are given in this theorem.

Theorem 7 ([8, page 697], [7, page 93]).
For negative, squarefree integers d, Dd has unique factoriza-
tion iff Dd is Euclidean or d ∈ {−19,−43, −67, −163}.

5. FAILURE TO HAVE UNIQUE FACTORS
There are two ways for unique factorization to fail. First,

the existence of a finite factorization could fail. Second,
finite factorizations could always exist, but not be unique.

Here is an example of the first. Recall, univariate polyno-
mials, over the integers, are of the form an · xn + · · · + a2 ·
x2 + a1 ·x+ a0, where the ai are integers and an is nonzero.
The polynomial is monic if an = 1.

Let C be the complex numbers and let P be the set of
monic polynomials, of a single variable, with integer coeffi-
cients. Let

A = {α ∈ C | (∃p ∈ P)(p(α) = 0)}

Although not obvious, A is closed under complex addition,
multiplication, unary minus, and the taking of square roots.

For example, 2i√
3, for i = 1, 2, . . ., are all in A because 2i√

3

is a root for the monic polynomial equation x2i

− 3 = 0.

Since α =
√

α ·
√

α, then 3,
√

3,
p√

3 = 4
√

3,
p

4
√

3 = 8
√

3, . . .
is an infinite sequence of proper factors in A.

Now for an example of the second. According to Theorem

6, D−3 = {a + b · 1+
√
−3

2
| a, b ∈ Z} is an Euclidean domain

with unique factorization. The proper subset

D = {a + b ·
√
−3 | a, b ∈ Z} ⊂ D−3

is also closed under complex addition, multiplication, and
unary minus. In both D and D−3,

2 · 2 = 4 = (1 +
√
−3) · (1−

√
−3),

so 4 appears to have two distinct factorizations. In D, the
two apparent factorizations are, in fact, distinct. That is,
in D, 2, (1 +

√
−3), and (1 −

√
−3) are all irreducible (or

prime), but none is a factor of the other two. Thus, in D,
the Key Prime Property fails: 2 is a factor of the product
(1+

√
−3)·(1−

√
−3), but 2 is not a factor of either (1+

√
−3)

or (1−
√
−3).

However, in D−3, the two factorizations are equivalent
because 2, (1+

√
−3), and (1−

√
−3) are all associates, and

hence, equivalent with respect to factorization. Recall that
the three being associates means that each of the three are
factors of the other two:

1 +
√
−3 = 2 · 1 +

√
−3

2

1 +
√
−3 = (1−

√
−3) ·

„
−1 +

1 +
√
−3

2

«
1−

√
−3 = 2 ·

„
1− 1 +

√
−3

2

«
1−

√
−3 = (1 +

√
−3) ·

»
−

„
1 +

√
−3

2

«–
2 = (1 +

√
−3) ·

„
1− 1 +

√
−3

2

«
2 = (1−

√
−3) · 1 +

√
−3

2

Each of these rightmost factors is clearly in D−3 − D.

6. CONCLUSIONS
The algebraic theory of Euclidean domains is described

above and explored in several ACL2 books that are de-
scribed in Appendix A. More ACL2 books are proposed in
Appendix B.

Further study of unique factorization domains in ACL2
would include exploring the counterexample domain A and
also Dd for many d mentioned in Theorems 6 and 7. There
are also many other unique factorization domains that are
not Euclidean to explore using ACL2.

7. REFERENCES
[1] R. S. Boyer and J S. Moore. A Computational Logic.

Academic Press, 1979.

[2] R. S. Boyer and J S. Moore. A Computational Logic
Handbook. Academic Press, second edition, 1998.

[3] I. N. Herstein. Topics in Algebra. Blaisdell, 1964.

[4] M. Kaufmann, P. Manolios, and J S. Moore.
Computer-Aided Reasoning: An Approach. Kluwer
Academic Press, 2000.

[5] I. Medina-Bule, J. A. Alonso-Jimènez, and
F. Palomo-Lozano. Automatic verification of
polynomial rings fundamental properties in ACL2. In
M. Kaufmann and J S. Moore, editors, ACL2
Workshop 2000 Proceedings, October 30–31, 2000.

[6] I. Medina-Bule, F. Palomo-Lozano, and J. A.
Alonso-Jimènez. Implementation in ACL2 of
well-founded polynomial orderings. In D. Borrione,
M. Kaufmann, and J S. Moore, editors, 3rd Intl.

Workshop on the ACL2 Theorem Prover and its
Applications, pages 66–77, April 8–9, 2002.

[7] I. N. Stewart and D. O. Tall. Algebraic Number Theory.
Chapman and Hall, second edition, 1987.

[8] J. von zur Gathen and J. Gerhard. Modern Computer
Algebra. Cambridge, second edition, 2003.

APPENDIX
A. ACL2 EUCLIDEAN DOMAIN BOOKS
prime-fac.lisp: Unique Prime Factorization for Positive

Integers. The outline of Bob and J’s original proof, as
developed in THM, is followed. Their proof is described
in the book [1].

ed1.lisp: Book 1. Multiplicative Identity Existence.
Every Euclidean Domain has a multiplicative identity.

ed2a.lisp: Book 2a. Multiplicative Size Property.
There is no loss of generality in assuming the Multi-
plicative Size Property: For all nonzero domain ele-
ments x and y,

Size(x) ≤ Size(x · y).

If the original Size function does not satisfy this prop-
erty, then it (and the original quotient and remainder)
can replaced by “new” operations that do satisfy this
and the division property.

ed2b.lisp: Book 2b.
Multiplicative Size Property-CounterExample.
The Integers (with an unusual Size function) are shown
to be an Euclidean Domain without the Multiplicative
Size Property. Here Quotient is round and Remainder
is rnd-rem, a version of rem using round in place of
truncate.

ed3.lisp: Book 3. Algebraic Theory.
Axioms and convenient notation for the theory of an
Euclidean Domain. Integral Domain Theory. Divides-
p Theory. Associates-p Theory. Unit-p Theory.
Reducible-p and Irreducible-p Theory. Factorization
Existence Theory. GCD Theory. Unit-associates-p
Theory. Unique Factorization Theory.

ed4aa.lisp: Book 4aa.
Example: Integers with floor and mod.
The Integers are shown to be an Euclidean Domain
with unique factorization. Here Size is abs; Quotient is
floor and Remainder is mod. This version uses quan-
tifiers (defun-sk) and is non-executable.

ed4ab.lisp: Book 4ab.
Example: Integers with floor and mod.
Executable factorization algorithms are obtained by
using computable Skolem functions in place of quanti-
fiers (defun-sk) used above in Book 4aa.

ed4ba.lisp: Book 4ba.
Example: Integers with truncate and rem.
The Integers are shown to be an Euclidean Domain
with unique factorization. Here Size is abs; Quotient
is truncate and Remainder is rem. This version uses
quantifiers (defun-sk) and is non-executable.

ed4bb.lisp: Book 4bb.
Example: Integers with truncate and rem.
Executable factorization algorithms are obtained by
using computable Skolem functions in place of quanti-
fiers (defun-sk) used above in Book 4ba.

ed4ca.lisp: Book 4ca. Example: Integers with ceiling.
The Integers are shown to be an Euclidean Domain
with unique factorization. Here Size is abs; Quotient
is ceiling and Remainder is c-mod, a version of mod

using ceiling in place of floor. This version uses
quantifiers (defun-sk) and is non-executable.

ed4cb.lisp: Book 4cb. Example: Integers with ceiling.
Executable factorization algorithms are obtained by
using computable Skolem functions in place of quanti-
fiers (defun-sk) used above in Book 4ca.

ed4da.lisp: Book 4da. Example: Integers with round.
The Integers are shown to be an Euclidean Domain
with unique factorization. Here Size is abs; Quotient
is round and Remainder is rnd-rem, a version of rem

using round in place of truncate. This version uses
quantifiers (defun-sk) and is non-executable.

ed4db.lisp: Book 4db. Example: Integers with round.
Executable factorization algorithms are obtained by
using computable Skolem functions in place of quanti-
fiers (defun-sk) used above in Book 4da.

ed5aa.lisp: Book 5aa. Example: Gaussian Integers.
The Gaussian Integers, complex numbers with inte-
ger real and imaginary parts, are shown to be an Eu-
clidean Domain with unique factorization. Here Size is
sqr-abs, the square of complex abs; Quotient is based
on rounding the real and imaginary parts of the com-
plex quotient and Remainder is a version of rem using
the above rounding in place of truncate. This version
uses quantifiers (defun-sk) and is non-executable.

ed5ba.lisp: Book 5ba.
Example: Complex numbers of the form a+b

√
2i where

a and b are integers and i =
√
−1.

This version uses ACL2r.

This version uses quantifiers (defun-sk) and is non-
executable.

ed6a.lisp: Book 6a.
Example: Polynomials in one variable over a field.
Univariate polynomials with coefficients from an arbi-
trary field are shown to be an Euclidean Domain with
unique factorization. Here Size is the degree of a poly-
nomial; Quotient and Remainder are defined as ex-
pected for polynomials. This version uses quantifiers
(defun-sk) and is non-executable.

ACL2 Univariate Polynomial Books are based on more
general ACL2 Polynomial Books [6, 5] by I. Medina-
Bule, F. Palomo-Lozano, and J. A. Alonso-Jimènez.

B. PROPOSED EUCLIDEAN DOMAIN
BOOKS

ed5ab.lisp: Book 5ab. Example: Gaussian Integers.
Executable factorization algorithms are obtained by
using computable Skolem functions in place of quanti-
fiers (defun-sk) used above in Book 5aa.

UNDER CONSTRUCTION

ed5bb.lisp: Book 5bb.
Example: Complex numbers of the form a+b

√
2i where

a and b are integers and i =
√
−1.

Executable factorization algorithms are obtained by
using computable Skolem functions in place of quanti-
fiers (defun-sk) used above in Book 5ba.

This version uses ACL2r.

UNDER CONSTRUCTION

ed5ca.lisp: Book 5ca.
CounterExample: Complex numbers of the form a +
b
√

3i where a and b are integers and i =
√
−1.

Unique factorization fails, so these numbers do not form
an Euclidean domain.

Eg. 2 · 2 = 4 = (1 +
√
−3) · (1−

√
−3)

This version uses ACL2r.

UNDER CONSTRUCTION

ed5cb.lisp: Book 5cb. Example: Eisensteinean Integers.

Complex numbers of the form a+b · 1+
√

3i
2

where a and

b are integers and i =
√
−1.

This version uses quantifiers (defun-sk) and is non-
executable.

This version uses ACL2r.

UNDER CONSTRUCTION

ed5cc.lisp: Book 5cc. Example: Eisensteinean Integers.

Complex numbers of the form a+b · 1+
√

3i
2

where a and

b are integers and i =
√
−1.

Executable factorization algorithms are obtained by
using computable Skolem functions in place of quanti-
fiers (defun-sk) used above in Book 5cb.

This version uses ACL2r.

UNDER CONSTRUCTION

