CSU290 Lecture Notes Lecture 26 20 Nov 2008

Peter Dillinger
CGenerali zation

When proving theorens by induction, it turns out that how we state what
we want to prove can significantly inmpact how the proof goes, including
how difficult it is.

For an exanple, recall LEN

(defun len (x)
(if (endp x)
0

(+1 (len (cdr x)))))
and the accumrul at or versi on, LEN AC:

(defun len-ac (x i)
(if (endp x)
(+ 01i) ; make sure it returns a nunber
(len-ac (cdr x) (+1i 1))))

We can use this to define a drop-in replacenment for LEN, LENZ2:

(defun len2 (x)
(len-ac x 0))

And if everything works as we think it should, then LEN2 should return
the same thing as LEN. In other words, this should be a theorem

(equal (len2 x)
(len x))

How do we prove this? How about induction? W have just one variable,
so we shoul d probably induct based on (len x):

(inplies (endp x) ; The base case is easy to prove
(equal (len2 x)
(len x)))
(inmplies (and (consp Xx) ; Induction step

(equal (len2 (cdr x))
(len (cdr x))))
(equal (len2 x)

(len x)))
For the induction step, we start with
(len2 x)
= { Def len2}

(len-ac x 0)
= { Def len-ac, (consp x) }
(len-ac (cdr x) 1)

If we start fromthe other side,

(len x)

= { Def len}

(+ 1 (len (cdr x)))

={ I.H } (That is, "lInduction Hypothesis")
(+ 1 (len2 (cdr x)))

= { Def len2}

(+ 1 (len-ac (cdr x) 0))

So now we need to know that (len-ac (cdr x) 1) equals (+ 1 (len-ac (cdr x) 0)).
But we can’t prove this wthout another inductive proof.



Conceptual ly, it seems we needed to induct based on | en-ac for the preceding
proof to go through in one induction, but the original proposition didn't
even have nore than one variable in it. (lnducting based on |len-ac requires
two variables for induction.)

Let us reconsider the original conjecture:

(equal (len2 x)

(len x))
= { Def len2}
(equal (len-ac x 0)
(len x))

That directly nentions |len-ac, the nost conplicated function in what we're
proving, but we only have one variable. Can we induct based on (len-ac x 0)?
That woul d nean we replace x with (cdr x) and O with (+ 0 1). As in
instantiation, we are only allowed to replace variables in an induction

hypot hesis. This nmeans if we want to induct based on |l en-ac, we need two
variables to induct over, and we probably want to replace that O with a

vari abl e.

If I change the left hand side of the equality with (len-ac x i), how do |
need to nodify the rest to keep the statenent true?

One way woul d be

(inplies (equal y 0)
(equal (len-ac x vy)

(len x)))

If we attenpt to prove this by induction, the Induction Hypothesis Chaining
step requires

(inplies (equal y 0)
(equal (+ 1y) 0))

whi ch neans we woul d never be able to use the induction hypothesis, naking
such a proof by induction useless.

I nstead we want the conjecture to be nore general, applying to any y. To
nake that work, we have to add y to (len x):

(equal (len-ac x vy)
(+y (len x)))

You may recall us proving this just a few |lectures ago. After induction
based on (len-ac x y), it is rather sinple.

Let’s now confirmthat this is a generalization of the original

(equal (len-ac x vy)
(+y (len x)))
=> { Instantiation withy =0}
(equal (len-ac x 0)
(+ 0 (len x)))
=>{ Arithmetic (given LEN returns integers), Def len2 }
(equal (len2 x)
(len x))

Ais a generalization of Bif Bis easy to prove fromA but Ais not easy to
prove fromB. (This is not a precise mathematical defintion, but it is good
enough for us.) In essence, Awll say the sane thing as B but about nore
cases. Usually, there are infinitely many cases in which A says sonething

i nteresting but B does not.



For exanple, the generalization above says something about all calls to
LEN-AC, while the original only applies to cases in which the second paraneter
is O.

Let’ s consi der another exanpl e:

(equal (len (app x X))
(* 2 (len x)))

If we attenpt to prove this with an induction schene based on one vari abl e,
as in that based on (len x), the induction step causes trouble:

(inplies (and (consp Xx)
(equal (len (app (cdr x) (cdr x)))
(* 2 (len (cdr x)))))
(equal (len (app x x))
(* (len x))))

W would start with

(l'en (app x X))

= { Def app }

(len (cons (car x) (app (cdr x) x)))
= { Def len}

(+ 1 (len (app (cdr x) x)))

So we have (len (app (cdr x) x)) but the induction hypothesis is about
(len (app (cdr x) (cdr x))).

This turns out to be another theoremthat is easier to prove if we generalize
it first. Rather than being restricted to the | ength of appending

sonething with itself, why not consider the length of appending any two things?
the generalization goes like this:

(equal (len (app x x))
(* 2 (len x)))
<= { Arith, given LEN returns integers }
(equal (len (app x X))
(+ (len x) (len x)))
<= { Instantiate y with x }
(equal (len (app x y))
(+ (len x) (leny)))

And that is a proposition we have proven before. It is rather sinple by
i nducti on based on (len x) or (app x y), sanme schene in either case.



