CSU290 Lecture Notes Lecture 23 12 Nov 2008
Peter Dillinger

I nduction Involving Miultiple Variabl es

So far we’ve seen induction involving just one variable, because the
schenes have been based on functions that take just one paraneter, |ike
TRUE- LI STP. Let’s now consider proofs that involve induction with nultiple
vari abl es. Consider the function

(defun weave (x y)
(if (endp x)

y
(if (endp vy)
X
(cons (car x)
(cons (car y)

(weave (cdr x) (cdr y)))))))

It will "stitch" or "weave" together two lists |like so:
(weave '(1 2 3) '(456)) ='(142536)
(weave ' (1) "(2 3 4)) ='(12 3 4)
(weave ' (1 2 3) '(4)) ='(14 2 3)

And recall the definition of |en

(defun len (x)
(if (endp x)
0

(+1 (len (cdr x)))))
Suppose we want to prove

(equal (len (weave x y))
(+ (len x) (leny)))

If we try to prove it without induction, we don’t nake any progress. W
could also try to prove it by induction using the schene we're nost famliar
with, that based on TRUE-LISTP or LEN (sane schene, base test (endp x) and
replace x with (cdr x)). This would be the inductive step:

(inplies (and (not (endp x))
(equal (len (weave (cdr x) y))

(+ (len (cdr x)) (leny))))
(equal (len (weave x y))

(+ (len x) (leny))))

We woul d start with
(len (weave x y))

and expand the definition of weave, but since we only know (not (endp x)), we
get



(len (if (endp y)
X
(cons (car x)
(cons (car vy)
(weave (cdr x) (cdr y))))))

If we did case analysis for (endp y) and (not (endp y)), we would be able to
prove the (endp y) case, but for (not (endp y)), we need to know sonethi ng
about (weave (cdr x) (cdr y)). However, we only know about (weave (cdr x) y),
according to the induction hypothesis given by the induction scheme we used.
Thi s suggests we used the wong induction schene.

We actually need to induct based on the schene given by (weave x y). Usually
the correct induction scheme will cone fromthe nost inmportant function in

your conjecture, the one that the conjecture seens to be about. This induction
schene will be rather different because (1) the function takes two paraneters
and (2) the function has two base cases. Wen a function has nmultiple IF
branches, we can conbine all those into one base case, in which the base test
covers all cases in which we do not make a recursive call

(inplies (or (endp x) Conbi ned Base Case

(endp y))
PHI )

where PH is the formula we're trying to prove. W would need to prove that
by case analysis on (endp x) and (not (endp x)). Equivalently, we can just
construct two base cases, each with hypotheses of what needs to be true to
reach that base case in the function:

(inplies (endp x) Base Case 1
PHI )
(inplies (and (not (endp x)) Base Case 2
(endp y))
PHI )

For the PH we are interested in

(equal (len (weave x y))
(+ (len x) (len y)))

both of these are easy to prove using the definitions of WEAVE and LEN
(Try them)

The inductive step is also interesting, because we have to replace two
vari abl es according to the recursive call in WEAVE:

(inplies (and (not (endp x)) I nductive Step
(not (endp vy))
(let ((x (cdr x))
(y (cdr y)))
PHI))
PHI )



So we woul d have assunptions
1. (not (endp x))
2. (not (endp y))
3. (equal (len (weave (cdr x) (cdr y)))

(+ (len (cdr x)) (len (cdr y))))
and start with (len (weave x y)) and show that is equal to (+ (len x) (len y)).

(len (weave x y))
= { Def weave, assunptions }
(len (cons (car x)
(cons (car vy)
(weave (cdr x) (cdr y)))))

= { Def len, not endp cons, cdr-cons }
(+ 1 (len (cons (car y)
(weave (cdr x) (cdr y)))))

= { Def len, not endp cons, cdr-cons }

(+1 (+1 (len (weave (cdr x) (cdr y)))))

= { Assunption 3}

(+ 1 (+ 1 (+ (len (cdr x)) (len (cdr y)))))
={ Arith (comm and assoc. of addition) } <- At this point I'mcarefully
(+ (+ 1 (len (cdr x))) (+ 1 (len (cdr y)))) "wor ki ng backwards". You m ght
={ Def len * 2, assunptions 1 & 2 } prefer to restart fromthe goa
(+ (len x) (leny)) <- here.

Anot her exanpl e

Let’s |l ook at an accumul ator version of LEN, called LEN AC
(defun len-ac (I n)
(if (endp I)
(+ 0 n) ; make sure return value is a nunber
(len-ac (cdr 1) (+ 1 n))))
We want to relate LEN-AC to LEN, by proving

(equal (len-ac | n)

(+ (len 1) n))
If we tried proving this wi thout induction or by induction based on (len |),
we fail. The nmpbst inmportant function in this conjecture is LEN-AC, so we

are likely to have success using induction based on (len-ac | n):

(inplies (endp |) Base Case
(equal (len-ac I n)

(+ (len 1) n)))

(inplies (and (not (endp I|)) I nductive Step
(equal (len-ac (cdr |) (+ 1 n))
(+ (len (cdr 1)) (+1n))))
(equal (len-ac I n)

(+ (len 1) n)))

Notice we had to replace both | and n in the induction hypothesis. The proof
of each obligation is reasonably sinple. (Try them)



