CSU290 Lecture Notes Lecture 19 30 Cct 2008
Peter Dillinger

Arithnmetic in Proofs

Let us try to prove sonething that requires some arithmetic. Assum ng
these definitions of MN and NMAX

(equal (mn x vy)
(if (<=xy) xVy))

(equal (max x vy)
(if (<=xy)yx))

Let us try to prove

(equal (- (+ x y)
(mex X y))
(nMinxy))

<= { Def mn, Def max }

(equal (- (+ xy)
(i (<= xy) y X))
(if (<= xy) xvy))

Now we can use a strategy we | earned about recently, Case Analysis:
Case 1: Assune (<= x Yy)

<= { Assunption (<= x y), |F axiom}
(equal (- (+ xvy)
y)
X)

Wel |, ACL2 has axi ons concerning arithnmetic, and nost everything you know
from high school mathematics can be proven fromthose axions. Doing so can
be very hard and beyond the scope of this course, so we allow you to use
mat hemati cs you know from hi gh school in proofs.

For exanple, we know that in mathematics, (x +y) - y =X, so we are all owed
to use that in witing ACL2 proofs. This nmight | ead one to believe we could
just go to

<={ Arithnetic }
t

However, there's a problem The original conjecture is not a theoremn
Consi der this exanple:

(let ((x nil)
(y nil))
(equal (- (+ xy)
(max x y))
(mnxy)))

But ACL2 arithmetic treats non-nunbers as 0, right? So what’'s the probl en?
Let’s see:



(equal (- (+ nil nil)
(max nil nil))
(mnnnil nil))

Vll, (max nil nil) and (min nil nil) are both nil, because they don’t
necessarily return nunbers, just one of their argunents.

(equal (- O
nil)
nil)

(equal 0 nil)

ni

So you are allowed to use arithmetic reasoning, but you need to be sure
you are working with nunmbers, because non-nunmbers m ght not satisfy
arithmetic equations in ACL2, as we just saw

If the conjecture were

(inplies (and (integerp x)
(integerp vy))
(equal (- (+ xy)
(mx X y))
(mn xy))

then we could prove that |ike so:

Assumptions: (integerp x) (integerp y)

(equal (- (+ x y)
(max X y))
(mnxy))

<= { Def mn, Def max }

(equal (- (+ x )
C(if (<= xy) y X))
(if (<=xy) xvy))

Case 1: Assune (<= Xx Yy)

<= { Assunption (<= x vy), |IF axiom}
(equal (- (+ xY)
y)
X)
<= { Arithnetic }
t

Case 2: Assune (not (<= x vy))
<= { Assumption (<= x y), |IF axiom}
(equal (- (+ x y)

X)

y)
<= { Arithretic }
t



I ntroduction to I nduction

Suppose we want to prove
(>= (len x) 0)
Let’s try to start proving it:

<= { Def len}
(>= (if (endp x)
0

(+ 1 (len (cdr x))))
0)

Case 1: assunme (endp x)

<={ (endp x), IF}
(>= 0 0)

<= { Arith}
t

Case 2: assunme (not (endp X))

<= { (not (endp x)), IF}
(>= (+ 1 (len (cdr x)))
0)

What do we do fromhere? W need to know sonething about (len (cdr x))
in order to prove this. For exanple, if we knew that (>= (len (cdr x)) 0),
then we could finish the proof by arithnmetic reasoning.

But (>= (len (cdr x)) 0) is alnost exactly like what we're trying to prove.
It seens |ike we are hopel essly stuck trying to prove this.

Let us consider a nethod of proof from Mathematics that will cone to play a
central role in ACL2 proofs. Consider the follow ng function

f(x) ={ 0

if x =0
{ x + f(x-1) if x 0 and an integer

\VARI|

VWhat does this function correspond to? Well, what is f(3)?
f(3) (2)
(1)

(0)
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Actually, f(x) is the sumof all the natural nunbers up to and including x.
Sone may recall a "closed form fornmula for this:

f(x) =x(x +1) / 2

If we want to prove that the recursive definition of f satisfies this fornula,
we would need to prove that it holds for all natural nunbers, and for
problens like this, we don't get very far w thout | NDUCTI ON

If you want to prove sonething holds for all natural nunmbers, induction says
that you only need to

- prove that it holds for O

- prove that it holds for x UNDER THE ASSUMPTION that it holds for x - 1



Call the first one the BASE CASE and the second the | NDUCTI VE STEP

For exanple, the inductive step says that if

true for 4. If it’s true for 13, it nust be true for

If soneone tries to claimthere is a natura

it's true for 3,
Et c.

nunber ,

proposition false, we can present this argunent:
- use base case proof to showit is true for O

- instantiate inductive step to show if it
- instantiate inductive step to show if it
- instantiate inductive step to show if it
- instantiate inductive step to show if it

Because we can make an argument like this for

nunbers allows us to conclude from base case and inductive step theorens that

a proposition holds for any natural nunber.

is true
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i nduction on natura

Let us continue our mathematical exanple. Let us prove the base case,

f(0) =0 (0 + 1) / 2

0

whi ch agrees with the recursive definition
you should be familiar with.)

(I used mat hemati ca

reasoni ng

Let us consider the inductive step, which says that we shoul d assume

f(x-1) =(x - 1) x [/ 2
and use that to prove

f(x) =x(x+1) /] 2

where, according to its definition, f(x) = x + f(x-1).

Let us start with that definition and replace f(x-1) by what

be equal to: (x"2 is x squared)

f(x) =x + f(x - 1)
=x + ((x - 1) x/ 2

x"2 X

=X + --- - ---

2 2
X X2
= - 4+ ---
2 2

(x + xnr2) | 2

X (x +1) [/ 2

it

is assuned to

So | have shown f(x) = x (x + 1) / 2 assuming the same is true for the next
smal | er value of x. That concludes the mathenmatica

have proven that

f(x) =x(x +1) / 2

proof by induction. W

for all natural nunmbers x, and with f defined recursively as above.

n



| nduction in ACL2

ACL2 al so has induction. W can use induction on natural nunbers, but
we can al so use induction on lists. Here's the idea:

Base case: Proof that the proposition holds for all atoms (non-conses)

I nductive step: Assune we are given a cons and that the proposition holds
for the CDR of that cons. Prove it holds for that cons structure.

The idea is that we can divide up the ACL2 universe as foll ows:

- Atoms (including t, nil, numbers, strings, etc.)

- Conses whose CDR is an atom

- Conses whose CDR of the CDR is an atom

- Conses whose CDR of the CDR of the CDR is an atom

Take what we wanted to prove at the beginning, (>= (len x) 0). If we
prove it holds for the first division

(inplies (endp x)
(>= (len x) 0))

and then prove that it holds for any division assunming it holds for the
previous (the CDR):

(inplies (and (consp Xx)
(>= (len (cdr x)) 0))
(>= (len x) 0))

Then we can conclude it holds for all the divisions of the universe, which
is the whole universe. Fromthe base case and inductive step, we can concl ude
the proposition is true:

(>= (len x) 0)

Later we will learn nore about how this this works nore generally, and, in
nore detail, howto apply it.



