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Peter Dillinger
G ven definitional axions:

(equal (true-listp x)
(if (endp x)
(equal x nil)
(true-listp (cdr x))))

(equal (add-to-end e )
(append I (cons e nil)))

(equal (integer-listp x)
(if (endp x)
(equal x nil)
(and (integerp (car x))
(integer-listp (cdr x)))))

Let us first prove
(true-listp (add-to-end e 1))

using the | emma True-Iistp-append:

(inmplies (true-listp y)
(true-listp (append x y)))

This isn't an equality proof, so we need to nmake a series of reductions:

(true-listp (add-to-end e 1))
<= { Defn add-to-end }
(true-listp (append | (cons e nil)))
<= { Lenmm True-listp-append }
(true-listp (cons e nil))
<= { Defn true-listp, IF axiom not endp cons }
(true-listp (cdr (cons e nil)))
<= { cdr-cons axiom}
(true-listp nil)
<= { Evaluation }
t

Basically, using a propositional deduction on (true-listp (cons e nil)) and
an instantiation of the | emm,

(inplies (true-listp (cons e nil))
(true-listp (append | (cons e nil))))

allowed me to conclude (true-listp (append | (cons e nil))). In fact, the
particul ar propositional deduction is Mdus Ponens.

VWhat if | said to prove (consp 42) using the lemma (integerp nil)?

Believe it or not, | can construct such a proof:
(consp 42)

<= { Propositional deduction }
ni

<= { Evaluation }
(integerp nil)
<= { Lenmm }
t



VWhat is interesting is that the assunption that (integerp nil) is a lemua
stipulates that it is a theorem |In this case, the |l emma given was not

a theorem in fact, it always evaluates to nil! This allowed us--through
| egal deductions on flawed assunptions--to conclude nil is a theorem Once
we have concluded nil, or "false", we can use a propositional deduction to

conclude anything. (false ->p 1is a tautology.)

Is this really a proof? Yes it is, but not with regard to any theory ACL2
will allow. [If an extension of ACL2's base theory is able to prove
(integerp nil) then that extension is UNSOUND, because it allows us to
concl ude two contradi ctary propositions: (not (integerp nil)) and
(integerp nil).

ACL2 does not allow unsound extensions of its theory, so this will not happen
if the Lemmas you are given are actually theorens in a proper extension of
ACL2' s base theory.

(I't’s not inmportant that you conpl etely understand soundness yet.)

Prove

(inplies (and (integer-listp I)

(integerp e))
(integer-listp (add-to-end e 1)))

using the | emma Integer-I|istp-append:

(inplies (and (integer-listp x)

(integer-listp y))
(integer-listp (append x y)))

Once again, we are not proving an equality, but this tinme we have assunptions
we can use:

Assumptions: (integerp-listp |)
(integerp e)

(integer-listp (add-to-end e 1))
<= { Defn add-to-end }
(integer-listp (append I (cons e nil)))
<= { Lenmm | nteger-listp-append }
(and (integer-listp |)
(integer-listp (cons e nil)))
<= { Prop. deduction, assunption (integer-listp 1) }
(integer-listp (cons e nil))
<= { Defn integer-listp, |IF axiom not endp cons }
(and (integerp (car (cons e nil)))
(integer-listp (cdr (cons e nil))))
<= { car-cons and cdr-cons }
(and (integerp e)
(integer-listp nil))
<= { Prop. deduction with Assunption (integerp e) }
(integer-listp nil)
<= { Evaluation }
t



