
Parsing Reflective Grammars∗

Paul Stansifer
pauls@ccs.neu.edu

Mitchell Wand
wand@ccs.neu.edu

College of Computer and Information Science
Northeastern University
360 Huntington Avenue

Boston, Massachusetts 02215

ABSTRACT
Existing technology can parse arbitrary context-free gram-
mars, but only a single, static grammar per input. In order
to support more powerful syntax-extension systems, we pro-
pose reflective grammars, which can modify their own syntax
during parsing. We demonstrate and prove the correctness
of an algorithm for parsing reflective grammars. The algo-
rithm is based on Earley’s algorithm, and we prove that it
performs asymptotically no worse than Earley’s algorithm
on ordinary context-free grammars.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Parsing

General Terms
Languages

Keywords
Earley parsing, context-free languages, syntax extension

1. INTRODUCTION
A software project may involve many different languages

with different purposes and complexities, each with its own
“natural” syntax. Typically, these languages are segregated
from each other, either appearing in separate files, or inside
strings. But parenthesis-structured languages from the Lisp
family support incremental syntax extension (via macro sys-
tems). This extension process provides powerful integration,
but the surface syntax is restricted to S-expressions.

We believe it is possible to bridge this gap and create
macro systems with the syntactic power of arbitrary context-
free grammars. However, new parsing technology is needed
to do so. In this paper, we propose reflective grammars,

∗This research was made possible by the US National Science
Foundation under grant number CCF-0811015, “CPA-SEL: De-
veloping a Theory of Hygienic Macros”.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LDTA 2011 Saarbrücken, Germany
Copyright 2011 ACM 978-1-4503-0665-2 ...$10.00.

which allow a language designer to define an incrementally
extensible base language. In such a language, a valid sen-
tence may contain strings matching productions dynami-
cally added by the sentence itself. This happens in a struc-
tured fashion. Users of this language can use its extension
construct to write in any surface syntax they want.

These language extensions are dynamic in the sense that
they occur in the same file in which they are used; they are
structured in that they have well-defined scope; and they
are recursive in that an arbitrary number of extensions may
be nested.

Our reflective grammars are based on context-free gram-
mars. Although many modern languages can be made to
fit into restricted subsets of context-free languages, such as
LALR(1), context-free languages are easier to understand
and manipulate, and are closed under composition [12]. This
means that they are more suitable for languages which are
to be extended by the user.

Others have demonstrated impressive speed improvements
to the Earley and GLR algorithms [2, 3, 14–16]. We be-
lieve that the historical performance motivations for using
restricted subsets of context-free grammars no longer apply.

A macro system could provide meaning to these syntactic
extensions, but we do not present one here; this paper only
covers parsing.

In section 2, we describe reflective languages in more de-
tail. Section 3 describes a recognition and parsing algorithm.
Section 4 proves an upper bound to the time taken by pars-
ing. Sections 5 covers related work, and section 6 discusses
our conclusion and future work.

2. REFLECTIVE LANGUAGES

Examples
The crux of our examples is the special right-hand side sym-
bol R. In the grammar G, the strings w that R derives
(denoted G ` R⇒ w), are the strings in the set

{w1w2 : G ` 〈Gram〉 ⇒ w1 and G′ ` S′ ⇒ w2},

where

• 〈Gram〉 is a distinguished nonterminal in G such that
strings derivable from 〈Gram〉 can be interpreted as
grammars by an operation denoted J−K.

• G′ = G ⊕ Jw1K, where ⊕ creates a new grammar by
combining the productions of two grammars, and

• S′ is the start symbol of G′.

For our examples, we will define a reflective grammar for
a language containing numbers, identifiers, and function in-
vocations in the style of C-like languages. In addition to
these conventional elements, the grammar accepts exten-
sions, marked by pairs of curly brackets. The meaning of
the extension symbol R depends on the nonterminal 〈Gram〉,
which we also must define, giving a BNF-like meta-syntax
for reflective grammars. R is represented in this notation
as REFL. The start nonterminal of the resulting grammar is
specified immediately after gram.

We assume that the nonterminals 〈Identifier〉, 〈Nonterm〉,
〈QuotedString〉, and 〈NaturalNumber〉 have been given ap-
propriate definitions already. We also assume that whites-
pace is ignored, except that 〈Nonterm〉 and 〈Identifier〉 fol-
low standard tokenization rules. Our parser implementation
successfully processes all the examples we give.

〈Expr〉 → 〈SimpleExpr〉(〈Expr〉〈MoreArgs〉)
〈Expr〉 → 〈SimpleExpr〉
〈SimpleExpr〉 → 〈Identifier〉
〈SimpleExpr〉 → 〈NaturalNumber〉
〈SimpleExpr〉 → {{ R }}

〈MoreArgs〉 →
〈MoreArgs〉 → , 〈Expr〉〈MoreArgs〉
〈Gram〉 → gram <〈Nonterm〉> 〈Prods〉 end_gram

〈Prods〉 →
〈Prods〉 → 〈Prod〉 〈Prods〉
〈Prod〉 → <〈Nonterm〉> ::= 〈RhsItems〉 ;

〈RhsItems〉 →
〈RhsItems〉 → <〈Nonterm〉> 〈RhsItems〉
〈RhsItems〉 → 〈QuotedString〉〈RhsItems〉
〈RhsItems〉 → REFL 〈RhsItems〉

A simple sentence in the language of this grammar is
plus(1, plus(2,3)). A sentence that uses its reflective ca-
pabilities to add simple infix operations is

plus(1, plus(2,

{{ gram <Expr>

<Expr> ::= <SimpleExpr> <Op> <Expr> ;

<Op> ::= "+" ;

end_gram

3 + plus(4, 5 + 6) }}), 7)

The extension recognizes the text between gram and
end_gram inclusive as being derived from 〈Gram〉. It in-
terprets the grammar extension, and after that, it expects
a string derived from 〈Expr〉 in the extended grammar,
which it finds: 3 + plus(4, 5 + 6). The surrounding text,
that is, plus(1, plus(2, {{ and }}), 7), is in the original
grammar. This means that the sentence

plus(1, plus(2,

{{ gram <Expr>

<Expr> ::= <SimpleExpr> <Op> <Expr> ;

<Op> ::= "+" ;

end_gram

3 + plus(4, 5 + 6) }}), 7 + 8)

is not in the grammar, because 7 + 8 is outside the R that
provided a new definition for 〈Expr〉.

Extensions can be used to gradually build up more pow-
erful languages. In the following example, still in the same

base grammar, we add lambda expressions and then infix
operations (we represent λ as \, making the assumption
that backslash is not already used as the escape character
in string literals):

plus(1,

{{ gram <Expr>

<Expr> ::= "\" <Identifier> "." <Expr> ;

<SimpleExpr> ::= "(" <Expr> ")" ;

end_gram

(\x. plus(2,x))(

plus(3,

{{ gram <Expr>

<Expr> ::= <SimpleExpr> <Op> <Expr> ;

<Op> ::= "+" ;

end_gram

(\y. 4 + y)(

5 + (\z. 6 + z)(7)) }})) }})

Note that the extension markers that this base grammar
uses, {{ }}, have no special status in our system, and the
user could choose to use them as another kind of delimiter,
provided he or she did so unambiguously. The only reason
they appeared in the base grammar at all because omitting
them would have made extensions hard to read, and even
made it ambiguous where a grammar extension ends after
binary operations are permitted.

However, suppose that the author of the base language
lacked this foresight, and had written the extension rule as
〈SimpleExpr〉 → R, instead of 〈SimpleExpr〉 → {{ R }}.
All would not be lost, because the user could have simply
added and then used a new, better construct using REFL,
which represents the R construct in our meta-syntax:

plus(1, gram <Expr>

<Expr> ::= "{{" REFL "}}" ;

end_gram

{{ gram <Expr>

<Expr> ::= <SimpleExpr> <Op> <Expr> ;

<Op> ::= "+" ;

end_gram

2 + 3 }})

The old and now ambiguous extension syntax still re-
mains, however. This is because, for simplicity, we have
omitted from these examples the ability to remove produc-
tions from grammars. It would be very easy to add this,
however. Our formalism does not depend on any relation-
ship between the grammar being extended and the exten-
sion, but to obtain the complexity bounds of section 4, it
must be possible to compute the extension quickly.

Definitions
To define reflective grammars, we first need some metavari-
ables. Let t range over terminal symbols, A and B be non-
terminals, α, β, γ, and δ be right-hand sides (strings of ter-
minals, nonterminals, and of the distinguished symbol R),
x be the input string of terminals, and let i, j, k, and l be
indices into that string. We will use xi,j to represent sub-
strings of x. The indices are zero-based and half-open; i.e.,
x = x0,|x|. The empty string will be represented with the
symbol ε. We will name other strings w. Finally, we will use
G for a reflective grammar.

A reflective grammar G consists of some set of productions
(A→ α) ∈ G, and a start symbol A = G.start.

Semantics
In order to define the meaning of a reflective grammar, we
must define the meaning of right-hand sides. We write G `
α⇒ x to mean that the right-hand side α derives the string
x according to the grammar G. Right-hand sides are built
recursively from terminals, nonterminals, and the R symbol:

L-Empty

G ` ε⇒ ε

L-Terminal
G ` α⇒ w

G ` αt⇒ wt

L-Nonterminal
G ` α⇒ w1 (A→ δ) ∈ G G ` δ ⇒ w2

G ` αA⇒ w1w2

L-Reflection
G ` α⇒ w1 G ` 〈Gram〉 ⇒ w2

G′ = G⊕ Jw2K (G′.start→ δ) ∈ G′ G′ ` δ ⇒ w3

G ` αR⇒ w1w2w3

We say x ∈ L(G) (that is, x is in the language of G), iff
G ` G.start⇒ x.

We restrict ⊕ by forbidding the user from extending the
special 〈Gram〉 nonterminal, and the nonterminals that make
it up, because the interpretation function J−K is fixed, so it
would not be able to interpret the newly-valid strings that
〈Gram〉 derives. However, a macro system using this parser
could reasonably permit extensions to 〈Gram〉 if the user
supplied a translation from the extended notation for gram-
mars into the original notation. Also, to make our complex-
ity analysis simpler, we require that 〈Gram〉 be non-nullable
and appear on the left-hand side of only one production.

3. RECOGNIZER ALGORITHM
We next present an algorithm for recognizing the language

of a reflective grammar G, based on the Earley recognizer
algorithm [8]:

R-Start
G.start→ δ ∈ G

(0, G.start→ ·δ,G) ∈ S0

R-Shift
(i, A→ α·tβ,G) ∈ Sj xj = t

(i, A→ αt·β,G) ∈ Sj+1

R-Call
(i, A→ α·Bβ,G) ∈ Sj (B → δ) ∈ G

(j, B → ·δ,G) ∈ Sj

R-Return
(i, A→ α·Bβ,G) ∈ Sj (j, B → δ·, G) ∈ Sk

(i, A→ αB·β,G) ∈ Sk

R-Parse-grammar
(i, A→ α·Rβ,G) ∈ Sj (〈Gram〉 → γ) ∈ G

(j, 〈Gram〉 → ·γ,G) ∈ Sj

R-Refl-call
(i, A→ α·Rβ,G) ∈ Sj (j, 〈Gram〉 → γ·, G) ∈ Sk

G′ = G⊕ Jxj,kK (G′.start→ δ) ∈ G′(
k,G′.start→ ·δ,G′

)
∈ Sk

R-Refl-return
(i, A→ α·Rβ,G) ∈ Sj

G′ = G⊕ Jxj,kK
(
k,G′.start→ δ·, G′

)
∈ Sl

(i, A→ αR·β,G) ∈ Sl

An Earley recognizer accumulates Earley items. An Ear-
ley item is a tuple (i, A→ α·β,G), where (A → αβ) ∈ G,
and the cursor (the · symbol) marks a position in the right-
hand side αβ. The grammar G is not part of traditional Ear-
ley items; we have added it for our grammars. The algorithm
collects sets Sj , where the set Sj corresponds to the jth char-
acter in the input string x. The algorithm places the Earley
item (i, A→ α·β,G) in the set Sj only if G ` α ⇒ xi,j .
However, for efficiency’s sake, the recognizer only generates
that Earley item in the first place if it might be needed (the
R-Call rule determines that a nonterminal might need to
be recognized at a particular point).

The recognizer proceeds strictly left-to-right. The rules
R-Start and R-Call place items of the form (j, A→ ·δ,G)
in locations where the nonterminal A is expected to “seed”
recognition of an A. The R-Shift rule advances the cursor
over an expected terminal. The R-Return rule advances
the cursor over an expected nonterminal, provided there ex-
ists a corresponding“finished”item of the form (j, A→ δ·, G).

The last three rules, R-Parse-grammar, R-Refl-call,
and R-Refl-return, are our additions to the algorithm. R-
Parse-grammar and R-Refl-call are both “seed” rules,
analogous to R-call. R-Parse-grammar fires when the
recognizer reaches an R, and it starts to consume a string
matching 〈Gram〉. When the 〈Gram〉 has been completely
parsed, R-Refl-call creates an extended grammar, and
descends into its start terminal. Finally, R-Refl-return is
analogous to R-Return; it is triggered by an Earley item
that indicates that a string matching the extended grammar
is completed, and it advances the cursor over the R that was
waiting on it.

If G′ = G ⊕ Jxj,kK, then we will say that G′.location =
(j, k) and G′.parent = G (note that G could be an extended
grammar or just the base grammar). We will compare gram-
mars in an intensional fashion. Two extended grammars will
be equal exactly when their locations and parents are the
same, which implies that, in fact, they posses exactly the
same rules. This will decrease the complexity of executing
the R-Refl-return rule, and make equality comparisons
between Earley items fast.

The algorithm is considered to have recognized the string
x in the language G iff it produces an Earley item of the
form (0, G.start→ δ·, G) in the last set, S|x|.

Parsing instead of recognizing
There are two approaches to turn the recognizer into a parser.
If ambiguous parses are to be rejected by the parser, Earley’s

simple technique suffices: In each Earley item, we associate
each nonterminal to the left of the cursor with a pointer to
the “completed” Earley item (j, B → δ·, G) that derives it.
Items that have multiple pointers render any parse that uses
them ambiguous.

If a representation of all parses is desired, Scott’s Buildtree
algorithm [19] can be adapted easily to our recognizer. It de-
pends on the recognizer annotating nodes with“predecessor”
and “reduction” pointers. Therefore, when a rule produces
an item (i, A→ αβ·γ,G) ∈ Sk, where β is a single termi-
nal, nonterminal, or R, it adds a predecessor pointer from
it to the antecedent item (i, A→ α·βγ,G) ∈ Sj . When R-
Return produces (i, A→ αB·γ,G) ∈ Sk, it adds a reduc-
tion pointer from it to the antecendent item (j, B → δ·, G) ∈
Sk, and when R-Refl-Return produces a rule of the form
(i, A→ αR·γ,G) ∈ Sk, it adds a reduction pointer from it
to the antecedent item (j, B → δ·, G′) ∈ Sk.

Scott’s algorithm traverses the Earley items and builds
up a shared packed parse forest. The symbol nodes [19,
p. 59] are marked with a nonterminal and a beginning and
ending position. In a reflective setting, these nodes must
also have the grammar from which the nonterminal came,
because a nonterminal is only meaningful in the context of
some grammar.

Correctness
Theorem 1 (Recognizer correctness).

G ` G.start⇒ x
iff there is a production

(G.start→ γ) ∈ G such that (0, G.start→ γ·, G) ∈ S|x|

We prove each direction separately. The algorithm is com-
plete:

G ` α⇒ xi,j and (i, A→ ·αβ,G) ∈ Si

implies
(i, A→ α·β,G) ∈ Sj

by induction on the derivation of G ` α ⇒ xi,j , and the
algorithm is sound:

(i, A→ α·β,G) ∈ Sj implies G ` α⇒ xi,j

by induction on the derivation of (i, A→ α·β,G) ∈ Sj .

The full proof is included in a longer version of this pa-
per [20].

4. COMPLEXITY
We will characterize the complexity of this algorithm in

terms of both the length of the input string and the nature
of extended grammars it defines. Let n be the length of the
input string, and let g be the maximum size of any extended
grammar defined. We define the size of a grammar to be
the sum of the number of productions and the length of the
right-hand sides. By this definition, there are only g distinct
values of A→ α·β possible in a grammar of size g.

At each input position, there is some set of grammars
which might be the current grammar, given the part of the
string to the left of the character. Let m be the maximum of
the size of these sets, over the length of the string. Having
m be greater than 1 occurs in cases where something else

shares syntax with a syntax extension construct, or when the
extension is not terminated unambiguously, both of which
are undesirable in practice. However, in pathological cases,
m grows exponentially with n. We know m is always fi-
nite because grammar extensions are applied in the order
encountered and 〈Gram〉 is non-nullable, so every grammar
is uniquely defined by sequence of distinct nonoverlapping
nonempty substrings of the input string. It is possible to
limit the value of m and abort parsing if it exceeds some
preset value.

Before we proceed, we must specify the behavior of JxK
and ⊕. We require that both of those take no more than
O(ngm) time. Most natural definitions will satisfy this eas-
ily, as the string x is no more than n characters long, and the
grammars produced by ⊕ and JxK have size no more than g.

Now we shall prove that recognition takes O(n3g3m3)
time. Our argument follows that of Earley [8].

First, we observe that the algorithm can be executed by
first determining the contents of S0, then S1, and so on, be-
cause the contents of each S never depends on an S further
to the right. Furthermore, every rule that places an Ear-
ley item into set Si has as an antecedent the existence of
an Earley item in Si, with the exception of R-Start and
R-Shift. Imagining for the moment that each Si is a set
that allows mutation by adding members, we sketch out a
strategy for taking the closure of our rules:

For each Si, in order, “seed” the set by executing R-Start
if i = 0, or R-Shift on every appropriate item in Si−1 other-
wise. Now close the set over the remaining rules: Apply all
rules to the new Earley items, the result of which becomes
the new Earley items for the next iteration, repeating until
no new items appear.

This closure process is the heart of the algorithm. For
each Earley item generated, it will execute the rules, and
insert the resulting item (if any) into the appropriate set.
There is one set of Earley items for each input character, so
the asymptotic running time is

number-of-input-characters ×
number-of-Earley-items-per-set × (rule-execution-time +

items-produced-per-item × set-insertion-time).

There are n input characters. Each set contains at most
O(ngm) Earley items: in the form (i, A→ α·β,G1), there
are n possible values of i, g possible values for A→ α·β, and
the number of distinct grammars G1 in the set is limited to
m.

If each set is represented as an array of length n contain-
ing linked lists of items, and an item anchored at i is stored
in the list at index i of the array, there will be at most
O(gm) items in each linked list. To perform set insertion by
adding elements to these lists, we also need to compare Ear-
ley items for equality quickly. It is possible to store all the
components of our Earley items as indices for constant-time
comparison. This is trivial for the anchor i and for the rule
position A→ α·β, but requires explanation for the grammar
G. The contents of grammars can be stored in a table, and
each Earley item’s reference to the current grammar can be
stored as an index into that table. We have required that
there only be one production of the form 〈Gram〉 → γ, so
for each grammar with location (i, j) and parent G′, there
is only one possible Earley item that can produce it via R-
Refl-call. This means that newly created grammars are
unequal to all existing grammars, so the table never needs

to be searched. Therefore, comparing Earley items to each
other takes constant time, and therefore inserting an Earley
item into the set Si takes O(gm) time.

Now, all that remains is to determine, per input item,
how long the rules take to execute, and how many items
the rule produces. Each rule (other than R-Start, which
takes O(g) time to execute overall) has at least one Earley
item as a antecedent. To apply the rule to an Earley item,
we substitute the item into the antecedent, and then test
the remaining antecedents. This means that rules with two
Earley items as antecedents will be attempted twice and
succeed the second time.

R-Shift This rule takes O(1) time to test the expected
terminal against the input string. It produces at most
a single item.

R-Call This rule needs to walk G, so it takes O(g) time,
producing at most O(g) items.

R-Return We reproduce the rule below:

R-Return
(i, A→ α·Bβ,G) ∈ Sj (j, B → δ·, G) ∈ Sk

(i, A→ αB·β,G) ∈ Sk

We will show that the rule takes O(ngm) time and
produces O(ngm) items. It is always true that j ≤ k,
because the end of a production must not come before
its start. There are two possible ways that an Earley
item could be relevant to this rule:1

If we have the item (j, B → δ·, G) ∈ Sk
2, we know

what j is and that all matching items are in Sj . There
are O(ngm) items in Sj which need to be checked to
see if they match (i, A→ α·Bβ,G). All of them could
match: this rule could produce as many as O(ngm)
items.

But if we have the item (i, A→ α·Bβ,G) ∈ Sj , the
only matching Earley items that could have already
been produced are those for which j = k. So, we
need to search Sj , which takes O(gm) time to produce
O(gm) items, because the anchor of the item we are
looking for is known to be j. The fact that Sj is only
partially complete at this point is of no consequence;
whichever item arrives last in Sj will succeed in finding
the other.

R-Parse-grammar Like R-Call, this takes O(g) time,
producing at most O(g) items.

1Here, we differ from Earley by omitting a small op-
timization; he only tests items for applicability as the
(j, B → δ·, G) antecedent in the R-Return rule. This al-
ways works when j < k, and sometimes works when j = k.
Additional work must be done to make this behave correctly
in the presence of nullable productions. Aycock [2] discusses
three different solutions to this problem.
2An anonymous reviewer points out that the value of δ is
irrelevant in executing this rule. therefore, an intermediate
rule could collapse all items of the form (i, B → δ·, G) ∈ Sk

into a special item (i, B → �, G) ∈ Sk, which the R-return
rule could look for instead, reducing the number of times
it executes. However, this would not have an asymptotic
effect on performance; the number of distinct possible values
of B → �, like the number of distinct possible values of
B → δ·, is in O(g).

R-Refl-call Computing G⊕Jxj,kK takes O(ngm) time, as
specified above. 〈Gram〉 is required to be non-nullable,
so j < k, and therefore the (j, 〈Gram〉 → γ·, G) ∈
Sk item always appears last. Searching Sj for items
matching (i, A→ α·Rβ,G) takesO(ngm) time and pro-
duces at most O(ngm) items.

R-Refl-return G′.location = (j, k), and G′.parent = G.
Other than that extra bookkeeping, this rule proceeds
like R-Return.

For each Earley item, executing the rules takes O(ngm)
time and produces up to O(ngm) items. Each item that
is produced needs to be inserted into the appropriate set
(which, as we saw above, takes O(gm) time). The dedupli-
cation performed by set insertion ensures we only have to
execute the rules once per unique Earley item, even if the
item is produced multiple times. Otherwise, execution time
would be slower, and it would even diverge in the case of
left-recursive rules.

Our total running time therefore is n×O(ngm)×(O(ngm)+
O(ngm) × O(gm)) = O(n3g3m3). If the rules R-Parse-
grammar, R-Refl-call, and R-Refl-return are omit-
ted, the original Earley algorithm is recovered. The R-
Return rule, which remains, can still take O(ngm) time
and produce O(ngm) items, so the complexity is the same
without the reflective rules. Since Earley supports a single
grammar of fixed size, g and m are constants. This is con-
sistent with Earley’s O(n3) result. Our system is therefore
“pay-as-you-go”: its reflective features have no asymptotic
cost if they are not used.

Earley recognition provides further performance guaran-
tees in cases where the input obeys certain restrictions. We
have not examined whether those same guarantees apply to
our work.

Buildtree complexity
The Buildtree algorithm of Scott [19], introduced in section
3, can be used to construct parse trees (based on Earley
items) when the results of ambiguous parses are needed in
a compact format. (An ambiguous grammar may parse a
sentence exponentially many or even infinitely many ways.)

Scott’s complexity analysis asserts that Buildtree takes
time proportional to

number-of-input-characters ×
number-of-Earley-items-per-set ×

predecessor-items-per-item

The number of predecessor items an Earley item may
have, as in Scott’s work, is n. To see this, observe that
an item where the cursor follows a nonterminal,

(i, A→ αB·β,G) ∈ Sj

can have as predecessor any item of the form

(i, A→ α·Bβ,G) ∈ Sk

where 0 ≤ k ≤ j. This same argument applies to cases
where the cursor follows a R.

On the other hand, if the cursor follows a terminal, there
is exactly one predecessor, and items where the cursor is at
the beginning of the right-hand side have no predecessor.

The number of input characters is n. As above, the num-
ber of Earley items in each of our sets is O(ngm). So execut-
ing Buildtree requires O(n3gm). This means that Buildtree,

which takes place only once (after recognizing is completed),
requires less time than recognizing, so it does not affect the
overall complexity.

5. RELATED WORK

Parsers
The idea of modifying an Earley parser to parse a more pow-
erful class of grammars was inspired by YAKKER [11], a
powerful Earley-based parser for dependent grammars. A
dependent grammar can, for example, recongize the lan-
guage of strings containing a literal number n followed by a
sequence of precisely n characters.

Derivative-based parsing [17] is an approach to parsing
context-free languages in which the parse state at a given
character is simply a grammar representing the language of
strings that are valid suffixes to the already-parsed portion.
The authors suggest that it could be used to implement re-
flective grammars, but supply no details.

Like context-free grammars, parsing expression grammars
(PEGs) can be composed by combining productions to pro-
duce a legal grammar [10]. However, the ordered choice
provided by PEGs is not a true union, and “incorrect order-
ings can cause suble errors” [12]. For example, adding an
if. . . then construct can turn an existing if. . . then. . . else
construct into a syntax error.

Language extension systems
There are a variety of systems that tackle the issue of syntax
extensibility. Each work in this category is a complete sys-
tem that tackles both the issue of parsing and the issue of
transformation. We will only cover the comparable portion
here, the parsers.

A few of these systems parse input using some kind of
dynamic grammars which, like ours, support multiple gram-
mars in one file.

Kolbly [13] describes a syntax extension system with an
Earley-based parser that can parse different regions of a file
in different grammars. However, all grammar extensions
must be predefined by the language designer — the user
cannot extend the language.

Another macro system with flexible syntax is ZL [1]. It
allows new syntax to be added to C, though a system of iter-
ated re-parsing. However, it restricts what syntactic forms
the user may add.

Although Dylan’s macro system [4] does not involve any
special parser technology, it does loosen Lisp’s parentheses
to a “syntactic skeleton”, giving macro authors more control
over the appearance of macro invocations.

Gel [9] is a language syntax that, by requiring adherence
to whitespace conventions, correctly parses code that looks
like Java, CSS, Smalltalk, and ANTLR. Their goal is in
some ways a mirror image of ours: they unify a set of exist-
ing syntaxes into one large syntax, while we describe how a
single small syntax can be extended into many others in the
bounds of one file.

The Silver project [21] is a system for describing and ex-
tending languages, and transforming those languages us-
ing attribute grammars. Schwerdferger and Van Wyk de-
scribe [18] a static analysis for language extensions which
ensures that, given a host language, any number of these ex-
tensions can be added to the host language, and the result
will be LALR(1), as their parser requires. However, they

must significantly restrict the permissible forms of syntax
extensions in order to do so.

Metafront [5] is a system for defining languages and trans-
formations between them. They describe a novel type of
grammar called a“specificity grammar”. In such a grammar,
more specific productions have priority over less specific pro-
ductions. Although composing their grammars can produce
errors, these errors can be expressed entirely in terms of the
productions involved, rather than as confusing shift/reduce
and reduce/reduce conflicts. They also have what they de-
scribe as a macro system; however, their macro definitions
always have the scope of an entire file, so they can use ex-
isting parser technology.

A system described by Cardelli, Matthes, and Abadi [6]
discusses incrementally extending grammars by adding pro-
ductions (and grammar restriction, where productions are
removed). It rejects compositions of grammars that are not
LL(1), but provides powerful integration between grammar
definitions and transformations.

Camlp4 [7] is a preprocessor for the Ocaml language. It
allows the user to extend the Ocaml syntax. It allows the
language designer to select what parser the resulting, ex-
tended, language will be parsed with, but the user must
select one language per file.

6. CONCLUSION AND FUTURE WORK
We have defined a class of grammars that specify lan-

guages that can modify their own syntax during parsing.
We have presented an algorithm that can parse these reflec-
tive grammars and can parse nonreflective grammars as fast
as an ordinary Earley parser. Furthermore, we have placed
bounds on how costly the reflective feature is, in terms of
how it is used.

We intend this work as the first step in building a macro
system applicable to languages that lack parenthesis-based
syntax. Our next steps will be to define requirements for a
powerful and usable macro system, and describe how such a
macro system would interact with this parser. In such a sys-
tem, there would be no special syntax for macro invocation,
so user-defined syntax would be indistinguishable from core
syntax. With the dynamic power of our parser, it would
be possible to have local definitions for macros, and even to
import macros in a restricted scope.

7. REFERENCES
[1] K. Atkinson, M. Flatt, and G. Lindstrom. ABI

compatibility through a customizable language.
Proceedings of the Ninth International Conference on
Generative Programming and Component Engineering
- GPCE ’10, page 147, 2010.

[2] J. Aycock. Practical Earley parsing. The Computer
Journal, 45(6):620–630, June 2002.

[3] J. Aycock and N. Horspool. Directly-executable
Earley parsing. In R. Wilhelm, editor, Compiler
Construction, volume 2027 of Lecture Notes in
Computer Science, pages 229–243. Springer Berlin /
Heidelberg, 2001. 10.1007/3-540-45306-7 16.

[4] J. Bachrach and K. Playford. D-expressions: Lisp
power, Dylan style. http://people.csail.mit.
edu/jrb/Projects/dexprs.htm, 1999.

[5] C. Brabrand, M. I. Schwartzbach, and M. Vanggaard.
The metafront system: Extensible parsing and

transformation. Electronic Notes in Theoretical
Computer Science, 82(3):592–611, Dec. 2003.

[6] L. Cardelli, F. Matthes, and M. Abadi. Extensible
syntax with lexical scoping.
http://lucacardelli.name/Papers/SRC-121.ps,
1994.

[7] D. de Rauglaudre. Camlp4 - reference manual.
http://caml.inria.fr/pub/docs/manual-camlp4/,
2003.

[8] J. Earley. An efficient context-free parsing algorithm.
Communications of the ACM, 26(1), 1970.

[9] J. Falcon and W. Cook. Gel: A generic extensible
language. In Domain-Specific Languages, pages 58–77.
Springer, 2009.

[10] B. Ford. Parsing expression grammars: a
recognition-based syntactic foundation. In Proceedings
ACM Symposium on Principles of Programming
Languages, pages 111–122, 2004.

[11] T. Jim, Y. Mandelbaum, and D. Walker. Semantics
and algorithms for data-dependent grammars. Annual
Symposium on Principles of Programming Languages,
45(1), 2010.

[12] L. Kats, E. Visser, and G. Wachsmuth. Pure and
declarative syntax definition: Paradise lost and
regained. Proceedings of Onward! 2010, 2010.

[13] D. M. Kolbly. Extensible Language Implementation.
Ph.D., University of Texas at Austin, 2002.

[14] Y. Mandelbaum and T. Jim. Efficient Earley parsing
with regular right-hand sides. Workshop on Language
Descriptions Tools and Applications, 2009.

[15] P. McLean and R. Horspool. A faster Earley parser. In
T. Gyimóthy, editor, Compiler Construction, volume
1060 of Lecture Notes in Computer Science, pages
281–293. Springer Berlin / Heidelberg, 1996.
10.1007/3-540-61053-7 68.

[16] S. McPeak and G. C. Necula. Elkhound: A fast,
practical GLR parser generator. Compiler
Construction, 2004.

[17] M. Might and D. Darais. Yacc is dead.
http://arxiv.org/abs/1010.5023, Oct. 2010.

[18] A. C. Schwerdfeger and E. R. Van Wyk. Verifiable
composition of deterministic grammars. Conference on
Programming Language Design and Implementation,
44(6), 2009.

[19] E. Scott. SPPF-style parsing from Earley recognisers.
Electron. Notes Theor. Comput. Sci., 203:53–67, April
2008.

[20] P. Stansifer and M. Wand. Parsing reflective
grammars. Technical report, Northeastern University,
2011. http://arxiv.org/abs/1102.2003.

[21] E. R. Van Wyk, D. Bodin, J. Gao, and L. Krishnan.
Silver: an extensible attribute grammar system.
Electronic Notes in Theoretical Computer Science,
203(2):103–116, Apr. 2008.

