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ABSTRACT
Joins are essential for many data analysis tasks, but are
not supported directly by the MapReduce paradigm. While
there has been progress on equi-joins, implementation of join
algorithms in MapReduce in general is not sufficiently un-
derstood. We study the problem of how to map arbitrary
join conditions to Map and Reduce functions, i.e., a parallel
infrastructure that controls data flow based on key-equality
only. Our proposed join model simplifies creation of and
reasoning about joins in MapReduce. Using this model, we
derive a surprisingly simple randomized algorithm, called 1-
Bucket-Theta, for implementing arbitrary joins (theta-joins)
in a single MapReduce job. This algorithm only requires
minimal statistics (input cardinality) and we provide evi-
dence that for a variety of join problems, it is either close
to optimal or the best possible option. For some of the
problems where 1-Bucket-Theta is not the best choice, we
show how to achieve better performance by exploiting addi-
tional input statistics. All algorithms can be made ’memory-
aware’, and they do not require any modifications to the
MapReduce environment. Experiments show the effective-
ness of our approach.

Categories and Subject Descriptors
H.2.4 [Systems]: Distributed Databases; H.3.4 [Systems
and Software]: Distributed Systems

General Terms
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1. INTRODUCTION
Very large data sets pose a challenge in many disciplines.

Internet companies want to analyze terabytes of application
logs and clickstream data, scientists have to process data
sets collected by large-scale experiments and sensors (e.g.,
Large Hadron Collider, National Virtual Observatory), and
retailers want to find patterns in customer and sales data.
When performing this analysis, parallel computation is es-
sential to ensure reasonable response time. MapReduce [6]
has emerged as probably the most popular paradigm for
parallel processing, and it already has a great impact on
data management research. One major reason for its suc-
cess is the availability of a free open-source implementa-
tion, Hadoop [1], and an active developer community that
keeps making improvements and adding features. Recently
database-inspired high-level languages (PigLatin) [15] and
support for SQL queries (Hive) [2] were added.

MapReduce is designed to process a single input data set,
therefore joins are not directly supported. However, as re-
cent research has shown, equi-joins can be implemented by
exploiting MapReduce’s key-equality based data flow man-
agement. But in many applications, more complex join
predicates need to be supported as well. For spatial data,
band-joins and spatial joins are common. Correlation anal-
ysis between data sets also requires similarity joins. And
even traditional inequality predicates have received very lit-
tle attention. The Map-Reduce-Merge extension [20] sup-
ports various join predicates, but it requires fundamental
changes to MapReduce and how it is used. It not only adds
a new Merge phase, but also requires the user to write code
that explicitly has to be aware of the distributed nature of
the implementation.

In this paper we propose techniques that enable efficient
parallel execution of arbitrary theta-joins in MapReduce.
No modifications of the MapReduce environment are neces-
sary, and the user does not have to write any special-purpose
code to manage data flow. Everything is achieved by sim-
ply specifying the appropriate (sequential) Map and Reduce
functions. In particular, we make the following main contri-
butions.

1. We propose a reducer-centered cost model and a join
model that simplifies creation of and reasoning about
possible theta-join implementations in MapReduce.

2. We propose a randomized algorithm called 1-Bucket-
Theta for computing any theta-join, including the
cross-product, in a single MapReduce job. This al-
gorithm only needs minimal input statistics (cardinal-
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ity of input sets) and still effectively parallelizes any
theta-join implementation. We show that it is close
to optimal for joins with large output size. For highly
selective joins, we show that even though better im-
plementations in MapReduce might exist, they often
cannot be used, leaving 1-Bucket-Theta as the best
available option.

3. For a popular class of non-equi joins, including inequal-
ity and band-joins, we propose algorithms that often
improve on 1-Bucket-Theta, as long as sufficiently de-
tailed input statistics are available.

The rest of this paper is organized as follows. We sur-
vey MapReduce and a common equi-join implementation in
Section 2. In Section 3, we present a qualitative MapRe-
duce cost model and a join model. Using this join model,
we derive the 1-Bucket-Theta algorithm and prove its prop-
erties in Section 4. Improvements for certain join types are
discussed in Section 5. Section 6 shows representative exper-
imental results, Section 7 discusses related work, and Sec-
tion 8 concludes the paper.

2. MAPREDUCE AND JOINS

2.1 Overview of MapReduce
MapReduce was proposed to simplify large-scale data pro-

cessing on distributed and parallel architectures, particu-
larly clusters of commodity hardware [6]. The main idea of
this programming model is to hide details of data distribu-
tion and load balancing and let the user focus on the data
processing aspects. A MapReduce program consists of two
primitives, Map and Reduce. The Map function is applied
to an individual input record in order to compute a set of in-
termediate key/value pairs. For each key, Reduce works on
the list of all values with this key. Any output produced by
Reduce is written to a file stored in a distributed file system.

An overview of the MapReduce architecture is given in
Figure 1. Input records might be distributed across several
physical locations on a distributed file system (DFS). Once
the MapReduce job is initialized, these records are trans-
ferred to mapper nodes in chunks. For each input record, a
new instance of Map is executed. It parses the record as a
key/value pair of type (k1, v1) and outputs new key/value

pairs of type (k2, v2). These Map outputs are collected lo-
cally on the mapper node. Based on a (default or user-
defined) function, the keys of type k2 are assigned to reducer
nodes. Mapper nodes shuffle their intermediate output to
create a list of key/value pairs for each reducer node. These
lists are transferred to the appropriate reducer nodes. Once
the map phase is completed, each reducer node sorts its in-
put by key. Each resulting pair of type (k2, list(v2)) is then
processed by an invocation of the Reduce function. Reduce’s
output, of type list(v2) according to the original MapReduce
paper, is then transferred to DFS nodes. Notice that Reduce
could also produce output of a different type list(v3).

2.2 Example: Equi-Join
Consider an equi-join of data sets S and T on a com-

mon attribute A, i.e., join condition S.A = T.A. Commonly
this is implemented by making the join attribute the key,
ensuring that all tuples with identical join attribute values
are processed together in a single invocation of the Reduce
function. More precisely, for each input tuple s ∈ S, Map
outputs the key-value pair (s.A, s). Notice that s is also
augmented by adding an attribute origin which indicates
that the tuple came from S. Tuples from T are processed
similarly. For each join attribute value, Reduce then com-
putes the cross-product between the corresponding tuples
that have origin S with the tuples whose origin is T .

This is the implementation commonly seen in the litera-
ture (see Section 7), we therefore refer to it as the Standard
Equi-Join Implementation.

This algorithm suffers from two problems. First, the num-
ber of reducer nodes is limited by the number of distinct
values of A in the input data sets. The reason is that all
tuples with the same A-value have to be processed by the
same invocation of Reduce, thus inherently limiting paral-
lelism. The second problem is caused by data skew. If some
A-value occurs very frequently, the reducer processing it re-
ceives an overly large share of work, both for processing the
input and writing the large result to the DFS, thus delaying
the completion of the job.

2.3 Example: Inequality-Join
Consider a join between data sets S and T with an in-

equality condition like S.A ≤ T.A. Such joins seem inher-
ently difficult for MapReduce, because each T -tuple has to
be joined not only with S-tuples that have the same A value,
but also those with different (smaller) A values. It is not
obvious how to map the inequality join condition to a key-
equality based computing paradigm.

One might consider the following “naive” approach. As-
sume all values of A are non-negative integers. To ensure
that a T -tuple joins with all S-tuples of equal or smaller A-
value, we can make Map output each T -tuple for all possible
smaller A-values as keys. More precisely, for each input tu-
ple s ∈ S, Map only outputs (s.A, s), but for each t ∈ T , it
outputs (a, t) for every a ≤ T.A.

However, this algorithm also suffers from two major prob-
lems. First, it generates a potentially huge amount of “du-
plicates” of T -tuples that depends on the values of the join
attribute. Second, if attribute A is not integer or can have
negative values, one cannot enumerate all smaller values of
A for a given value t.A. For these cases, the Map function
needs to know the set of distinct values of A in S to produce
the right duplicates of T .
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3. PRELIMINARIES
In the following analysis, we generally assume that all

reducer nodes by design have approximately the same com-
putational capabilities. This holds in practice for clusters of
virtual machines created in the Cloud, but also for physical
clusters running on commodity hardware.

3.1 Optimization Goal
For a given join operator and its inputs, we want to min-

imize job completion time for a given number of pro-
cessing nodes. Job completion time includes all phases of
MapReduce, from when the first data tuple is transferred to
a mapper node until the last output tuple is written back
to the DFS. Short job completion time is desirable from a
user’s point of view. As we discuss below, it also inherently
leads to a load-balancing approach. This is in line with pre-
vious work on distributed and parallel systems, where load
balancing ideas play a central role.

3.2 Cost Model for MapReduce
Competing MapReduce implementations for a given join

problem can only differ in their Map and Reduce functions.
Since the cost for transferring data from the DFS to the
mapper nodes and the cost for reading the input tuples lo-
cally at each mapper is not affected by the concrete Map and
Reduce functions, we do not need to take these costs into
account for the optimization. Map and Reduce functions
affect the costs from producing Map function output until
writing the final join result back to the DFS. To analyze the
completion time of these MapReduce job phases, consider a
single reducer. The reducer receives a subset of the mapper
output tuples as its input. It sorts the input by key, reads
the corresponding value-list for a key, computes the join for
this list, and then writes its locally created join tuples to the
DFS. Figure 2 illustrates this process.

Due to the nature of MapReduce, it is easy to balance
load between mapper nodes. On the other hand, when us-
ing the standard equi-join algorithm, it is possible for some
reducer to receive a much larger share of work, which delays
job completion. To minimize job completion time, we there-
fore need to minimize the greatest amount of work that is
assigned to any reducer, i.e., balance load between reducers
as evenly as possible.

As Figure 2 illustrates, some of the reducer’s time is spent
on tasks whose duration depends on input size, while others
depend on output size or a combination of both. In gen-
eral costs are monotonic, i.e., the greater the input size, the
greater the time spent processing it (similarly for output
size). We can therefore evaluate the quality of a join algo-
rithm by its max-reducer-input and its max-reducer-
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Figure 3: Join matrices for equi-join, similarity-join,
and inequality-join. Numbers indicate join attribute
values from S and T , shaded cells indicate join re-
sults. M(i, j) indicates cell numbering.

output, i.e., the maximum over the input sizes assigned
to any reducer and output sizes produced by any reducer,
respectively.

We distinguish between the following cases. We say that
a join problem is input-size dominated if reducer-input
related costs dominate job completion time. If reducer-
output related costs dominate job completion time, then the
join problem is output-size dominated. If neither clearly
dominates the other, we have an input-output balanced
problem. Notice that the join problem category depends
on the specific join implementation selected. For input-size
dominated problems, job completion time is minimized by
minimizing max-reducer-input. For output-size dominated
problems, we need to minimize max-reducer-output. And
for input-output balanced problems, we have to minimize a
combination of both.

Notice that our qualitative cost model makes no assump-
tion about which type of cost dominates, i.e., it includes
cases where network transfer time, CPU-time, or local I/O-
time dominate. All these costs tend to increase with increas-
ing input and/or output size, hence minimizing the maximal
input and/or output size minimizes job completion time, no
matter if network, CPU, or local I/O is the bottleneck.

3.3 Theta Join Model
We model a join between two data sets S and T with

a join-matrix M and employ this representation for cre-
ation of and reasoning about different join implementations
in MapReduce. Figure 3 shows example data sets and the
corresponding matrix for a variety of join predicates. For
row i and column j, matrix entry M(i, j) is set to true

(shaded in the picture) if the i-th tuple from S and j-th tuple
from T satisfy the join condition, and false (not filled) oth-
erwise. Since any theta-join is a subset of the cross-product,
the matrix can represent any join condition.

3.4 Mapping Join Matrix Cells to Reducers
Our goal is to have each join output tuple be produced

by exactly one reducer, so that expensive post-processing or
duplicate elimination is avoided. Hence, given r reducers we
want to map each matrix cell with value M(i, j) = true to
exactly one of the r reducers. We will also say that reducer
R covers a join matrix cell, if this cell is mapped to R.

There are many possible mappings that cover all true-
valued matrix cells. Our goal is to find that mapping
from join matrix cells to reducers that minimizes job
completion time. Hence we want to find mappings that
either balance reducer input share (for input-size dominated



5

7

8

9

3

3

3

2

2

1

1

1

1

2 3

2
1

key

T1,T5
S1,S4Input:

R1: keys 5,8

2 tuplesOutput:

R3: key 9

T6
S5,S6Input:

2 tuplesOutput:

S2,S3
T2,T3,T4

Input:
R2: key 7

6 tuplesOutput:

max−reducer−input = 5
max−reducer−output = 6

max−reducer−input = 8
max−reducer−output = 4

max−reducer−input = 5
max−reducer−output = 4

S
5 7 7 7 8 9

7

5

7

8

9

9

T
S

5 7 7 7 8 9

7

5

7

8

9

9

T
S

5 7 7 7 8 9

7

5

7

8

9

9

T

R3: key 3

Output: 3 tuples

R2: key 2

Output:3 tuples

T2,T4,T6
S2,S3,S5Input:

T1,T2,T3
S1,S2,S3Input:

Output:4 tuples
T3,T4,T5,T6
S2,S3,S4,S6Input:

R1: key 1

R3: key 3

Output: 3 tuples
T5,T6
S4,S5,S6Input:

R2: key 2

Output:4 tuples
T3,T4
S2,S3Input:

R1: key 1

Output:3 tuples
T1,T2
S1,S2,S3Input:

Figure 4: Matrix-to-reducer mappings for standard
equi-join algorithm (left), random (center), and bal-
anced (right) approach

joins), or balance reducer output share (for output-size dom-
inated joins), or achieve a compromise between both (for
input-output balanced joins).

Figure 4 illustrates the tradeoffs in choosing different map-
pings. The left image is the mapping used by the standard
equi-join implementation in MapReduce. All tuples with the
same join attribute value are mapped to the same reducer.
This results in a poor balance of both reducer input and
output load. E.g., reducer R2 receives 5 input tuples and
creates 6 output tuples, while reducer R3 works with 3 input
and 2 output tuples.

The other two images correspond to new equi-join algo-
rithms that we have not seen in the literature before. (Using
our formulation of theta-join implementations as a mapping
from true matrix entries to the set of reducers, it is easy
to come up with many more algorithms.) The center im-
age represents a very fine-grained mapping. Even though
the 5-th and 6-th tuple from S (S5, S6) and the 6-th tuple
from T (T6) all have the same join attribute value, result
tuple (S5,T6) is produced by reducer R2, while (S6,T6) is
produced by reducer R1. The example also illustrates how
skew is effectively addressed, e.g., by breaking the big output
chunk for tuples with join value 7 into many small pieces.
The downside of the better output load balancing is the sig-
nificantly greater input size for every reducer, caused by the
duplication of tuples to enable each reducer to generate the
desired results. E.g., the second and third tuples from S
have to be sent to all three reducers. Also notice that both
R2 and R3 could produce outputs (S2,T2) and (S3,T2), be-
cause they both have the corresponding input tuples. To
enforce the matrix-to-reducer mapping (and avoid duplicate
output), the algorithm would have to pass information about
the mapping to each reducer.

The mapping on the right illustrates how we can achieve
the best of both worlds. Overly large output chunks are ef-
fectively broken up, while input duplication is kept low and
reducer input and output are both well-balanced. This is
achieved despite the mapping covering not only true cells,

but also some like M(2, 1) that do not contribute to the join
output. (Those do not affect the join result, because Re-
duce eliminates them.) Our new algorithms represent prac-
tical implementations of this basic idea: balance input and
output costs while minimizing duplication of reducer input
tuples. We will repeatedly make use of the following impor-
tant lemma.

Lemma 1. A reducer that is assigned to c cells of the join
matrix M will receive at least 2

√
c input tuples.

Proof. Consider a reducer that receives m tuples from
S and n tuples from T . This reducer can cover at most m ·n
cells of the join matrix M . Hence to cover c matrix cells,
it has to hold that m · n ≥ c. Considering all possible non-
negative values m and n that satisfy m · n ≥ c, the sum of
m and n is minimized for m = n =

√
c.

4. THE 1-BUCKET-THETA ALGORITHM
The examples in Section 2 illustrate the challenges for im-

plementing joins in MapReduce: data skew and the difficulty
of implementing non-equi-joins with key-equality based data
flow control. We now introduce 1-Bucket-Theta, an algo-
rithm that addresses these challenges, and provide strong
analytical results about its properties.

4.1 Implementing the Cross-Product
Since the cross-product combines every tuple from S with

every tuple from T , the corresponding join matrix has all en-
tries set to true. We explain how 1-Bucket-Theta performs
matrix-to-reducer mapping, show that it is near-optimal for
computing the cross-product, and discuss how these results
extend to processing of theta-joins.

4.1.1 Analytical Results
We first consider balancing output-related costs across re-

ducers. Since there are |S||T | output tuples to be produced
by r reducers, the lower bound for max-reducer-output is
|S||T |/r. (As usual, |S| denotes the cardinality of a set
S.) Together with Lemma 1, this implies a lower bound of

2
√
|S||T |/r for max-reducer-input, giving us the following

lemma:

Lemma 2. For any matrix-to-reducer mapping for the
cross-product S × T , |S||T |/r and 2

√
|S||T |/r are the lower

bounds for max-reducer-output and max-reducer-input, re-
spectively.

To match the lower bound for max-reducer-output, the
matrix-to-reducer mapping has to partition the matrix such
that exactly |S||T |/r of the matrix cells are mapped to each
of the r reducers. Notice that if cell M(i, j) is assigned
to reducer k, then reducer k needs to have both the i-th
tuple from S and the j-th tuple from T to be able to create
the combined output tuple. Hence the i-th tuple from S
has to be sent to each reducer whose region in the matrix
intersects the i-th row. Similarly, the j-th tuple from T has
to be sent to all reducers whose regions intersect the j-th
column of M . As Figure 4 illustrates, depending on the
number of different reducers assigned to cells in each row
and column, input tuples might be duplicated many times.
As the following theorem shows, for some special cases we
can actually match both lower bounds with a square-based
matrix-to-reducer mapping.
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Theorem 1. For cross-product S × T , assume |S| and

|T | are multiples of
√
|S||T |/r, i.e., |S| = cs

√
|S||T |/r and

|T | = cT
√
|S||T |/r for integers cS , cT > 0. Under these

conditions, the join matrix M can be partitioned into cS
by cT squares of size

√
|S||T |/r by

√
|S||T |/r each. The

corresponding matrix-to-reducer mapping matches the lower
bounds for both max-reducer-output and max-reducer-input.

For other examples where |S|, |T |, and r do not satisfy
the properties required by Theorem 1, the problem of mini-
mizing max-reducer-input for a given value of max-reducer-
output can be formulated as an integer linear programming
problem. These problems are generally NP-hard, hence it
can be expensive to solve. However, we can show that we
can always find a solution that is “close” to optimal at low
cost.

Without loss of generality, let |S| ≤ |T |. We first consider
an extreme case where |S| is much smaller than |T |, more

precisely: |S| < |T |/r. This implies |S| <
√
|S||T |/r, i.e.,

the side length of the optimal square that matches the lower
bounds is “taller” than the join matrix. Hence the lower
bounds are not tight, because no partition of the matrix can
have more than |S| tuples from input set S. It is easy to see
that the optimal partitioning of the matrix into r regions
would then consist of rectangles of size |S| by |T |/r.

Theorem 2. For S×T , consider matrix-to-reducer map-
pings that perfectly balance the entire output to |S||T |/r tu-
ples per reducer. Let |S| < |T |/r. Under this condition,
max-reducer-input is minimized by partitioning the matrix
into a single row of r rectangles of size |S| by |T |/r.

Now consider the remaining case, i.e., |T |/r ≤ |S| ≤ |T |.
Let cS = b|S|/

√
|S||T |/rc and cT = b|T |/

√
|S||T |/rc. In-

tuitively, cS and cT indicate how many optimal squares of
side-length

√
|S||T |/r we can fit into the matrix horizontally

and vertically, respectively. From |T |/r ≤ |S| ≤ |T | follows
that cS ≥ 1 and cT ≥ 1. After creating these squares, start-
ing in the upper left corner of the matrix, there might be
some cells that are not covered. These cells are in a hori-
zontal “stripe” whose height is less than

√
|S||T |/r (other-

wise another row of optimal squares would have fit there)

and a vertical “stripe” whose width is less than
√
|S||T |/r

(otherwise another column of optimal squares would have
fit there). We can cover both stripes by increasing each re-
gion’s height and width by a factor of (1 + 1/min{cS , cT }).
Since both cS , cT ≥ 1, this factor is at most 2.

This implies that we can cover the entire matrix with cS
rows, each consisting of cT regions that are squares of side-
length (1 + 1/min{cS , cT })

√
|S||T |/r ≤ 2

√
|S||T |/r. Hence

no reducer produces more than 4|S||T |/r output tuples and

no reducer receives more than 4
√
|S||T |/r input tuples. The

following theorem summarizes this result.

Theorem 3. For S × T , let |T |/r ≤ |S| ≤ |T |. Under
this condition, we can always find a matrix-to-reducer map-
ping with the following properties. (1) No reducer produces
more than 4|S||T |/r output tuples, i.e., at most 4 times the
lower bound of |S||T |/r for max-reducer-output. And (2)

no reducer receives more than 4
√
|S||T |/r input tuples, i.e.,

at most 2 times the lower bound of 2
√
|S||T |/r for max-

reducer-input.

Together, Theorems 1, 2, and 3 give us strong guarantees
for the near-optimality of our matrix-to-reducer mappings
for implementing the cross product. We can always find
a solution where none of the reducers receives more than
twice its “fair share” of the input-related cost and four times
its “fair share” of the output-related cost. In practice this
bound is usually much better. For instance, if cS and cT
as introduced above are in the order of 10, then our scheme
guarantees that no reducer receives more than 1.1 times its
fair input share and 1.21 times its fair output share.

4.1.2 From Mapping to Randomized Algorithm
Turning a matrix-to-reducer mapping into a MapReduce

algorithm is conceptually straightforward. For an incom-
ing S-tuple, the Map function finds all regions intersect-
ing the row corresponding to that tuple in the matrix. For
each region, it creates an output pair consisting of the re-
gion key and the tuple (augmented by the origin attribute
as described earlier). Similarly, for each T -tuple, the Map
function finds the partitions intersecting the corresponding
column in the matrix, etc.

Consider the partitions in Figure 5 for computing the equi-
join (using the cross-product of the data sets) for the same
data sets as in Figure 4. Ideally we would like to assign the
i-th S-tuple to row i in the matrix, similarly for T . Since all
regions have the same size (12 cells), this would guarantee
that each reducer is responsible for its exact fair share of
12/36 = 1/3 of the cross-product result. The problem is for
Map to know which row in the matrix an incoming S-tuple
belongs to. Each invocation of Map by design sees only a
single S or T tuple. There is no consensus mechanism for
a Map instance to find out how many S values in the data
set are smaller than the one it is currently processing. This
implies that there is no deterministic way for Map to make
that decision. To guarantee that tuples are assigned to the
appropriate rows and columns, Map would need to know
that assignment. This could be achieved by running another
MapReduce pre-processing step, assigning unique row and
column numbers to each S and T tuple.

We can avoid this overhead by making Map a randomized
algorithm as shown in Algorithm 1. It can implement any
theta-join of two input sets S and T . For each incoming
S-tuple, Map randomly chooses a row in matrix M . It then
creates an output tuple for each region that intersects with
this row. Note that the matrix-to-reducer mapping is com-
puted before this MapReduce job starts. In the example
shown in Figure 5, the first S-tuple is mapped to row 3.



Since row 3 intersects with regions 1 and 2, a corresponding
Map output tuple is created for both. Input tuples from
T are processed similarly, by choosing a random column in
matrix M . Notice how there are some rows and columns
that are randomly selected for multiple input tuples, while
others are not selected at all. While this does not guarantee
the desired input and output size for each reducer any more,
the large data size makes significant variations extremely un-
likely. Randomization also turns out to be a crucial feature
for theta-joins that are not cross-products (see Section 4.2
and experiments).

Consider a reducer node R that should receive nR of the
|S| tuples from S based on the matrix-to-reducer mapping.
E.g., in Figure 5 reducer 1 should receive 4 of the 6 S-tuples.
Let X1, X2,. . . , X|S| be random variables, such that Xi = 1
if the i-th tuple from S is assigned to this reducer R, and
0 otherwise. Since S-tuples are assigned to rows uniformly
at random, we obtain pi = Pr[Xi = 1] = nR/|S|. The Xi
are independent random variables, therefore the Chernoff
Bound gives us

Pr[X ≥ (1 + δ)µ] ≤ e−µ((1+δ)ln(1+δ)−δ).

Here X =
∑
iXi, i.e., X is the number of S-tuples assigned

to reducer R. And µ = E[X] is the expected number of
tuples assigned to that reducer.

In practice this bound is very tight as long as the reducer
with the greatest input share receives at least around 10,000
tuples. This is usually the case in practice when dealing
with large data sets. For example, let |S| = 10, 000, 000. If
reducer R is supposed to receive 10,000 out of 10,000,000
S-tuples, the probability that it will receive an extra 10%
or more input tuples is 10−22, i.e., virtually zero. Since it is
almost impossible for a reducer to receive more than 110%
of its target input, its output is practically guaranteed to not
exceed 1.12 = 1.21 times its target size. Our experiments
support this result.

The alert reader will have realized that considering the
cross-product does not seem like the most efficient algorithm
for the equi-join example in Figure 5. In fact, the three
regions in the right example in Figure 4 provide a superior
partitioning that avoids covering matrix cells that are not
part of the join result. We explore this issue in more depth
in Sections 4.2 and 5.

4.2 Implementing Theta-Joins
Algorithms 1 and 2 can implement any theta-join by

selecting the appropriate MyFavoriteJoinAlg for Reduce.
While we showed above that this MapReduce implemen-
tation is close to optimal for cross-product computation,
this result does not necessarily carry over to arbitrary joins.
This section provides strong evidence that even for
very selective join conditions, it is often not possi-
ble to find a better algorithm than 1-Bucket-Theta.
This does not mean that such better algorithms do not exist.
They just cannot be identified as correct implementations
with the information available at the time when the best
implementation is selected for a given join problem, as we
show now.

Consider an arbitrary theta-join with selectivity σ, i.e., it
produces σ|S||T | output tuples. To minimize max-reducer-
output, each reducer should be responsible for σ|S||T |/r join
output tuples. While 1-Bucket-Theta practically guaran-
tees to balance the cross-product output across reducers,

Algorithm 1 : Map (Theta-Join)

Input: input tuple x ∈ S ∪ T
/* matrix to regionID mapping is loaded into a lookup
table during initialization of mapper */

1: if x ∈ S then
2: matrixRow = random(1,|S|)
3: for all regionID in lookup.getRegions(matrixRow)

do
4: Output (regionID, (x, “S”) ) /* key: regionID */
5: else
6: matrixCol = random(1,|T |)
7: for all regionID in lookup.getRegions(matrixCol) do
8: Output (regionID, (x, “T”) )

Algorithm 2 : Reduce (Theta-Join)

Input: (ID, [(x1, origin1), (x2, origin2), . . . , (xk, origink)])
1: Stuples = ∅; Ttuples = ∅
2: for all (xi, origini) in input list do
3: if origini = “S” then
4: Stuples = Stuples ∪ {xi}
5: else
6: Ttuples = Ttuples ∪ {xi}
7: joinResult = MyFavoriteJoinAlg(Stuples, Ttuples)
8: Output( joinResult )

this might not be true for other joins. For example, on some
reducer almost all cross-product tuples might satisfy the join
condition, while almost none do so on another. Fortunately
this is very unlikely because of the randomization that as-
signs random samples from S and T to each reducer. While
we do not have an analytical proof, our experiments show
that join output is generally very evenly distributed over the
reducers. This is to be expected as long as join output size
is large enough so that sampling variance is “averaged out”.
Significant variance in output size is only likely when join
output size is very small, e.g., below thousands of tuples per
reducer. However for those cases the total join output size
is so small that even a significant output imbalance has only
a small effect on the absolute runtime. (Note that MapRe-
duce typically works with data chunks of size 64 megabytes
or larger.)

In short, whenever join output size is large enough to sig-
nificantly affect job completion time, 1-Bucket-Theta’s ran-
domized approach balances output very well across reduc-
ers. It therefore is very difficult to beat it on output-related
costs. For another algorithm to achieve significantly lower
total job completion time, it has to have significantly lower
input-related costs than 1-Bucket-Theta.

Lemma 3. Let 1 ≥ x > 0. Any matrix-to-reducer map-
ping that has to cover at least x|S||T | of the |S||T | cells of
the join matrix, has a max-reducer-input value of at least
2
√
x|S||T |/r.
Proof. If x|S||T | cells of the matrix have to be covered

by r regions (one for each reducer), it follows from the pi-
geonhole principle that at least one reducer has to cover
x|S||T |/r or more cells. This together with Lemma 1 im-

plies that at least 2
√
x|S||T |/r input tuples need to be sent

to that reducer.

As we showed in Section 4.1.1, 1-Bucket-Theta virtu-
ally guarantees that its max-reducer-input value is at most



4
√
|S||T |/r, and usually it is much closer to 2

√
|S||T |/r.

Hence the ratio between max-reducer-input of 1-Bucket-
Theta versus any competing theta-join algorithm using a
different matrix-to-reducer mapping is at most

4
√
|S||T |/r

2
√
x|S||T |/r

=
2√
x
.

E.g., compared to any competing join implementation whose
matrix-to-reducer mapping has to cover 50% or more of the
join matrix cells, 1-Bucket-Theta’s max-reducer-input is at
most about 3 times the max-reducer-input of that algorithm.
Notice that this is an upper bound that is quite loose in
practice. E.g., when working with 100 reducer nodes and
inputs that are of similar sizes, e.g., where one is at most
4 times larger than the other, max-reducer-input is closer
to 2.5

√
|S||T |/r (instead of 4

√
|S||T |/r). Then the worst-

case ratio for any mapping covering at least 50% of the join
matrix is only 1.25/

√
0.5 ≈ 1.8.

In summary, unless x is very small, no other matrix-to-
reducer mapping is going to result in significantly lower, e.g.,
by a factor of more than 3, max-reducer-input compared to
using 1-Bucket-Theta. Stated differently, the only way to
significantly improve over the job completion time of
1-Bucket-Theta is to find a matrix-to-reducer map-
ping that does not assign a significant percentage of
the join matrix cells to any reducer, e.g., at least
50%.

Recall that for correctness, every join matrix cell with
value true has to be assigned to a reducer (see Section 3.4).
This means that for any join that produces a large fraction
of the cross-product, 1-Bucket-Theta is also guaranteed to
be close to optimal in terms of both max-reducer-input and
max-reducer-output.

For joins with very selective conditions, usually a matrix-
to-reducer mapping will exist that has a significantly lower
max-reducer-input than 1-Bucket-Theta. To improve over
1-Bucket-Theta, we have to find such a mapping. Because
of Lemma 3, a necessary condition for this mapping is that
it covers only a relatively small percentage of the join matrix
cells, e.g., less than 50%. As the following discussion shows,
it is often difficult in practice to find a mapping with this
property due to requirements for both input statistics and
join condition.

Input statistics. Knowing only the cardinality of S and
T , it is not possible to decide for any matrix cell if it is
part of the join output or not. Let (s, t) be a pair of an S
and a T tuple that satisfies the join condition. If the join
algorithm assumes that some matrix cell M(i, j) is not part
of the join result, one can easily construct a counter example
by creating sets S and T where s and t are assigned to the
i-th row and j-th column of M , respectively. To identify
matrix cells that do not need to be covered, more detailed
input statistics are required.

Join condition. If the join condition is a user-defined
blackbox function, then we do not know which join matrix
cells have value false unless we actually evaluate the join
condition for these cells. However, this defeats the purpose
of the algorithm: To find an efficient join algorithm, we
would actually have to compute the join for all cells we are
considering as candidates for not covering them by any re-
ducer. Even if a join condition does not contain user-defined
functions, in practice it is often difficult to identify large

regions in the join matrix for which the algorithm can be
certain that the entire region contains no join result tuple.

Before we explore this issue in more depth, consider
the right example in Figure 4 and the example in Fig-
ure 5. In both cases we compute the same equi-join for the
same inputs. The partitioning in the right example in Fig-
ure 4 is better, because it avoids the high input duplication
needed for 1-Bucket-Theta’s cross-product based computa-
tion. This is achieved by not covering large regions of cells
that contain no result tuples (lower-left and upper-right cor-
ners).

For a set C of matrix cells of interest, input statistics
give us predicates that hold for this set. Consider the right
example in Figure 4. There the S-tuple with the i-th largest
value of the join attribute is mapped to row i (similarly for
T -tuples and matrix columns). For the block of 3 by 4 cells
in the lower-left corner, histograms on S and T could imply
that predicate (S.A ≥ 8 ∧ T.A ≤ 7) holds for this matrix
region. To be able to not assign any cell in this block to a
reducer, the algorithm has to know that none of the cells in
the region satisfies the join condition. In the example, it has
to show that ∀s ∈ S, t ∈ T : (s.A ≥ 8 ∧ t.A ≤ 7)⇒ ¬(s.A =
t.A). While this is straightforward for an equi-join, it can
be difficult and expensive in general.

To summarize our results: For selective join conditions,
better algorithms than 1-Bucket-Theta might exist. These
algorithms require that a significant fraction of the join ma-
trix cells not be assigned to any reducer. Unfortunately,
in practice it can be impossible (insufficient input statis-
tics, user-defined join conditions, complex join conditions)
or computationally very expensive to find enough of such
matrix cells. For those cases, even if we could guess a bet-
ter matrix-to-reducer mapping, we could not use it because
there is no proof that it does not miss any output tuple. The
next section will explore special cases where the join condi-
tion admits an efficient algorithm for identifying regions in
the join matrix that do not contain any join result tuples.

5. EXPLOITING STATISTICS
We present algorithms that improve over 1-Bucket-Theta

for popular join types.

5.1 Approximate Equi-Depth Histograms
1-Bucket-Theta only needed to know the cardinality of

the inputs. To improve over it, we showed in the previous
section that we need to identify large regions in the join
matrix that do not contain any output tuples. This requires
more detailed input statistics, which have to be computed
on-the-fly if they are not available.

We can compute an approximate equi-depth histogram on
input sets S and T with two scans as follows. In the first
pass, we sample approximately n records from each S and
T in a MapReduce job. For an input tuple from S, Map de-
cides with probability n/|S| to output the tuple, otherwise
discards it. These n records are sorted by join attribute
and grouped in a single reduce task to compute approxi-
mate k-quantiles, k < n, that are used as the histogram’s
bucket boundaries. (T is processed analogously.) In a sec-
ond MapReduce job, we make another pass on both data sets
and count the number of records that fall into each bucket.
For join types where it is beneficial to have histogram bucket
boundaries between S and T line up, we perform the second



Algorithm 3 : M-Bucket-I

Input: maxInput, r, M
1: row = 0
2: while row < M.noOfRows do
3: (row, r) = CoverSubMatrix(row, maxInput, r, M)
4: if r < 0 then
5: return false
6: return true

phases for S and T together and use the union of both sets’
bucket boundaries for the final histogram for each set.

Using such a histogram, it is straightforward to identify
’empty’ regions in the join matrix for a popular class of joins
including equi-joins , band-joins, and inequality-joins. As
discussed earlier, only non-empty matrix regions, i.e., those
containing at least one result record, need to be assigned to
a reducer. We refer to cells in those regions as candidate
cells.

5.2 M-Bucket-I and M-Bucket-O
For input-size dominated joins, we want to find a

matrix-to-reducer mapping that minimizes max-reducer-
input. Finding such an optimal cover of all candidate cells
in general is a hard problem, hence we propose a fast heuris-
tic. We refer to the corresponding algorithm as M-Bucket-I,
because it needs more detailed input statistics (Multiple-
bucket histogram) and minimizes max-reducer-Input.

The pseudo-code of M-Bucket-I is shown in Algorithm 3.
Given the desired number of regions (r), the maximal input
size allowed for each region (maxInput), and a join matrix
M , the algorithm divides the covering problem into sub-
problems of covering sub-regions of the join matrix at each
step. In order to preserve similar sub-problems, M-Bucket-I
only considers horizontal fragments of the matrix. Starting
from the top row, it tries to cover all candidate cells in a
block of consecutive rows. Then it repeats the same process
starting at the next row that is not covered yet. It continues
to cover blocks of consecutive rows until it has either covered
all candidate cells, or it exhausted the r regions without
being able to cover all candidate cells.

During each execution of the while-loop, M-Bucket-I cov-
ers a block of rows as shown in Algorithm 4. The number
of rows in a block can vary between different calls of Algo-
rithm 4. For all blocks starting at row rows and consisting of
i rows, i ∈ [1,maxInput− 1], Algorithm 4 computes a score.
The score is defined as the average number of candidate cells
covered by each region in the block. (Intuitively, we want
to cover as many candidate cells with as few regions as pos-
sible.) Among the possible maxInput − 1 blocks starting
at rows, the block with the highest score is selected. Now
all candidate cells in this block are covered, and the process
continues in the next row right below the block. Our algo-
rithm does not consider blocks of more than maxInput− 1
rows in order to reduce the search space (see for-loop lim-
its). This works very well in practice, because ’taller’ blocks
usually result in tall slim regions that have a low score.

Given the first row rowf and the last row rowl of a par-
ticular block of rows in M , M-Bucket-I assigns candidate
cells within the block column-by-column as shown in Algo-
rithm 5. It starts by creating a new region with an initial
input capacity of maxInput. M-Bucket-I iterates through
each column ci and assigns all candidate cells within ci (be-

Algorithm 4 : CoverSubMatrix (M-Bucket-I)

Input: rows, maxInput, r, M
1: maxScore = -1, rUsed = 0
2: for i=1 to maxInput-1 do
3: Ri = CoverRows(rows, rows + i, maxInput, M)
4: area = totalCandidateArea(rows, rows+i, M)
5: score = area / Ri.size
6: if score ≥ maxScore then
7: bestRow = rows + i
8: rUsed = Ri.size
9: r = r - rUsed

10: return (bestRow+1, r)

Algorithm 5 : CoverRows (M-Bucket-I)

Input: rowf , rowl,maxInput,M
1: Regions = ∅; r=newRegion()
2: for all ci in M.getColumns do
3: if r.cap < ci.candidateInputCosts then
4: Regions = Regions∪r
5: r=newRegion()
6: r.Cells = r.Cells ∪ ci.candidateCells
7: return Regions

tween rowf and rowl) to the region as long as the input
capacity is not exceeded. When adding candidate cells in
a column ci would result in the region exceeding its input
limit, a new region is created and ci and the next columns
are assigned to that region, until it reaches the input size
limit, and so on. Once all columns of the block are covered,
Algorithm 5 returns the set of cover regions it created.

We use M-Bucket-I in a binary search to find the small-
est value maxInput for which M-Bucket-I can find a cover
that uses at most r regions—one per reducer. The upper
and lower bound of maxInput for the binary search are
|S| + |T | and 2

√
number-of-candidate-cells/r. The former

is obvious, because we can cover the entire matrix with a
rectangle of |S| rows by |T | columns. The latter follows
from Lemma 1 and the fact that max-reducer-output is at
least number-of-candidate-cells/r.

Recall that M-Bucket-I was designed to minimize max-
reducer-input. For output-size dominated joins, one should
minimize max-reducer-output instead. For this problem, we
developed a heuristic called M-Bucket-O. It proceeds like
M-Bucket-I, but instead of working with an input-size limit
maxInput, it limits regions by area, i.e., number of candi-
date cells contained in a region.

Notice that M-Bucket-I can take better advantage of input
histograms than M-Bucket-O, because it knows exactly how
many input tuples from each data set belong to each bucket.
On the other hand, the actual output size of a bucket could
be anything between zero and the product of the bucket
counts. Hence M-Bucket-I can reliably balance input-related
costs even with fairly coarse-grained histograms, while M-
Bucket-O can show significant output-cost imbalance even
for very fine-grained histograms (e.g., where each bucket
contains an average of five distinct attribute values). Our
experiments support this observation.

The M-Bucket-I algorithm described in this section can
be used for any theta join. For various types of joins, we
can further improve it by exploiting properties of the loca-
tions of candidate cells in the join matrix. In particular, for



equi-joins, band-joins and inequality joins, the join matrix
has the following monotonicity property: If cell (i, j) is not
a candidate cell (i.e., it is guaranteed to be false), then
either all cells (k, l) with k ≤ i ∧ l ≥ j, or all cells (k, l)
with k ≥ i ∧ l ≤ j are also false and hence not candidate
cells. (Which case holds for cell (i, j) is easy to determine
based on the join predicate.) We can therefore find all can-
didate cells faster by pruning the search space based on this
monotonicity property.

5.3 The Overall Algorithm
Given two input sets S and T , and a join condition θ, we

can often choose between different MapReduce implementa-
tions. For equi-joins, there are the standard algorithm (Sec-
tion 2.2), the M-Bucket algorithms, and 1-Bucket-Theta.
For any other theta-join, there are the M-Bucket algorithms
(if statistics are available) and 1-Bucket-Theta. For band-
joins and inequality-joins, in addition to 1-Bucket-Theta, we
can compute statistics as described in Section 5.1 and use
M-Bucket algorithms.

Depending on the join condition, we consider all ap-
plicable algorithms. From their corresponding matrix-to-
reducer mapping, we can estimate max-reducer-input and
max-reducer-output for each algorithm. Then we can apply
traditional cost estimation techniques from databases, be-
cause the job completion time is determined by the reducer
(i.e., single processor) that receives the greatest input and
the reducer that generates the greatest output. Local re-
ducer computation is directly amenable to traditional cost
analysis involving CPU and I/O cost. For DFS data trans-
fer we can approximate cost through a disk-like model of
average latency and transfer time. Details are left to future
work.

5.4 Extension: Memory-Awareness
Given r reducers, our algorithms presented in earlier sec-

tions create r partitions of the join matrix to assign one par-
tition to each reducer. Sometimes these partitions are too
big to fit in memory, forcing the join algorithm to perform
local disk I/O (or failure if join implementation assumes that
data fits in memory). We can avoid this situation by mak-
ing the algorithms “memory-aware”. Instead of letting the
reducer number drive the matrix partitioning, regions can
be constrained to not exceed a specified input size. Given
a memory limit m, 1-Bucket-Theta covers the entire ma-
trix with squares of side-length m/2. M-Bucket-I does not
perform a binary search on input size, but runs the heuristic
immediately for input limit m, choosing more than r regions
if necessary. M-Bucket-O can be extended similarly.

6. EXPERIMENTS
We discuss representative results for our algorithms for

joining real and synthetic data. All experiments were per-
formed on a 10-machine cluster running Hadoop 0.20.2 [1].
One machine served as the head node, while the other 9
were the worker nodes. Each machine has a single quad-
core Xeon 2.4GHz processor, 8MB cache, 8GB RAM, and
two 250 GB 7.2K RPM hard disks. All machines are di-
rectly connected to the same Gigabit network switch. In
total, the cluster therefore has 36 cores with 2GB memory
per core available for Map and Reduce tasks. Each core is
configured to run one map and one reduce task concurrently.

Table 1: Skew Resistance of 1-Bucket-Theta
1-Bucket-Theta Standard

Data set Output Size
(billion)

Output
Imbalance

Runtime
(secs)

Output
Imbalance

Runtime
(secs)

Synth-0 25.00 1.0030 657 1.0124 701
Synth-0.4 24.99 1.0023 650 1.2541 722
Synth-0.6 24.98 1.0033 676 1.7780 923
Synth-0.8 24.95 1.0068 678 3.0103 1482
Synth-1 24.91 1.0089 667 5.3124 2489

The distributed file system block size is set to 64MB and all
machines participate as storage nodes for the DFS.

We present results for the following data sets:
Cloud: This is a real data set containing extended cloud

reports from ships and land stations [11]. There are 382
million records, each with 28 attributes, resulting in a total
data size of 28.8GB.
Cloud-5-1, Cloud-5-2: These are two independent ran-

dom samples of 5 million records each from Cloud. They
are used for experiments with output-size dominated joins.
Synth-α: For a fixed α, this is a pair of data sets (one for

each join input). Both contain 5 million records, each record
being a single integer number between 1 and 1000. For one
data set, numbers are drawn uniformly at random from this
range. For the other data set, we use the Zipf distribution
for the same range. Skew is adjusted by choosing a value
between 0 (uniform) and 1.0 (skew) for α, which is the usual
Zipf skew parameter.

6.1 1-Bucket-Theta vs. Standard Equi-join
Table 1 shows results for computing an equi-join on

Synth-α for various values of α. Since all experiments have
significantly larger output than input, we report output im-
balance. Imbalance is computed as max-reducer-output di-
vided by average-reducer-output. (We compute the average
over 36 nodes to not favor 1-Bucket-Theta when it uses fewer
reducer nodes.) We compare the load imbalance of 1-Bucket-
Theta against the standard equi-join implementation from
the literature (see Section 2.2).

As we discussed in Sections 4.1.1 and 4.2, 1-Bucket-Theta
is virtually guaranteed to achieve an excellent balancing of
both input and output tuples because of its randomized ap-
proach. As predicted, the standard algorithm’s approach of
creating reduce jobs based on join attribute values suffers
from increasing skew. The node responsible for the most
frequent value is overloaded by a factor of 3 to 5 for skewed
data. This could be much worse for a join attribute with
smaller cardinality even for small data set size. Since total
output size is approximately the same, output imbalance di-
rectly reflects max-reducer-output. And as predicted by our
qualitative cost analysis, greater max-reducer-output leads
to greater job completion time.

6.2 Input-Size Dominated Joins
We study M-Bucket-I for the following selective self-join

on the large Cloud data set:

SELECT S.date, S.longitude, S.latitude, T.latitude

FROM Cloud AS S, Cloud AS T

WHERE S.date = T.date AND S.longitude = T.longitude

AND ABS(S.latitude - T.latitude) <= 10

This join produces 390 million output tuples, a much smaller
set than the total of almost 800 million input records.



The statistics for M-Bucket-I are approximate equi-depth
one-dimensional histograms of different granularities (i.e.,
number of buckets) for Cloud. The 1-dimensional sort key
for the histogram is the combined (date, longitude, latitude)-
vector, using alphabetical sorting with date as the most sig-
nificant component. Notice that for a 1-bucket histogram,
M-Bucket-I degenerates to a version of 1-Bucket-Theta. In-
stead of using the square-only approach of 1-Bucket-Theta
(which was needed to achieve the bounds in Theorem 3,
but often does not use all reducers), we run the heuristic
described in Section 5.2 to find the matrix-to-reducer map-
ping.

For coarse histograms (1 to 100 buckets), max-reducer-
input size turned out to exceed main memory size, while this
was not the case for more fine-grained histograms. To make
results more comparable, we therefore used our memory-
aware version of M-Bucket-I for all experiments. Note
that this version will create c · r regions for r reducers and
some appropriately chosen integer c ≥ 1, just large enough
to make the computation fit into reducer memory. More
regions mean greater input duplication. We report input
duplication rate as the ratio of the total number of Map
output records and the total number of Map input records.
Input duplication rate for histograms with 1, 10, 100, 1000,
10000, 100000, and 1000000 buckets are 31.22, 8.92, 1.93,
1.0426, 1.0044, 1.00048, and 1.00025 respectively.

Figure 6 shows how input imbalance, computed as (max-
reducer-input / avg-reducer-input), of M-Bucket-I changes
with varying histogram granularity. (Notice that all 36 re-
ducers were used in all cases, hence avg-reducer-input is
comparable across algorithms.) The graph shows that our
heuristic achieves its goal of balancing input evenly across
reducers. For 1 bucket, this is achieved automatically by
the randomization of 1-Bucket-Theta. For histograms with
more than one bucket, randomization is limited to happen
within buckets and imbalance can be caused if the input size
for a matrix region assigned to a reducer is not estimated
accurately.

Figure 7 compares max-reducer-input for M-Bucket-I as
we vary the granularity of the input statistics. Here the
data point for 1 bucket again corresponds to the version
of 1-Bucket-Theta described above. It is obvious that
even though 1-Bucket-Theta almost perfectly balances in-
put load, it has a lot more to balance than M-Bucket-I with
more fine-grained histograms. The reason is that 1-Bucket-
Theta covers the entire join matrix, while M-Bucket-I can
avoid covering a large fraction of the matrix based on the
available statistics and properties of the band-join. As pre-
dicted by our cost analysis, Figure 8 shows for this input-size
dominated join that MapReduce job completion time tracks
the trend of max-reducer-input almost perfectly.

Figure 8 does not include M-Bucket-I’s pre-processing
costs. The detailed cost breakdown and true total job com-
pletion times are shown in Table 2. Average run times of 10
executions are reported for each experiment. The maximum
standard deviation between the job completion times was
14.61%. In addition to performing the MapReduce job for
the join, M-Bucket-I first has to compute the statistics (un-
less they are available) by finding the approximate quantiles
(single pass to compute random sample) and then counting
the number of records per quantile range (another sequential
pass). The heuristic for finding the best matrix-to-reducer
mapping is run on a single node, followed by the actual join.

Table 2: M-Bucket-I cost details (seconds)
Step Number of Buckets

1 10 100 1000 10000 100000 1000000

Quantiles 0 115 120 117 122 124 122
Histogram 0 140 145 147 157 167 604
Heuristic 74.01 9.21 0.84 1.50 16.67 118.03 111.27

Join 49384 10905 1157 595 548 540 536

Total 49458.01 11169.21 1422.84 860.5 843.67 949.03 1373.27

As we can see, at some point more fine-grained statistics im-
prove join cost only minimally, while especially the heuristic
for finding the matrix-to-reducer mapping becomes more ex-
pensive as more (and smaller) regions of candidate cells have
to be considered by M-Bucket-I.

In summary, this experiment highlights the Achilles heel
of 1-Bucket-Theta—its potentially high input duplication.
Input duplication was worse than the number of reducers
(set to 36) suggests. The memory-aware version created
up to 972 partitions to guarantee that all reducer computa-
tions can be performed in memory. For smaller input data
or when running the version with local I/O (and hence fewer
partitions), input duplication would be significantly lower.
The experiments also show that whenever available statis-
tics and properties of the join condition enable us to avoid
mapping a large fraction of the join matrix to any reducer,
input-related costs can be reduced significantly.

6.3 Output-Size Dominated Joins
We study the following modestly selective join on the

smaller Cloud-5 real data sets:

SELECT S.latitude, T.latitude

FROM Cloud-5-1 AS S, Cloud-5-2 AS T

WHERE ABS(S.latitude - T.latitude) <= 2

This join produces 22 billion output tuples, a much larger
set than the total of 10 million input records.

This experiment mirrors the one reported in the previous
section, but now for a join that is output-size dominated.
As with M-Bucket-I, M-Bucket-O for a histogram with only
one bucket degenerates to a version of 1-Bucket-Theta. It
tries to find a region partitioning of the join matrix where
all regions have approximately the same area (number of
candidate cells covered), but no reducer is left without work
(as could happen for the original 1-Bucket-Theta algorithm,
whose primary goal was to guarantee the result in Theo-
rem 3).

Figure 9 shows the output-size imbalance, computed as
(max-reducer-output / avg-reducer-output), for different
granularities of the histogram. (Notice that all 36 reduc-
ers were used in all cases, hence avg-reducer-output is com-
parable across algorithms.) 1-Bucket-Theta, as expected,
achieves almost perfect output balancing due to its random-
ized approach. However, for other histogram granularities,
output imbalance is much greater than the corresponding
numbers for the input imbalance for M-Bucket-I for the pre-
vious experiment. Even though input sizes can be estimated
well, even from comparably coarse-grained histograms (see
Figure 6), the number of output tuples in a region is difficult
to estimate because join selectivity can vary significantly
in different regions. 1-Bucket-Theta is practically immune
to this problem, because its randomization “shuffles” tuples
around randomly, hence tuples from regions with high re-
sult density and those from regions with low result density



Figure 6: Input imbalance for
1-Bucket-Theta (#buckets=1) and
M-Bucket-I on Cloud

Figure 7: Max-reducer-input for 1-
Bucket-Theta and M-Bucket-I on
Cloud

Figure 8: MapReduce time for 1-
Bucket-Theta and M-Bucket-I on
Cloud

Figure 9: Output imbalance for
1-Bucket-Theta (#buckets=1) and
M-Bucket-O on Cloud-5

Figure 10: Max-reducer-output for
1-Bucket-Theta and M-Bucket-O
on Cloud-5

Figure 11: MapReduce time for 1-
Bucket-Theta and M-Bucket-O on
Cloud-5

Table 3: M-Bucket-O cost details (seconds)
Step Number of Buckets

1 10 100 1000 5951

Quantiles 0 4.52 4.54 4.8 4.9
Histogram 0 26.2 25.8 25.6 25.6
Heuristic 0.04 0.04 0.05 0.24 0.81

Join 1278.6 2483.4 1596.6 1368.8 1188

Total 1278.64 2514.16 1626.99 1399.44 1219.31

in the join matrix get intermixed. M-Bucket-O cannot do
this, because a tuple can only be assigned to the appropriate
histogram bucket, not any random bucket.

Since the total join output size is independent of the
number of histogram buckets, Figure 10 looks exactly the
same as Figure 9, just with all numbers scaled by average-
reducer-output. And since the join is output-size domi-
nated, the job completion time numbers in Figure 11 for the
MapReduce join implementation closely track the values for
max-reducer-output. This highlights that minimizing max-
reducer-output for this problem is the right approach. The
true total job completion times are listed in detail in Table 3.
Average run times of 10 executions are reported for each ex-
periment. The maximum standard deviation between the
job completion times was 3.42%. Input duplication rate for
histograms with 1, 10, 100, 1000, and 5951 buckets are 7.50,
4.14, 1.46, 1.053, and 1.0349 respectively.

In summary, for the output-size dominated join problem,
1-Bucket-Theta performed better than M-Bucket-O, except

when very detailed statistics were available for the latter.
Notice that there are 5951 different latitude values in the
data set, hence the histogram with 5951 had a single bucket
per occurring latitude value. This allowed M-Bucket-O to
compute exact output sizes for any region in the join matrix.
With fewer buckets, estimation error increased significantly,
resulting in worse output balancing.

7. RELATED WORK
Most previous work implements equi-joins in MapReduce

as described in Section 2.2 for data sets that do not fit in
memory [4, 5, 14, 16, 20]. Map-Reduce-Merge [20] supports
other joins and different implementations, but it requires an
extension of the MapReduce model. Users also have to im-
plement non-trivial functions that manipulate the dataflow
in the distributed system. Our approach does not require
any change to the MapReduce model, but still supports any
theta-join in a single MapReduce job. Hence it is possible
to integrate our approach with high-level programming lan-
guages on top of MapReduce [2, 15, 17].

[4] studies multiway equi-joins in MapReduce, optimizing
for throughput by selecting a query plan with the lowest in-
put replication cost. It is not clear if these results would gen-
eralize to other join conditions. Vernica et al. [19] present an
in-depth study of a special type of similarity join in MapRe-
duce. Some clever techniques for dealing with memory lim-
its are proposed. To the best of our knowledge, our paper



is the first to study all theta-joins and explore optimality
properties for them in MapReduce-based systems.

An overview of parallel join algorithms studied can be
found in [10]. For parallel non-equi joins, [18] fragments
both data sets and replicates them among processors so that
each item from one input meets each item from the other.
The replication rate of inputs are decided using heuristics to
minimize total communication cost. Partitioning found by
these methods can be integrated into our approach and used
in MapReduce. Earlier work by DeWitt et al. [8] explored
how to minimize disk accesses for band-joins by choosing
partitioning elements using sampling. The parallel version
of this algorithm could be modeled by a join matrix, al-
lowing us to include the approach into our framework when
choosing the algorithm with the best input and/or output
balancing properties.

Data skew was shown to cause both poor query cost esti-
mates and sub-linear speedup [7]. Large scale data analysis
platforms try to address skew in computation times through
speculative execution for tasks which are expected to dom-
inate end-to-end latency [6, 12]. This approach does not
handle data skew in joins, because the excessively large tasks
would just be executed on another machine, but not broken
up. Kwon et al. [13] attempt to minimize computational
skew in scientific analysis tasks with blackbox functions. In
order to deal with skew, DeWitt et al. [9] propose four equi-
join algorithms and show that traditional hybrid hash join is
the winner in lower skew or no skew cases. Pig [3] supports
these skewed equi-join implementations on top of MapRe-
duce. We demonstrated that we can handle skew not only
for equi-joins, but any arbitrary join conditions.

8. CONCLUSIONS
We proposed algorithms for implementing any theta-join

as a single MapReduce job. This implementation is achieved
by creating the appropriate Map and Reduce functions,
without any modifications to the MapReduce framework.

Starting with the goal of minimizing total job completion
time, we showed how to define a great variety of join imple-
mentations using appropriate join matrix-to-reducer map-
pings. We proposed 1-Bucket-Theta, an algorithm whose
matrix-to-reducer mapping we showed to be provably close
to optimal for the cross-product and for any join whose out-
put is a significant fraction of the cross-product. For more
selective join conditions we showed that even though there
might be faster algorithms than 1-Bucket-Theta, in practice
it might often not be possible to identify these algorithms
as usable without performing expensive analysis or without
knowing the join result in advance.

We proposed the M-Bucket class of algorithms that can
improve runtime of any theta-join compared to 1-Bucket-
Theta by exploiting input statistics to exclude large regions
of the join matrix with a comparably lightweight test, and
thus reduce input-related costs.

Interesting future directions include the evaluation of
multi-way theta-joins and the development of a complete
optimizer for selecting the best MapReduce implementation
for any given join problem.
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