Consider a few simple examples to get a feeling for obvious and more subtle challenges when parallelizing an algorithm.
Sum Of Integers

• Compute sum of a large set of integers
• Sequential: simple for-loop (scan)
• Parallel: assign data chunk to each processor to compute local sum, then add them together
• Algorithmically easy, but...
 – Transmitting a chunk to another machine might take longer than locally computing the sum
 • No problem if data is distributed already
 – Many-core: what if data transfer to the cores is the bottleneck of the computation?
Word Count

• Number of occurrences of each word in a large document collection
• Sequential: for each document, update counter for each word found
 – Use single data structure, e.g., hash map, to keep track of counts
• Parallel program 1: each processor does this for a subset of documents using a local “copy” of the data structure
 – Good: perfectly parallel counting if each processor already has its own data chunk
 – Bad: many “copies” of the hash maps, which need to be moved around for final aggregation step
• Parallel program 2: use single shared data structure for counts
 – Good: no “replication”, no need for final aggregation step
 – Bad: need to coordinate access to shared data structure (e.g., locking), not a good fit for shared-nothing architecture
Before exploring parallel algorithms in more depth, how do we know if our parallel algorithm or implementation actually does well or not?
Performance Metrics

• Total execution time
• Total resources consumed
• Total amount of money paid
• Total energy consumed

• Optimize some combination of the above
 – E.g., minimize total execution time, subject to a money budget constraint
Classic Measures Of Success For Parallelization

• If sequential version takes time \(t \), then parallel version on \(n \) processors should take time \(\frac{t}{n} \)
 – Speedup = \(\frac{\text{sequentialTime}}{\text{parallelTime}} \)
 – Note: job, i.e., work to be done, is fixed

• Response time should stay constant if number of processors increases at same rate as “amount of work”
 – Scaleup = \(\frac{\text{workDoneParallel}}{\text{workDoneSequential}} \)
 – Note: time to work on job is fixed
Scalability Through Load Balancing

• Avoid overloading one processor while another is idle
 – Careful: if better balancing increases total load, it might not be worth it
 – Careful: optimizes for response time, but not necessarily other metrics like $ paid

• **Static** load balancing
 – Need cost analyzer like in DBMS

• **Dynamic** load balancing
 – Easy: Web search
 – Hard: join
Amdahl’s Law

• Consider job taking sequential time t_1 and consisting of two sequential tasks taking time t_1 and $1-t_1$, respectively
• Assume we can perfectly parallelize the first task on n processors
 – Parallel time: $t_1/n + (1 - t_1)$
• Speedup = $1 / (1 - t_1(n-1)/n)$
 – $t_1=0.9$, $n=2$: speedup = 1.81
 – $t_1=0.9$, $n=10$: speedup = 5.3
 – $t_1=0.9$, $n=100$: speedup = 9.2
 – Max. possible speedup for $t_1=0.9$ is $1/(1-0.9) = 10$
Implications of Amdahl’s Law

• Parallelize the tasks that take the longest
• Sequential steps limit maximum possible speedup
 – Communication between tasks, e.g., to transmit intermediate results, can inherently limit speedup, no matter how well the tasks themselves can be parallelized
• If fraction x of the job is inherently sequential, speedup can never exceed $1/x$
 – No point running this on too many processors
Course Content in a Nutshell

• In big-data processing, usually the same computation needs to be applied to a lot of data.
• We want to divide the work between multiple processors.
• When dividing work, we often need to combine intermediate results from multiple processors.
• We want an environment that simplifies writing such programs and executing them on many processors.
Why This Is Not So Easy

- How can the work be partitioned without communicating too much intermediate data?
- How do we start up and manage 1000s of tasks for a job?
- How do we get large data sets to processors or move processing to the data?
- How do we deal with slow responses and failures?
Technical Problems

• Shared resources limit scalability due to the cost of managing concurrent access, e.g., through locking.

• **Shared-nothing architectures** still need communication for processes to share data and coordinate with each other.

• Whenever multiple concurrent processes interact, there is a potential for deadlocks and race conditions.

• It is difficult to reason about the behavior and correctness of concurrent processes, especially when failures are part of the model.

• There is an inherent tradeoff between consistency, availability, and partition tolerance. We will discuss this in a future unit.
What Can We Do?

• As a programmer, work at the right level of abstraction.
 – If the approach is too low-level, it becomes difficult to write programs.
 • Manage locks on shared data structures and manage communication between machines in the application code; handle failures
 – If the approach is too high-level, it could suffer from poor performance if control for crucial bottleneck is “abstracted away”.

• Possible solution: **declarative style of programming**
 – Specify WHAT needs to be computed, not HOW this is done
 – Success story: SQL for relational databases
 • SQL query specifies what the user is looking for
 • Database optimizer automatically chooses an efficient implementation (More on this in a future unit.)
The MapReduce Way

• Use hardware that can scale out, not just up.
 – MapReduce was initially designed for WSCs. Doubling the number of commodity servers in a cluster is easy, but buying a double-sized SMP machine is not.

• Have the data located near the processors.
 – For Big Data, moving too much data around tends to result in poor performance. MapReduce therefore tries to assign tasks to machines that already have the data.

• Avoid centralized resources that are likely bottlenecks.

• Read and write data sequentially in large chunks to amortize latency.