Signature-based Method for Run-Time Fault Detection in
Communication Protocols

G. Noubir, K. Vijayananda, and H. J. Nussbaumer, IEEE Fellow
Swiss Federal Institute of Technology, Lausanne,
Computer Engineering Department, EPFL-DI-LIT,
CH-1015, Lausanne, Switzerland
{noubir,vijay,nussbaumer }@di.epfl.ch

Abstract

Run-time fault detection of communication protocols is essential because of faults that
occur in the form of coding defects, memory problems and external disturbances. We propose
a signature-based method to detect run-time faults. A polynomial using the state and event
information as coefficients is used to transform a sequence of states and events into a number
(signature). The static signature corresponding to the correct execution of the protocol is
compared with the run-time signature. This technique is reliable, fast, and efficient compared
to the existing techniques. The states and events are assigned values such that multiple paths
leading to the same state result in a unique signature. This reduces the number of run-time
comparisons required to verify the correct execution of the protocol. Fault-detection based
on signatures 1s also much simpler than observer-based methods. We propose extensions
to communication protocols that facilitate the application of signature-based techniques to
detect run-time faults in communication protocols. In this paper, we present eXTPJ, an
extended transport layer protocol that facilitates run-time fault detection.

Keywords

Fault detection, communication protocol, protocol faults, signature, polynomial, observer.

INTRODUCTION

Communication protocols are designed to provide reliable services for meaningful exchange of
information. Protocol verification and validation techniques are used to ensure the correctness of
their specification. However, there is no strategy to ensure that the execution of the protocol is
error-free. Dormant errors due to coding, memory problems, and external disturbances are not
considered in above mentioned techniques. Unless some kind of run-time checking is done, this
type of faults may remain undetected until a partial or complete breakdown of the communica-
tion system. In order to ensure the continuous availability and quality of services provided by

these systems, it is necessary to detect and diagnose run-time faults in communication protocols.

Several techniques for detecting run-time faults in programs can be found in the literature.
These techniques include observer-based methods for communication protocols and signature-
based methods for programs. The observer-based methods uses an external observer and a model
of the communication protocol to detect faults [1, 2, 3, 4]. At run time, an external observer is
used to monitor the messages exchanged between entities. These messages are compared with

the model for their correctness. Signature-based methods are a very popular technique used to

verify the run-time behavior of programs [5, 6, 7, 8]. They are used at different levels to monitor
and detect run-time faults and to check the control flow of programs. Each legal path in the
control flow graph of the program is transformed into a signature which is referred to as the
static signature. The static signature corresponds to the correct execution of the program. The
signature is again computed during the execution of the program and this is compared with the

static signature to verify that the program has traversed a legal path.

In this paper, we combine these two techniques for the purpose of detecting run-time faults in
communication protocols. An external observer uses signatures to verify the execution of com-
munication protocols. A novel function based on polynomials is used to generate the signature.
Our signature-based approach is a probabilistic method which can be used to detect run-time
faults in communication protocols. We would like to emphasize that after the fault has been
detected using this technique, other techniques have to be used for a detailed diagnosis in order
to localize the fault and initiate recovery procedures. The signature-based method may aid the
diagnosis and recovery by pinpointing the faulty event and the state of the communication pro-
tocol when the fault occurred. We show that this method reduces the complexity of the observer
compared to other observer-based methods. The low complexity of the proposed method makes

it tractable for run-time fault detection in communication protocols.

The rest of the paper is organized as follows. Research done in the related domain is first
discussed. We then present the definitions and terminologies used in this paper. In the next
section, we discuss the fault detection technique. Then, we present our signature generation
technique. In the following section, we describe the use of a new signature-based method for
run-time fault detection in communication protocols. An example from Transport Class 4 (TP4)
is used to illustrate the fault-detection mechanism. Then, the extensions to the communication
protocols that facilitate this new fault-detection scheme are introduced. Finally, Transport Class

4 protocol is used to describe some implementation details of the proposed extensions.

STATE OF THE ART

We now briefly present the related work in the area of observer-based and signature based
methods.

Observer-based Methods: Several variations of the observer-based method can be found in
the literature. In [1], Bouloutas et al. use the Finite State Machine (FSM) approach to detect
faults in machines whose behavior is described using FSMs. Observers, which are modeled using
FSMs, are used to detect out-of-sequence messages and incorrect state transitions. In [2], Wang
et al. decompose the FSM representing the communication protocol into several FSMs. Fach
FSM is represented by an observer. All the observers operate in parallel to detect the faults in
the communication protocols. In [4], Diaz et al. use an observer to monitor and detect faults in
an implemented system. The observer is modeled using the specifications of the implemented
system. In [9, 10], Oikonomou uses an observer based on the abstraction of the FSM model
to detect faults in the system. The abstracted observer uses the abstracted FSM model of the
system to detect deviations in the behavior of the system. In [11, 3], Riese uses model-based
reasoning to detect deviations from the correct behavior of the communication protocols. A

FSM model of the communication protocol is used by the observer to diagnose the faults.

In most of the observer-based methods, the model of the communication protocol used by the
observer is as complex as the communication protocol itself. In the work proposed by Wang et
al. and Oikonomou the complexity of the observer is reduced compared to the communication
protocols. However these methods suffer from other problems like non-determinism and error
latency . In this paper, we propose to use a signature-based method to detect run-time faults.
We combine the observer-based method and the signature-based method to detect faults. We
show that this method reduces the complexity of the observer compared to other observer-based

methods.

Signature-based Methods: In [5], Yau et al. use the path-transformation method to gener-
ate signatures. Prime numbers are assigned to every event in a loop-free path and the signature
is computed as the product of all the prime numbers in the path. The signature of a path
traversed during run-time is compared against a table containing all the legal path signatures.
This method cannot detect out-of-sequence events because of the commutative and associative
property of multiplication of prime numbers. In [6], Saxena et al. use an extended precision
checksum as a signature to verify run-time execution of the program. A checksum is assigned to
every block of sequential code. The generation and verification is done in hardware. A watch-
dog monitor is used to verify the correct execution of every block of code. This method cannot
detect out-of-sequence events and requires hardware support for verification. In [7], Upadhyaya
et al. use a signature which is a m-out-of-n code. A known signature technique is applied to
an instruction stream at compile time and when the accumulated signature forms a m-out-of-n
code, the instruction is tagged. At run-time, the signature is accumulated and when a tagged
instruction is reached, a check is made to see if the current signature forms a m-out-of-n code.
In this method, there is no control over the error latency. It requires hardware support and is
well-suited for self-monitoring processes and is not suitable for detecting faults in communication
protocols. In [8], Leveugle proposes a method for hardware control flow checking of sequential
circuits defined by their Mealy machine. The signature is computed using Multiple Inputs Shift
Registers (MISR). Leveugle presents an algorithm to solve the state assignment problem when
possible. This method requires a restricted set of graphs (SC graph) and hardware support
to compute and verify the signature. Also, no algebraic method is available to solve the state
assignment problem. It is not well-suited for monitoring communication protocols. Leveugle
uses the concept that paths leading to the same state must have the same signatures and in this
paper we extend this idea to a more general signature function to reduce the total number of

signatures and an algebraic solution to the event-state assignment problem.

To summarize, most of signature-based methods reviewed here have been applied in the domain
of hardware and hence they require support to generate and verify the signature. The observer
is part of the program under observation and is within the environment of the program. The
fault coverage is restricted and some of them suffer from a larger error detection latency. Even if
these methods are implemented in software, it will be necessary to modify the program. These
methods are well suited to monitor programs. An external observer cannot use these methods
to detect run-time faults. Hence, they need to be modified if they are to be used for detecting

run-time faults in communication protocols.

!Error latency is defined as the time between the occurrence of a fault and its detection.

Our Method and Contributions

We propose a new signature-based method to detect run-time faults in communication proto-
cols [12, 13, 14]. Tt does not require hardware support and is simple, fast and efficient compared
to other methods. This method uses a polynomial to transform a sequence of states and events
into a number (signature). The signature is computed using the state and the event information.
The static signature which corresponds to the correct sequence of messages, is computed and
stored in a table. During the execution of the communication protocol, an external observer
computes the run-time signature and compares it with the static signature. A fault is detected

when the run-time signature differs from the static signature.

Run-time signature is computed in an efficient manner using Horner’s rules (step-wise com-
putation). This method generates distinct signatures that can detect illegal transitions and
out-of-order events. Hence, this method is more reliable than other existing methods, that
cannot detect out-of-order events. The state and events are assigned values such that correct
paths leading to the same state have the same signature. This reduces the number of com-
parisons required to verify the correctness of the run-time path. In this paper, we show that
the complexity of the observer using the signature-based method is reduced compared to the
observer-based methods or Model-based methods. Moreover, the environment of the external
observer is different from the program. Hence, it is not affected by the perturbations of the

program’s environment.

In the past, communication protocols have been modified for the purpose of improving their
performance [15, 16, 17]. In this paper, we propose extensions (without modifications to the
protocol) to communication protocols to facilitate the detection of run-time faults using our
signature-based method. Extensions are proposed to include the state information in the mes-
sages exchanged between communication entities. Different methods for the computation of
the run-time signature and its comparison with the static signature are analyzed based on the

extensions to the communication protocols.

DEFINITIONS AND TERMINOLOGY

In this section, we recall some definitions of finite state machines, paths, correct paths, legal

state paths, and legal event paths.

Definition 1 The communication protocol is modeled as an FSM. An FSM is a 3-tuple A =
(Q,X,0), where @ denotes the set of all possible states {S1,...,5,}. ¥ is the set of all possi-
ble events. In this paper, the term event and message are used interchangeably to denote the

messages exchanged between entities. § denotes the state transition function (6 :0Q X ¥ — Q).

Fach state S; (event E;) is associated with a value s; (e;) from the working algebraic field F.
In general, F is a Galois field (i.e., finite field).

Definition 2 A Galois field GF(p) is a field with a finite number (p) of elements. p is a power
of a prime number. When p is a prime number addition and multiplication in GF(p) are done

modulo p. In this paper we consider only Galois fields with a prime number of elements. In [18],

we proved that signatures computed using a MISR are a special case of the signature function

we propose, where the Galois field is an extension field GF(2k)

Definition 3 A path C' is defined as an alternating sequence of states S; and events I;
(e.g., 51E155E4 . -En_lSn).

The state path is the sub-sequence of states derived from the path by deleting all the events

and retaining the states in their original order (e.g., S1.59555...5,).

The event path is the sub-sequence derived from the path by deleting all the states and retaining
all the events in their original order (e.g., F1Fy---FE,_1).

Definition 4 Last(C) of a path C' is the last state in C, (e.g., last(52515795) = 95). First ()
of a path C' is the first state in C' (e.g., first(92515753) = S2). Penultimate(C) is the last
but one state in a path (e.g., Penultimate(53515753) = S7).

Definition 5 A path C is correct if and only if for every sub-sequence S; E;Sy of C'; 6(5;, E;) =
Sk.

A state path C' : 515553 ---5, is a legal state path if and only if for every sub-sequence 5;5;
of C, there exists an event E € ¥ such that 6(S;, E') = 5;. Otherwise, the state path is an illegal
state path.

An event path C' : EyEsFy - - - F,, is alegal event path if and only if for every sub-sequence E; F;
of C, there exists three states (Sk,S1, Sm) € Q% such that §(Sy, E;) = S; and 8(51, F;) = Sm.

Otherwise, the event path is an illegal event path.

METHODOLOGY

In this section, we provide the rational behind the signature-based method and describe the run-
time strategy to detect faults in communication protocols. A fault is detected as a deviation

from the correct behavior.

The concept of signatures

Consider the FSM representation of a program shown in figure 1(a). S...S10 represent the
states of the program. (a,b, c,d,e) represent the set of events that cause the program to change
from one state to another. The execution of the program is represented by a sequence of states
and events. This also known as the path. The simplest way to verify the correct execution of the
program is to store all the correct paths in a table. If we assign values to the states and events,
then the path can be stored as a sequence of numbers. Now one can compare the run-time path

with all the correct paths in the table to verify its correctness.

For example, consider the FSM shown in figure 1(b). Let the states be assigned the values
1,...,10,i.e. (S1,...,510) = (1,...,10) and the events be assigned the values (a,b,c,d,e) =
(11, 12, 13, 14, 15). Then the path C; = 51b55dS3e57 can be represented by the following
sequence of numbers: (1,12,8,14,3,15,7)

Figure 1: (a) FSM representation of a program (b) FSM with state and event values

Now this leads to two problems. First, the number of correct paths can potentially be very
large. This requires large memory to store all the correct sequence of numbers in a table. In
the above figure, there are potentially infinite paths which represent the correct behavior of
the program. Second, this sequence of numbers do not have any mathematical structure and

properties. Hence it is difficult to reason about them, analyze and study their properties.

In order to overcome these problems, we must choose a better representation so that the
sequence of numbers have a better mathematical structure. This representation must also reduce
the size of the table that contains all the correct paths. We could use hashing techniques to
store and access these sequence of numbers. Similar techniques are used by compilers to store
symbols, variables and access them at run-time. This solves the problem of storing and accessing
large sequence of number. However, they still do not have any well defined mathematical
structure. We look at some of the techniques used in digital signal processing to represent
digital signals [19, 20]. One way is to add weight to every state and event in the sequence. This
can be achieved by using the state and event values as coefficients of a polynomial. For example
the path C7 = 51b65sd53e57 can be represented as

Sy ka8 +bxa’ 4+ Sgxat+dxa®+ Syxx’+exax+ S (1)

Substituting the values of the states and events in 1, we get the following polynomial that
represents the path 7 = 51653dS3e.57:

Tea® +12%2° + 8% a2t + 14x2® + 352 + 155247 (2)

When the program changes from state 57 to 57 after the occurrence of the event a, the new
path is (5 = 5105sdS53e57a51. The polynomial representation of the new path is given as

follows:

S1 42 +bxa’ + Sgxab+dxa®+ 3t +exad +S-xaltaxa+ 5, (3)

Tka® 41242 + 852 4 1dxa® + 352 + 15+ + THa? 4 1lxa 41 (4)

Now the polynomial representation has a better structure. If we evaluate the polynomial
at a given point zg, we can transform the path into a number. Taking zo = 2, the path Cy
represented by the polynomial in Eq. (2) evaluates to 737 and the path C; represented by the
polynomial in (4) evaluates to 2971. Thus an entire sequence of numbers can be represented
by a single number. The polynomial representation is much better than a sequence of numbers

and this requires less space for its representation.

The next question to be answered is how can such a polynomial be used to verify the correct
execution of a program. Every path has an associated polynomial and can be transformed into
a number by evaluating the polynomial at a given point x9. This number is known as the
signature of the path. We store the signatures of all the correct paths in a table. At run-time,
we compute the signature for the run-time path and compare it with the correct path signatures
stored in the table.

This still does not solve the problem of potentially infinite number of correct paths correspond-
ing to a program. This method still requires a large amount of memory to store the signatures
of all the correct paths. We can solve this problem by associating the signature of a path with
the last state in the path. When more than one path leads to the same state, the values of the
states and events in the path are chosen such that all the paths leading to the same state have
the same signature. Thus every state has a unique signature. In the later part of the paper, we
show how this condition is used to assign values to the states and events. This is known as the
event-state assignment problem. For example, the last state of path ' is 57. Hence the
signature of state 57 is 2809. We refer to the signature of a state as static signature. The
table containing the static signature of all the states is known as the static signature table.

The number of signatures are reduced to the number of states of the FSM.
If we carefully examine equation 3, we can see that it can be rewritten in the following manner:
Si+axz+(Sy+exx+Sgxx2+d*x34 S xx* +bxx®+Sqx5) 22
This is equivalent to:
Signature(Cy) = Signature(Cy) * * 4+ a* x + 54 (5)

Equation 5 demonstrates two important things

e The signature of a state contains information about all the paths leading to a state.

e The signature of a path C; can be recursively computed in terms of the signature of the
subpath that is contained in C;. In equation 5, the path (4 is contained in path Cs.
Thus the computation of the signature of a path requires only two multiplication and two

additions for each state transition.

So far we have not discussed how to assign the values to the state and events and the choice of
the point zq for evaluating the polynomial that represents a path. Ideally, we require that every
path must be transformed into a unique number. Later on, in the paper, we discuss in detail
about these requirements and we present the solution to the event-state assignment problem,

and the choice of g.

Signature-based method

At run time, messages are exchanged between communication entities. Let Fy, Fs, ..., F} be
a sequence of messages exchanged, where Fyi, Fo,..., FEp € Y. Let Sy be the initial state of
the communication protocol, and 57, .55, ...,.5% be the subsequent states of the communication
protocol such that 6(5;_1, F;) = S;,i = 1,...,k. The states and messages are assigned values
from a Galois field F such that it satisfies some of the constraints to reduce the number of
comparisons. We denote this problem as the state and event-assignment. The path represented
by SoF151F259, ..., FLS; is transformed into a number using a signature function ®. This

function is a polynomial with the state and event values as coefficients.
d:11 - F

where F represents the Galois field that represents the signature space and II represents the

set of all possible paths.

The signature is computed by evaluating the polynomial at a given point zq in the Galois
field F. The correct behavior of the communication protocol is represented by the set of all
correct paths: Ilo that start at state Sp. The signature corresponding to a correct path is
known as the static signature. This signature is associated with the last state in the correct

path. Furthermore, all correct paths leading to the same state have the same signature.

Fault Detection

Given the Il of a communication protocol, it is possible to detect run-time faults in a com-
munication protocol using the signatures. The run-time path which includes the sequence of
messages exchanged between the entities and the intermediate states, is transformed into a sig-
nature using ®. This represents the run-time signature. Let 57 be the last state in the run-time
path. The run-time signature is compared with the static signature of 57. A fault is detected
when the run-time signature does not match the static signature of .5;. This comparison is not
restricted to the last state in the path. It can be done for every state in the path. Later in this

paper, we discuss more about optimizing the frequency of the comparison.

Observer

An observer is used to detect run-time faults. The observer computes the run-time signature
and compares it with the static signature for correctness. When the observer is internal (i.e,
it is a part of the program ?), we have a self-checking program. However, the observer and
the program are subject to the same perturbations. In the case of an external observer, the
environment ? of the observer is different from that of the program. Hence, it is not affected
by the perturbations of the program’s environment. In this paper, we address the issues related
to the external observer. It is worth mentioning that the FSM model of the communication
protocol used by an external observer is based on the events of the protocol that are visible
to the observer. This model may be different from the one used by the implementation of the

communication protocol.

Signature Static signature

Function Table

Current State

Run-time Signature Checker Fault Detection
-

Generator

Event

Y

OBSERVER

Figure 3: Observer Module

SIGNATURE GENERATION

In this section, we describe the signature generation technique that is used to transform a
sequence of messages into a signature. A polynomial with the state and message information as
coefficients is used to compute the signature. We also describe an algorithm that assigns values

to states and events.

Requirements

Given a communication protocol modeled by a FSM, we would like to detect the illegal paths.
The detection is done by transforming the run-time path? into a single value called path signature
and comparing it with a static value computed off-line. The signature function ® which is used

in the transformation must have the following property:

dp < 1; Probability[®(Ch) = ®(C3)|C1 # C3) < p (6)

°In this paper, the word program refers to the implementation of the communication protocol.
?The environment of a program includes the hardware and the software required to execute the program.
*The path can be a state, event, or full path.

p is called the masking probability and a good signature function has a low masking probability.
Formally, the problem is stated as follows:

Given a FSM A = (Q, %, §) and a state Sy with predefined signature equal to zero® such that
all the other states are reachable from Sg, we require that the signature function must map
every path beginning at state Sy onto a unique value from an algebraic field F. In the following

section, we introduce a signature-generation technique that satisfies property (6).

Path signature

We present three kinds of signatures: the full-path, the state, and the event signature. The main
idea is to associate a path with a univariate polynomial defined over a given algebraic field F.

The signature of a path ' is the evaluation of its associated polynomial at a given point zq .

Choice of the signature function

A polynomial using the state and event information is used as the signature function. We choose

a polynomial signature function for the following reasons:

1. Polynomials are well studied mathematical functions and their properties are well under-

stood.
2. It is easy to compute the masking probability p defined in equation 6.
3. The state and event-assignment problem can be solved algebraically.

4. The signature can be computed in a step-wise manner using Horner’s rules.

Full-path signature

The computation of the full-path signature requires the state and event information. Each state
and event is assigned a value that is used to compute the signature. The signature is evaluated
using the path polynomial at a given point zq.

Using this signature, one can detect incorrect paths. The states and the events must be visible
to the signature generator. It is well suited for developing and implementing self-checking

programs. The polynomial associated with a path ' is defined as follows:

n—1
Pc(x) = Z(S#EQ(n—i) + 6i$2(n_i)_1) + s, (7)

=0
where:

s; is the state value, e; is the event value, and n is the length of the path.

“Without loss of generality, we can assume the signature of Sy to be equal to zero.

10

The signature function ® is defined as ®(C') = Po(2g). The choice of z¢ is arbitrary as long
as it is different from 0 and 1 6. The details about the choice of 2y are discuused in thgis paper.
Later, we discuss the method to assign values to states and events such that parallel paths have

the same signature.

The event (state) signature is computed using only the event (state) information. The signa-
ture function for the event signature is given in Eq(8) and the signature function for the state
signature is given in Eq(9) The event signature cannot detect all illegal state paths, and the

state signature cannot detect all illegal event paths.

Event Signature:

Po(z) = ”Z_—: el (8)

State Signature:

n—1
Po(z) = Z 52"+ s, (9)
1=0

Probability of detecting illegal paths

Theorem 1 Prob(®(Cy)=0(Cy) | C1 #C3) = ﬁ where | F| is the size of the working algebraic
field, where the state and the events can take any value in the Galois Field F.

The detailed proof of the theorem can be found in the appendix. This theorem shows that
the probability of detecting a fault is independent of the length of the path assuming that the
states and events can be assigned all the values in F. This is briefly discussed in the following

paragraph.

Choice of zq

The choice of 2o can be arbitrary as long as it is different from 0 and 1. 0 cannot be cho-
sen because it results in a trivial signature and 1 does not allow to detect out of sequence
events/transitions. In this section, we discuss the effect of 29 on the masking probability and

provide some hints to choose zq in order to have a good masking probability.

When computing the signature of a state (event) path, the state (event) values do not cover all
the elements of the working Galois field. Consequently, the masking probability of the signature
function may be sub-optimal. In order to obtain a good cover of the Galois field, one has to
choose zg as a primitive root of unity. A primitive root of unity is an element w of G'F(p) such
that wP~! = 1 and Vi < p — 1;w' # 1. Choosing z¢ a primitive root of the unity makes the
set of possible signatures equal to GF(p) even if the values of states (events) is restricted to a
singleton a. For example, if a is the values assigned to a state 5, then the signature of path
S48+ 9, of length n is:

bla---a) = ") axl
al’g—ol 0 (10)

:L’()—l

SPrimitive roots of unity in a GF seems to be a good choice for value of zq. The choice of z¢ is discussed in
detail in a latter section.

When zq is a primitive root of unity, the range of the path signature is GF(p) (for 0 < n <
p—1). Thus, with only one state/event values the state path signature covers the entire Galois

field.

In [18], it has been proved that the condition on the choice of ¢ is a general condition which
is equivalent to the condition used in the choice of a MISR circuit that has a good masking
probability 7. The condition for the choice of MISR circuits is that the compaction polynomial

of the circuit must be a primitive polynomial[8].

Computation of run-time signature

The signature can be generated at run-time in the following manner.

Let xg be a given value chosen from a Galois field, and S F1.55F253Fs... E,_15, be the full
path. sq,89,83,...8, are the values of the states and eq, e, €3,...€,_1 the values of events. At
run-time, the signature is computed after every event. Horner rules are used to compute the

signature [21].

Signature(i) := (Signature(i — 1) xo 4 8;) * 2o + €; (11)

Where Signature(0) = 0 and Signature(i) is the signature after the i*" event has occurred.

Wy
*

Fach computation of the signature requires at most two “+” and operations. This shows

that the signature is step-wise computable.

Advantages

3

1. Simplicity: It is step-wise computable and requires only “4” and operations at each

step.
2. State, event, and full-path signatures can be computed using the same technique.

3. All correct paths leading to the same state have the same static signature. This reduces

the number of comparisons to verify the correctness of the run-time path.

4. The state and event-assignment problem can be solved in an algebraic manner. This is

elegant and simpler compared to heuristic methods used for MISR signatures used in [8].

5. The proposed signature function provides a theoretical basis for calculating the masking

probability.

OPTIMIZING THE COMPARISON

In this section, we discuss some of the techniques used to simplify the task of fault detection.
Some of the issues discussed include parallel path signatures and the states where the static

signature is compared with the run-time signature.

"The MISR circuit used by Leveugle is a particular case of the polynomial signature function used in this
paper.

Signatures of parallel paths

When many paths lead to the same state, they are called parallel paths. In the case of parallel
paths, our aim is to reduce the number of possible signatures. Ideally, all parallel paths should

result in the same signature. This reduces the complexity of signature verification.

Figure 4 Parallel path.

For example, in Figure 4 in the ideal case, the signature generated at the end of paths

S1a59b53¢54a55 and 51b65¢¢57a55 are equal.

To solve this problem, we have to assign appropriate values to the events and states such
that the signature of all parallel paths are equal. We denote this problem as the event-state
assignment problem. When assigning values to the events and states, the following constraint
has to be additionally satisfied: Two different events or states have to be associated with two
distinct values; otherwise they are indistinguishable. The same signature is computed for both
correct and wrong event. This makes it impossible to detect an incorrect transition resulting

from a wrong event.

As the signature of a path is equal to the evaluation of its associated polynomial at a given
point, solving the event-state assignment problem is equivalent to solving a system of linear

equations.

In the case of full-path signature, the condition that two parallel paths must have the same

signature is equivalent to solving a linear equation. In Figure 4, the linear equation is as follows:
slxs + az’ + 5-21‘6 + bad + 531‘4 + cx’ + 541‘2 +ax+ s5 = 51x6 + bad + 561‘4 + cx’ + 571‘2 +ax + s5

This equation can be simplified as follows:
s1(2% — 2%) 4 592° + s32 + 5422 — sg2t — s72? + ax” =0 (12)
If the signature is computed over the state path, then the equation is as follows:

51(1‘4 — x3) + 892> + 8322 + 542 — sg2° — s72 =0 (13)

The advantage lies in the fact that only one signature is required for comparison with the run-
time signature. This method does not require any adjustment values like other signature-based
techniques [22]. Tt significantly reduces the complexity of the observing entity. It treats graphs
with loops, in the same manner as graphs without loops. Finally the state or event values can be
computed by solving a set of linear equations. Its disadvantage is the restriction on the topology

of the control flow graph.

We now present a theorem that gives an idea about the solution to the event-assignment
problem. The same result can be applied to the state-assignment and the event-state-assignment
problem. In [8], provides the conditions under which the state assignment problem is solvable.
We denote by E7(.9) the set of edges that lead to state S and S~ the set of states S; for which
there exists an event e; such that 6(9;,€;) = 5. Sp is a state for which the signature is given an

initial value (e.g., 0) and from which all other states are reachable.
Theorem 2 The event-assignment problem is solvable if | E| > |E~(S0)| + Y sz5,(1E7(5)] = 1)

The details of the proof of this theorem are provided in the appendix.
Figure 5 shows the fow graph corresponding to Algorithm 1. We now describe the algorithm

for generating the system of equations to solve the state-assignment problem. The values of the
states can be computed by solving the system of equations generated by this algorithm. The
system of equations for computing the values of the events can be generated in a similar manner.
The functions used in this algorithm have been defined in section on definitions and terminology.

S~ denotes the set of states s; for which there exists an event e; such that §(9;,€;) = 9.

We differentiate between the initial state Sy and the other states. For each state in 5 €
Q — {50}, all paths starting from Sy and leading to state S must have the same signature. In
order to minimize the number of equations, we optimize the number of chosen paths leading to
state 5" in the following manner. We first compute S, which is the set of predecessors of 5.
For every state .S; in 7, we choose one path C' such that the path starts at Sy and leads to 5

and the penultimate state in C' is ;.

The state Sy has a predefined signature equal to zero. Thus, for each state in Sy the algorithm

generates a linear equation such that all the paths leading to Sy have a null signature.

The proof of the algorithm can be done by induction on the number of states. This algo-
rithm can be adapted to solve the event assignment problem and the state-event assignment
problem [23].

Algorithm 1 state-assignment problem(inpui: A, output: System)

System—{}
For all S € Q — {So} such that |S7| > 1
Let S; € S7;Cy a state path such that: first(Co) = So;last(Co) = S; penultimate(Cy) = Sy
For all S; € S~ —{S1};
Let C; a state path such that first(C;) = So;last(C;) = S;penultimate(C;) = S;
cn—®(Co) = B(C;)
System«— System U {eqn}
If |Sg | > 0 then

Init: TreatedStates = {}
System = {}

SOQ-
TreatedStates
Sz

Let &= %....5S
TreatedStates FreatedStated {S}

0SOPreceding(S)-§} :
Let G=%...SS
System =

Systenfl{ ®(Co)=P(C))}

0SOPreceding(§-{So} :
Let G=%...SS
System = Systei{ ®(Cq)=0}

4

Output(System)

Figure 5 Flow chart for Algorithm 1

For all S; € 55 ;
Let C; a state path such that first(C;) = So;last(C;) = So; penultimate(C;) = S;
eqn—o(C;) =0
System«— System U {eqn}

end

This algorithm has a complexity of O(].S]?). The solution to the system of linear equations
generated by the above algorithm can be solved using the Gauss-elimination method in O(|S|?).
Theorem 2 discussed in the appendix gives the condition under which the state assignment
problem can be solved. This result also holds good for the event assignment and the state-event

assignment problems.

Checking States

The set of checking states Q. C @), is the set of states in which the static signature is compared
with the run-time signature. When the program reaches a state S. € ()., the static signature

associated with the state is compared with the run-time signature.

The size of the set). determines the size of the static signature table. When (). is the same
as), the comparison is made in every state. By choosing (J. to be smaller than @), it is possible
to reduce the number of comparisons. The advantage of a small-sized Q¢ is that the observer
is simpler. However, this reduction is not for free. It increases the error latency®. A fault is not
detected until the program reaches a state 5. € (.. A reduced (). does not affect the probability
of detecting a fault because the probability of detecting a fault is independent of the length of
the path (refer to theorem 1). There is a trade off between error latency and the size of the

static signature table.

This results in a dual problem. One may fix the size of (). and determine the elements of Q.
such that the error latency is minimized; or, for a given error latency, determine the elements

of (). such the size of (). is minimized.

FAULT-DETECTION SCHEMES

In this section, we present the strategies for detecting run-time faults. A Static signature is
computed for every state. This signature corresponds to the correct execution of the communi-
cation protocol. During the execution of the communication protocol, the run-time signature is
computed for the messages exchanged between the communication entities. A fault is detected

when the run-time signature does not match the static signature.

An observer is used to detect run-time faults. Figure 2 shows the components of the observer.
The observer consists of a generator and a checker. During the execution of the program, the
run-time signature is computed by the generator. The technique described in the previous
section is used to generate the run-time signature. The checker compares the run-time signature
with the static signature stored in a table called the static-signature table. The comparison is

performed when the program reaches the checking state.

Static-signature table

This table contains the signature corresponding to the correct execution of the communication
protocol. The content of this table depends on the availability of the current state information

for computing the run-time signature.

If the current state information is available to the generator, then this table has two columns:
checking state and signature. This table contains the static signature for every checking state.
If the current state information is not available, then this table has two columns represented by
previous signature and current signatures. The signature of the previous comparison is used to

find the static signature for the current comparison. After the comparison, the current signature

8In our case, the error latency is the number of events after which the fault is detected.

1 £

becomes the previous signature for the next comparison. In this case, the checker needs to know

when the program reaches the checking state.

It is possible to reduce the number of comparisons by decreasing the size of the set of checking
states @).. When the size of (). is less than the size of (), the number of comparisons is reduced.
This also reduces the number of rows in the static signature table. The advantage of this

technique is the reduction of the size of the table. However, this increases the error latency.

In the following sections, we present methods for detecting faults. We discuss the structure of

the static-signature table, requirements, advantages, and disadvantages of each scheme.

Fault detection without state information

In this case, the state information is not available to the generator. The event information is
used to compute the run-time signature. The checker is notified when the program reaches the
checking state. When the notification is received, the checker compares the run-time signature

with the static signature for correctness.

Since the external checker does not have access to the state information, the table contains
the previous signature and current signatures. The previous signature corresponds to the run-
time signature when the last comparison was made. The comparison is made when the checker
receives the notification from the program. After the comparison is made, the current signature

becomes the previous signature for the next comparison.

The program must be modified to notify the checker when the program reaches the checking
state. A single bit is sufficient for this notification. The generator and checker are independent
of the program. The signature function and the static-signature table are the inputs to the

observer.

Fault detection with state information

In this case, the generator has access to the current state information, the full-path signature is
computed based on the state and event information. This method requires the program under
observation to transmit the state information. It is necessary to extend the communication

protocol to support this requirement.

The static-signature table has two columns: current state and signature. The static signature
gives the signature for the current state and it is compared with the run-time signature. The

size of the static-signature table can be reduced by reducing the size of the checking state.

With this approach the communication protocol must be extended to transmit the current
state information. Every message exchanged between the entities must contain the current state
of the program. The signature function, the static-signature table and the checking states are

the inputs to the observer.

Type of faults detected

This technique detects faults when the run-time signature differs from the static signature. It

can detect the following types of faults:

1=~

¢ Illegal state/event path: When the FSM mistakenly changes the state and traverses an
illegal path, this results in an incorrect signature. The probability of detecting the illegal
1

path is 1 — -

¢ Out-of-order events: When the events occur out-of-order, the run-time signature does
not match with the static signature. These type of faults are detected using the full-path

or the event signature.

Discussion

In this section, we compare the two techniques based on their advantages and disadvantages. For
both the techniques, the size and complexity of the observer are smaller compared to those of
the FSM-based methods. This argument is supported by the dimensions of the static signature
table. The FSM table corresponding to the program has two dimensions (state and event).
The current state and event are used to compute the next state. The static-signature table
has only one dimension (state). For the given state (previous signature), it gives the correct
signature. The observer uses only the current state or the previous signature to determine the
static signature. This reduces the complexity of the observer by one dimension. Moreover, the
number of entries in the static-signature table can be minimized by reducing the number of

checking states.

The fault-detection mechanism is independent of the program under observation. The static-
signature table and the signature function depend on the communication protocol. They are
the inputs to the observer. Therefore, the observer can be used to detect run-time faults in
any communication protocol. Moreover, the observer is not affected by the perturbations of the

program’s environment.

The overhead of transmitting the state information to the fault-detection module is greater
than the overhead of transmitting the signal to perform the comparison. A fault due to an

incorrect path may not be detected in the absence of the state information.

Once a fault has been detected, it has to be isolated and procedures have to be initiated to
recover from the fault. After the recovery, the protocol may reset to initial state (like in TP4) or
may continue from the last correct state depending on the nature of the fault. In the later case,
it is necessary to analyze this scenario for the signature-based method. Can the signature-based
method be used to roll back to the last correct state 7 The answer to this question is yes (in the
case when the observer has the state information) because it should be noted that the signature
is calculated using the signature of the current state as the starting value. Therefore it is easy
to roll back to the last correct state of the protocol and use the signature of that state as the

starting value.

EXAMPLE

In this section, we take the FSM shown in Figure 6 and analyze the signature generation method.

We solve the state-event assignment problem and show the computation of full-path signature.

. Qi ; S: state value
: f) .
Sg ?r:%n;gjt;e before entering Sg: Signature before entering
the state

FSM Event assignment problem State-Event assignment problem

Figure 6 Event/State assignment example.

Event Assignment

Using algorithm 1, the event assignment problem can be transformed into the following equa-

tions.

{cp(a) = &(be) (14)

b(aa) = P(bd)
Solving the event assignment problem is equivalent to solving the following system of equations:
= b
a T+ ¢ (15)
ax+a = bx+d
The values of ¢ and d can be deduced from the values of a and b.
= a-1b
c a— bx (16)
d = a(z+1)— bz
If we take x =2, a=1,b= 2, then ¢ = -3 and d = —1.

State-Event assignment problem

Using algorithm 1, the state-event assignment problem can be transformed into the following

system of equations:

{ Sz +a S1a° + ba? + Syx + e (17)

S12d +ax?+ Sy x+a = S12°+bz? + Sz +d

{c = Si(z —2%) — S42 + a — ba? (18)

d = Sz — Siz —I—LZ(Z‘Q + 1) — ba?

10

Forz=2,5=1,5=2,9=3,5=4,a=1and b =2, the value of (¢,d) is (=21, 7).

Fault detection

Table 1 Examplel: Static Signature Table

State | Signature
51 0
S 3
53 17
S4 4

We now describe the run-time signature generation technique for the FSM shown in Figure 6.

Table 1 shows the static signature table for this example.

Consider the following path: S7b654¢55a55. Table 2 shows the signature computed after each
event. Both the event and state values are used in computing the signature. The signature
computed after each event corresponds to the static signature of the state after the event (see

Table 1). This means that the chosen path is correct.

Now let us consider an illegal path: 510654¢S55. Table 3 shows the computation of the signature.
After event ¢, the run-time signature is 3, which does not match with the static signature of S5

(i.e., 17). So a fault is detected after event c.

Table 2 Example 1: Full-path Signature

Path Computation Signature
510654 (0*2—|—1)*2—|—2 4
510654¢55 ((4*2+4)*2—|— (—21)) 3
510654¢55a.55 ((3 * 2 4+ 2) * 2+ 1) 17

Table 3 Example 1: Incorrect Path

Path Computation Signature
51054 (0*2—|—1)*2—|—2 4
510654¢55 ((4*2+4)*2—|— (—21)) 3 7£ 17

As mentioned in the section on the choice of the signature function, our method for detecting
faults is probabilistic and Theorem 1 gives the upper bound on the probability of faults that
can go undetected. An example of an undetected fault is as follows. Assume that there exists
an event e that is assigned the value 3. If the event e is received when the current state is 5y
and the FSM goes from state S to state S5. This transition (57, €,.53) is incorrect but cannot
be detected by comparing the static signature 3 of state S5 to the run-time event signature path

51653IO><'2—|—3.

CASE STUDY: TP4

In this section, we explain the technique for generating the signature and detecting faults for
the TP4 protocol. The FSM model of TP4 is shown in Figure 7. The visible events are CR, C'C,
AK, DR, DC, DT, CR’, CC’, and AK’. The input events and output events are distinguished

'2YaY

with a ’. For sake of clarity, the tuple (CR, CC, AK, DR, DC, DT, CR’, CC", AK’) is denoted

by (a,b,c,d,e,fa’,b’,c’). Using algorithm 1, the event-assignment problem is transformed into

the following the system of equations:

d(ab'c) = ®(a'bc’)
S(ab'cc) = P(ablc)
S(ab'cc) = d(abef)

b(ab'ede) = 0

(19)

The third equation in system (19) gives the condition that events ¢ and f must have the same

value.

The other equations of system (19) can be transformed into a system of linear equations:
Alabedea’t' '] = [00000000]°, where matrix A is defined as follows:

22 —x 1 0 0 —x22 x —1
A= z? 0 22 2z 1 0 z3 0
22—z 0 1 00 0 z-—1 1

(20)

Solving this system gives a solution: [c’ec]’ = Blabda't']', where B is given by the following

equation:

x —
B = —23 0
r—22 0

If we assign the value 2 to 2¢ and (a, b, d,a’,b")

equal to (=13, =34, —7). The solution is as follows: (a,b,c,d,e,a’,b', ') =(1,2,-7,3,—-34,4,5,—13).

0 —22 1
-z 0 —z?
0 0 1—=x

(21)

=(1,2,3,4,5), then the tuple (¢, e, ¢) has to be

Figure 8(a) shows the static signature for every state. Table 4 gives the static-signature table

corresponding to this FSM. This signature is computed using the event information.

Table 4 Static-Signature Table for 5(a).

Previous Signature | Current Signature
0 1,1
1 7
4 10
7 7,17
10 7
17 0

Figure 9 shows the reduced FSM with the checking states, Q. = (Closed, Open). Table 5 gives
the static signature corresponding to this FSM.

Table 5 Reduced FSM Static-Signature Table

Previous Signature

Current Signature

0

7

7

0,7

The event-state assignment can be solved in a similar manner. A possible solution is shown in
Figure 8(b). This solution is (Closed, WFCC, WFCC”, Open, WFTRESP, AKWAIT, Closing)
=(0,0, 0,0, 0, 2, 0)and (CR, CC, AK, DR, DC, DT, CR’, CC", AK’) = (1, 2, -30, 3, -172,
-30, 4, 5, -62).

More details on solving the event-state-assignment problem are discussed in [23, 24].

CcC
cc

WFCC'

DR
AK'
@)

Figure 7 TP4: FSM representation

Receiving

Sending

Fault detection

Table 6 Example 1: Static-Signature Table

State Signature
Closed 0
WFCC 4
WFrcc! 18
Open 10
WFTRESP 1
AKWAIT
Closing 43

We now describe the technique for generating the run-time signature for the TP4 protocol whose
FSM is shown in Figure 7. This FSM corresponds to the correct execution of TP4. Table 6

shows the table of static signatures for this example.

Consider the following correct path: (Closed CR WFTRESP CC” AKWAIT AK Open). This
corresponds to the connection-establishment phase of TP4. Table 7 shows the signature com-
puted after each event. Both the event and state values are used in computing the signature.
The value of zq is 2. The technique described in section on signature generation is used to com-

pute the signature. The signature computed after each event corresponds to the static signature

cc2) CC(Z)l

WFCC! WFCC'(0)
10 18
AK'(-13) AK'(-62)
. . S: State Value
Sg: Signature before Sg: Signature before entering
entering state state
(a) (b)
Figure 8(a) TP4 Protocol: event assignment solution (b) TP4: Protocol

state and event-assignment

Closed
0

Sg: Signature before
entering state
N:

Notification

Figure 9 TP4 Protocol: Reduced FSM with checking states

in Table 6. This means that the chosen path is correct.

Now, let us consider an incorrect path: (Closed CR WFTRESP DR Closing DC Closed). Ta-
ble 8 shows the computation of the signature. After event DR, the run-time signature computes

to 7, which does not match with the static signature of Closing (i.e., 43). Thus, a fault is
detected after event DR.

Table 7 Example 2: Correct Path

Path Computation Signature
Closed CR 0+x24+1 1
Closed CR WFTRESP CC” (1%240)x24+5 9
Closed CR WFTRESP CC" AKWAIT AK | (9%2+4+2)x 2+ (—30) 10

Table 8 Example 3: Incorrect Path

Path Computation | Signature
Closed CR 0x24+1 1
Closed CR WFTRESP DR | (1x240)%243 7+ 43

AN EXTENDED TRANSPORT COMMUNICATION PRO-
TOCOL

TP4 transport protocol is designed to allow the transmission of additional parameters without
deviating from the ISO standard [25]. In this section, we take advantage of this feature and we
describe the extensions to TP4 required to support the computation and comparison of run-time
signatures. The extensions do not modify the communication protocol but require the addition
of some parameters to transmit the current state information. The original communication
protocol can still be used to communicate with entities that use the extended communication

protocol. Two extensions are proposed in this section.

¢ Extension 1: The current state of the program is included in every message exchanged
between the communication entities. Every state of the program is assigned an integer

value called the state value. The state value is used to compute the run-time signature.

¢ Extension 2: When the program reaches the checking state, a notification is included in
the message. A single bit is sufficient to include this information. When this bit is set, the

checker compares the run-time signature with the static signature for correctness.

Transport Class 4 (TP4) [25, 21] is used as an example to illustrate the two extensions.
The proposed extensions to TP4 do not affect its functionality. The eXtended TP4 (eXTP4)
can communicate with an existing TP4 implementation without any modifications to the TP4

implementation.

A Transport Protocol Data Unit (TPDU) has a fixed header, a variable header, and data (see
Figure 10). The fixed header contains the mandatory parameters. The variable header contains
the optional parameters. Each optional parameter in the header is encoded in the following

manner:
parameter = (code, length, value)

The code represents the type of the parameter and the length indicates the number of bytes

used to represent the value.

The optional parameters in the TP4 header facilitates the inclusion of the current state value
in every message. The state information is treated as an optional parameter. It is ignored by

TP4 and can be used by eXTP4 to compute the run-time signature.

PARAMETER

CODE LENGTH VALUE

FIXED HEADER VARIABLE HEADER DATA

Figure 11: Transport Protocol Data Unit

For TP4, the value of |Q| is nine. This requires one byte to represent the state information®.

Three additional bytes are required to include the current state information in every message.

Extension 2 requires only a single bit to be included in the message when the program reaches
the checking state. Since the minimum length of the value of a parameter is one byte, three

additional bytes are required to include this information.

The code for the new parameters (current state and checking state) must be chosen such that

there is no conflict with the code of existing TPDU parameters.

Overhead due to extensions

Table 9 shows the length of headers of different Transport Protocol Data Units. The overhead
of both the extensions is three bytes and the overhead percentage is calculated as a percentage
of the header length. It does not take into account the user data that is of variable length and
is also a part of the TPDU. In many cases, the size of the data field is large compared to the
size of the header. In this case, the overhead is negligible when computed for the overall frame
length. The fifth and the sixth entries in Table 9 indicate the overhead for DT TPDU of size
512 and 1024 bytes respectively. It can be seen that the overhead is negligible for TPDU of size
512 and 1024 bytes.

Discussion

The number of bits required to include the state information is logs|@|, where |@Q]| represents
the number of states of the communication protocol. Only one bit has to be included in the
message when the program reaches the checking state. In general, the communication overhead
for Extension 1 largely exceeds that for Extension 2. The overhead of Extension 2 is independent
of |@]. On the contrary, the overhead of Extension 1 depends on |@Q|. However, this overhead
permits the detection of a broader class of protocol faults. In the case of TP4, both extensions

require the same number of bytes. FExtension 1 includes the current state information in every

9Four bits are sufficient to represent 9 states. Since the minimum length of the value is one byte, we use only
the first four bits of value to include the current state information.

PDU TYPE Hdr length | Overhead(%)
CR 35 8.5
CC 35 8.5
DT (Normal) 8 37.5
DT (Extended) 11 27.3
DT (512 bytes) 9 0.6
DT (1024 bytes) 9 0.3
ED (Normal) 8 37.5
ED (Extended) 11 27.3
AK (Normal) 12 25.0
AK (Extended) 17 17.6
AKf (Normal) 23 13.0
AKf (Extended) 27 11.1
EA (Normal) 8 37.5
EA (Extended) 11 27.3
DR 10 30.0
DC 9 33.3

Table 9: Overhead for transmitting the current state and checking state information

message. Extension 2 does not include the checking state information in every message. Thus,

Extension 2 has less overhead compared to Extension 1.

It is possible to reduce the overhead of each extension by modifying the protocol. The in-
formation about the current state can be encoded in logs|@| bytes. The information for the
checking state can be included in a message using a single bit. This results in a modified pro-
tocol which requires new encoders and decoders to exchange the messages. In this case, the

modified protocol cannot inter-operate with the original protocol.

CONCLUSION AND FUTURE WORK

In this paper, we have combined two methods: signature-based and observer-based methods,
for detecting run-time faults in communication protocols. OQur observer is simple compared to
existing FSM-based methods.

We have proposed a new method for generating signatures based on polynomials. This method
is simple, step-wise computable, and requires at most two additions and one multiplication for
each computation of the run-time signature. We have provided an algorithm that assigns values
to the states and events such that the number of comparisons are reduced. This method generates
unique signatures that can detect illegal transitions and out-of-order events. Hence, this method

is more reliable than other existing methods, which cannot detect out-of-order events.

We have proposed extensions to communication protocols to facilitate the application of this
method to detect run-time faults. However, this extension results in some overhead. eXTP/
is an extension to a transport protocol TP4 (eXTP/) without modifying the original protocol.
Our future work will concentrate on applying this new method to communication protocols that
are modeled using extended FSMs [11, 24].

e YAS

APPENDIX

Probability of Detecting a Fault

Theorem 1 Prob(®(C1)=0(Cy) | C1 #C3) = ﬁ where | F| is the size of the working algebraic
field.

Proof: The probability that two different paths have the same signature is equal to the
probability that two different polynomials have the same value at a given point zg. This is equal
to the probability that a polynomial evaluates to a value sgn at xg. For any given working field
F, the size of the set of polynomials of degree n is given by |F|"T!. By symmetry, the size of
the set of polynomials that evaluates to sgn at point zq is |F|". Let Pgy be the polynomial
corresponding to path C5. Then the probability that the polynomial Pgoo evaluates to sgn is
FI || = 1]). :

Event Assignment Problem

Theorem 2 The event-assignment problem is solvable if | E| > |E~(S0)| + Y sz, (1E7(5)] = 1)

Sketch of Proof: The event-assignment problem is equivalent to solving a system of linear
equations. We have |E| unknowns and [E™(S0)| + > szs, (| E7(5)| — 1) equations, since for each
state S different from S we have |E~(9)| different paths. These paths have the same signature,
which is equivalent to |E~(9)| — 1 equations. For Sy, since the signature of all the paths that
leads to it is predefined, we have | E~(.S0)| equations. Since this system of linear equations has a
second member equal to 0, and the number of equations is greater than the number of unknowns,

we can find a large number of solutions. O

Acknowledgments

The authors are grateful to Dr. Berthe Choueiry for reading the paper and providing valuable
comments. This paper was partially supported by the Swiss PTT Project F&FE N°309.

REFERENCES

1 A. Bouloutas, G. W. Hart, and M. Schwartz. Simple Finite-State Fault Detectors for Com-
munication Networks. IFEE Transactions on Communications, 40(3):477-479, March 1992.

2 C. Wang and M. Schwartz. Fault Detection with Multiple Observers. IEEFE Transactions on
Networking, 1(1):48-55, 1993.

3 M. Riese. Diagnosis of Communications Systems: Dealing with incompletness and uncer-
tainty. In LJCAI-93 International Joint Conference on Al pages 1480—-1485, August 1993.

4 M. Diaz, G. Juanole, and J. Courtiat. Observer- A concept for Formal On-Line Validation
of Distributed Systems. IFEE Transactions on Software Eng., 20(12):900-912, 1994.

10

11

12

13

14

15

16

17

18

S. S. Yau and Fu-Chung Chen. An Approach to Concurrent Control Flow Checking. IEFFE
Transactions on Software Engg., 6(2):126-137, March 1980.

N. R. Saxena and E. J. McCluskey. Control-Flow Checking Using Watchdog Assists and
Fxtended-Precision Checksums. In The Nineteenth International Symposium on Fault-
Tolerant Computing, volume 19, pages 428-435. FTCS, IEEE Computer Society Press, June
1989.

S. J. Upadhyaya and B. Ramamurthy. Concurrent Process Monitoring with No Reference
Signatures. IEEFE Transactions on Computers, 43(4):475-480, April 1994.

R. Leveugle. Analyse de Signature et Test en Ligne Integré sur Silicium. PhD thesis, Institut
National Polytechnique de Grenoble, 1990.

K. N. Oikonomou. Abstractions of Finite State Machines Optimal with respect to Single
Undetectable Qutput Faults. IEEFE Transactions on Computers, C-36(2):185-200, February
1988.

K. N. Oikonomou. Abstractions of Finite State Machines and Immediately-Detectable Out-
put Faults. IFEE Transactions on Computers, 41(3):325-338, March 1992.

M. Riese. Model-Based Diagnosis of Communication Protocols. PhD thesis, Swiss federal
Institute of Technology at Lausanne, Switzerland, 1993.

G. Noubir and K. Vijayananda. Robust Communication Protocols for run-time Fault Detec-
tion. In ICCC"95, Twelfth International Conference on Computer Communication, August
20-25, Seoul, South Korea. ICCC, 1995.

G. Noubir, K. Vijayananda, and P. Raja. Signature-based Fault Detection for Communi-
cation Protocols. In ISTT’95 International Symposium on Information Theory, September

17-22, 1995, Whistler, B.C., Canada . IEEE.

G. Noubir, K. Vijayananda, and H. J. Nussbaumer. A Robust Transport Protocol for run-
time Fault Detection. In ICNP’95 International Conference on Network Protocols, November
7-10, 1995, Tokyo, Japan. IEEE.

K. Sabnani and A. Netravali. A High Speed Transport Protocol for Datagram /Virtual Circuit
Networks. In SIGCOMM’89,Symposium on Communications Architecture and Protocols,
1989.

A. N. Netravali, W. D. Roome, and K. Sabnani. Implementation of a High Speed Transport
Protocol. IEEE Transactions on Communications, 38(11):2010-2023, 1990.

B. T. Doshi, P. K. Johri, A. N. Netravali, and K. Sabnani. Flow Control Performance of a
High Speed Protocol. IEFFE Transactions on Communications, 41(5):707-719, 1993.

G. Noubir and B. Y. Choueiry. Algebraic Techniques for the Optimization of Control Flow
Checking. In FTCS26, The 26th Annual International Symposium on Fault-tolerant Com-
puting, Sendai, Japan, June 25-27, 1996. IEEE, 1995.

19

20

21

22

23

24

25

R. E. Blahut. Fast Algorithms for Digital Signal Processing. Addison Wesely, Reading, MA,
1990.

H. J. Nussbaumer. Fast Fourier Transform and Convolution Algorithms. Springer Series in

Information Science. Springer-Verlag, 1982.

H. J. Nussbaumer. Computer Communication Systems, volume 1 & 2. Wiley Chichester,
1989.

K. D. Wilken and J. P. Shen. Embedded Signature Monitoring: Analysis and Technique. In
International Test Conference (ITC), pages 324-333, 1987.

G. Noubir. Nouvelles Méthodes pour la Tolérance aux Pannes Basées sur lalgébre des
Polynomes. PhD thesis, Swiss Federal Institute of Technology at Lausanne, Switzerland,
1996.

M. Riese. A Framework for Diagnosis of Communication Protocols. PhD thesis, Swiss federal

Institute of Technology at Lausanne, Switzerland, 1993.

International Telecommunication Union. Transport Protocol Specification for Open System
Interconnection for CCITT Applications. Ref. Number CCITT X.224, ISO 8073, Geneva,
Switzerland, 1988.

'2YaY

