A Robust Transport Protocol for Run-Time Fault Detection

G. Noubir K. Vijayananda, H. J. Nussbaumer
Swiss Federal Institute of Technology, Lausanne,
Computer Engineering Department, EPFL-DI-LIT,
CH-1015, Lausanne, Switzerland
noubir, vijay@di.epfl.ch

Abstract

Run-time fault detection in communication pro-
tocols is essential to detect faults that cannot be
detected during the testing phase. We propose a
signature-based method to detect run-time faults. A
polynomial using the state and event information as
coefficients is used to transform a sequence of states
and events into a number (signature). The static
signature corresponding to the correct execution of
the protocol is compared with the run-time signa-
ture. This technique is more reliable, faster, and effi-
cient compared to existing techniques. The states and
events are assigned values such that multiple paths
leading to the same state result in a unique signature.
This reduces the number of comparisons required to
verify the correct execution of the protocol. In this pa-
per, we present eXTP/, an extended transport layer
protocol that facilitates run-time fault detection.

1 Introduction

In a distributed system environment, communica-
tion protocols play a major role in providing connec-
tivity for meaningful exchange of information. They
are designed to provide reliable services to the users.
Protocol verification and validation techniques are
used to ensure the correctness of the specification of
communication protocols. However, there is no strat-
egy to ensure that the execution of the protocols is
error-free. Dormant errors due to coding, memory
problems, and external disturbances are not consid-
ered in above mentioned techniques. Unless some kind
of run-time checking is done, this type of faults may
remain undetected until a partial or complete break-
down of the communication system. In order to ensure
the continuous availability and quality of services of-
fered by these systems, it is necessary to detect and
diagnose these run-time faults.

Several fault-detection techniques for communica-
tion protocols can be found in the literature. Finite
State Machine (FSM) methods have been used to de-
tect run-time faults in communication protocols. At
run-time, an external observer is used to monitor the
exchanged messages. These messages are compared
with the FSM model for their correctness. In [2],
Bouloutas et al. use the FSM approach to detect faults
in machines whose behavior is described using FSMs.
Observers that are modeled using FSMs are used to
detect out-of-sequence messages and incorrect state

transitions. In [11], Wang et al. decompose the FSM
representing the communication protocol into several
FSMs. Each FSM is represented by an observer. All
the observers operate in parallel to detect faults in the
communication protocol. In [3], Diaz et al. use an ob-
server to monitor and detect faults in an implemented
system. The observer is modeled using the specifica-
tions of the implemented system. In [9], model-based
reasoning is used to detect and diagnose deviations
from the specified behavior of the communication pro-
tocols. In most of these methods, the observer is com-
plex as the system under observation.

We use a new signature-based method to detect
run-time faults in communication protocols [7]. A
polynomial with the state and event information as
coefficients, is used to transform a sequence of states
and events into a number (signature). An event cor-
responds to a message exchanged between the enti-
ties. The static signature which corresponds to the
correct sequence of messages, is computed and stored
in a table. During the execution of the communication
protocol, an observer computes the run-time signature
and compares it with the static signature. A fault is
detected when the run-time signature differs from the
static signature. This method is simpler compared to
the FSM method and can detect a broader class of
faults. After a fault has been detected, the localiza-
tion of the fault maybe done in an off-line manner
using other techniques like model-based diagnosis ?7.

In the past, communication protocols have been
modified for the purpose of improving their perfor-
mance. In [10, 6, 4], a high speed transport pro-
tocol has been proposed where the current state of
the sender machine is transmitted at regular inter-
vals in dedicated messages. The extension proposed
by the authors is restricted to the data transmission
phase and resulted in a significant improvement in the
throughput over conventional protocols. In this pa-
per, we propose extensions to communication proto-
cols which facilitate the detection of run-time faults
using our signature-based method. Extensions are
proposed to include the state information in the mes-
sages exchanged between communication entities.

This paper is organized as follows. In section 2,
we present the definitions and terminologies used in
this paper. In section 3, we discuss the fault detection
technique. Section 4, presents our signature genera-
tion technique. In section 5, we describe the use of

a new signature-based method for run-time fault de-
tection in communication protocols. In section 6, the
fault-detection mechanism is illustrated using an ex-
ample from TP4 (TP4 is the Transport Class4 proto-
col). The extensions to the communication protocols
that facilitate this new fault-detection scheme are in-
troduced in section 7. Transport Class 4 protocol is
used to describe some implementation details of the
proposed extensions.

2 Definitions and Terminologies

We recall the definition of finite state machines and
give our definition of paths, correct paths, legal state
paths, and legal event paths.

2.1 Definitions

Definition 1: The communication protocol is
modeled as an FSM. An FSM is a 3-tuple A =
(Q,%,6), where @ denotes the set of all possible
states {S1,...,Sn}. X is the set of all possible events
{F1,..., F,}. In this paper, the term event and mes-
sage are used to denote the messages exchanged be-
tween entities. § denotes the state transition function
(6:Q x X — Q). Each state S; (event E;) is assigned
a val)ue s; (e;) from an algebraic finite field F' (Galois
field).

Definition 2 A path C is defined as an
alternating sequence of states and events (e.g.,
S1F1Ss5Ey -+« Ep_1Sy).

The state path is the sub-sequence of states derived
from the path by deleting all the events and retaining
the states in their original order (e.g., S155S53...S,).

The event path is the sub-sequence derived from the
path by deleting all the states and retaining all the
events in their original order (e.g., E1E4--- Ep_1).

Definition 3: Last (C) of a path C is the last state
in C, (e.g., last(S25157S3) = S3). First(C) of a
path C is the first state in C (e.g., first(S2515753) =
S3). Penultimate(C) is the last but one state in a
path (e.g., Penultimate(S2515753) = S7).

Definition 4: A path C' is correct if and only if for
every sub-sequence S;E; Sy, of C; 6(S;, E;) = Sk.

A state path C' : S15555--- S, is a legal state path
if and only if for every sub-sequence S;S; of C, there
exists an event E € ¥ such that §(S;, E) = S;. Oth-
erwise, the state path is an illegal state path.

An event path C : E1FsFEy--- E, is a legal event
path if and only if for every sub-sequence E;E; of C,

there exists three states (Sk,S;, Sm) € @ such that
6(Sk, E;) = S; and (S, Ej) = Sm. Otherwise, the
event path is an illegal event path.

3 Fault Detection Technique

At run time, messages are exchanged between com-
munication entities. Let Eq, Fs,..E}, be a sequence of
messages exchanged, where F1, Fo,..Ex € X. Let Sp
be the initial state of the communication protocol, and
S1,S3,..5;, be the subsequent states of the communi-
cation protocol such that 6(S;_1, F;) = S;,i = 1..k.
The path represented by SoF151FE2Ss.. EySy is trans-
formed into a number using a signature function ®.
This function is a polynomial with the state and event
values as coefficients.

® : II — F represents the signature function that
transforms a full path into a signature. F' represents
signature space. II represents the set of all possible
paths. The correct behavior of the communication
protocol is represented by the set of all correct paths:
IIo. The signature corresponding to a correct path
is known as the static signature. This signature is
associated with the last state in the correct path. Thus
every state has a static signature.

The correct behavior of the communication pro-
tocol is represented by the set of all correct paths:
IIc. The signature corresponding to a correct path is
known as the static signature. This signature is asso-
ciated with the last state in the correct path. Thus
every state has a static signature. The run-time path
which represents the sequence of messages exchanged
between the entities is transformed into a signature
using ®. This represents the run-time signature. Let
S; be the last state in the run-time path. The run-
time signature is compared with the static signature
of S;. A fault is detected when the run-time signature
does not match the static signature of S;.

4 Signature Generation

4.1 Requirements

Given a communication protocol modeled by a
FSM, we would like to detect illegal paths. The sig-
nature function ® which is used in the transformation
must have the following property:

dp < 1; Probability[®(Ch) = &(C)|C1 £ Ca] < p
(1

p is called the masking probability and a good sig-
nature function has a low masking probability.

Formally, the problem is stated as follows:

Given a FSM A = (Q,%,6) and a state Sy with
predefined signature equal to zero (Without loss of
generality, we can assume the signature of Sy to be
equal to zero) such that all the other states are reach-
able from Sy, we require a function that maps every
path beginning at state Sy onto a unique value from
an algebraic field F.

In the following section, we introduce a signature-
generation technique that satisfies property (1). Fur-
thermore, to reduce the number of comparisons, the
signature of all correct paths leading to a state .S,
must be the same. This requires only one comparison
when state .S,, is reached.

4.2 Path Signature

We present three kinds of signatures: the full-path,
the state, and the event signature. The main idea is
to associate a path with a univariate polynomial. The
signature of a path C'is the evaluation of its associated
polynomial at a given point .
4.3 Choice of the Signature Function

A polynomial using the state and event information
is used as signature function. We choose a polynomial
signature function for the following reasons:

Polynomials are a well studied mathematical func-
tion and their properties are well understood. It is
easy to compute the masking probability p defined in
equation 1. The state and event-assignment problem

can be solved algebraically. The run-time signature
can be computed in a step-wise manner using Horner
rules.

4.3.1 Full-path signature

The computation of the full-path signature requires
the state and event information. Each state and event
is assigned a value that is used to compute the signa-
ture. The signature is evaluated using the path poly-
nomial at a given point zg. Using this signature one
can detect illegal and incorrect paths. The states and
the events must be visible to the signature generator.
It is well suited for developing and implementing self-
checking programs. The polynomial associated with a
path C' is defined as follows:

Po(z) = Y0 (2D 4 a2 =0-1) 5,

where:
s;: state value, e;: event value, n: length of the path.

The signature function ® is defined as ®(C) =
Pco(zp). The event (state) signature is computed using
only the event (state) information. The event signa-
ture cannot detect all illegal state paths, and the state
signature cannot detect all illegal event paths.

Po(z) = E?:_()l sz 4 s,

Po(z) = Y0, e
4.4 Probability of Detecting Illegal Paths
Theorem 1 Prob(®(C;)=%®(C2) | C1 #C>) = ﬁ
where |F| is the size of the working algebraic field.

Sketch of Proof: The probability that two dif-
ferent paths have the same signature is equal to the
probability that two different polynomials evaluate to
the same value at a given point zg. This is equal to
the probability that a polynomial evaluates to a value
sgn at xg. For any given working field F, the size of
the set of polynomials of degree n is given by |F|"*+1.
By symmetry, the size of the set of polynomials that
evaluates to sgn at point zg is |F|™. Let Pgo be the
polynomial corresponding to path C5. Then the prob-
ability that the polynomial Pg, evaluates to sgn is
|FI/| P+t = 1/]F]. 0

Corollary 1 The probability that an illegal path is
undetected is equal to ﬁ, where |F| is the size of the

working algebraic field.

Sketch of Proof: The probability that an illegal
path is undetected is equal to the probability that an
illegal path has the same predefined signature as the
legal path. From theorem 1, this probability is equal
to |—1%..| O

The probability of detecting an illegal path can be
increased by choosing a large Galois field. However, a
large Galois field increases the complexity of comput-
ing the signature and the size of the signature.

Figure 1: Parallel path.

4.5 Signatures of Parallel Paths

When many paths lead to the same state, they are
called parallel paths. In order to reduce the num-
ber of comparisons, all parallel paths should result in
the same signature. For example, in Figure 1 in the
ideal case, the signature generated at the end of paths
S51aS2b53¢S54aS5 and S1bS6cS7aSs are equal.

To solve this problem, we have to assign appro-
priate values to the events and states such that the
signature of all parallel paths are equal. We denote
this problem as the event-state assignment problem.
When assigning values to the events and states, two
different events or states have to be associated with
two distinct values; otherwise they are indistinguish-
able. The same signature is computed for both correct
and wrong event. This makes it impossible to detect
an incorrect transition as a result of a wrong event.

As the signature of a path is equal to the evaluation
of its associated polynomial at a given point, solving
the event-state assignment problem is equivalent to
solving a system of linear equations.

In the case of full-path signature, having the same
signature for two paths is equivalent to solving a linear
equation. In Figure 1, the linear equation is as follows:

s1284ax "+ 8028 +bx®+ 532t +exd+sax2+ax+s5 =
5128 + bx® + sgzt + cz® + 5722 + ax + s5

This equation can be simplified as follows:

51(28 —28)+ 5025+ 8304+ 5402 — szt —s7x?+ax” =

The advantage lies in the fact that only one sig-
nature is required for comparison with the run-time
signature. This significantly reduces the complexity
of the observer compared with the state adjustment
technique (It treats graphs with loops, in the same
manner as graphs without loops and finally the state
or event values can be computed by solving a linear
set of equations). Tts disadvantage is the restriction
on the topology of the control flow graph.

Theorem 2 gives an idea about the structure of a
graph for which the edge-assignment problem can be
solved. The state-assignment problem and the event-
state-assignment problems can be solved in a similar
manner. We denote by E~(S) the set of edges that
leads to state S and S~ the set of states .S; for which
there exists an event e; such that §(S;,e;) = S. Sp is
a state for which the signature is given an initial value
(e.g., 0) and from which all other states are reachable.

Theorem 2 The event-assignment problem is solv-
able if |E| > [E™(So)| + X g5, (1E7(S)| = 1)

Sketch of Proof: The event-assignment problem is
equivalent to solving a system of linear equations. We
have |E| unknowns and [E~(So)|+ 3 g5, (|E7(S)| -
1) equations. This is because for each state S differ-
ent from So we have |E~(S)| different paths. These
paths have the same signature, which is equivalent to
|[E~(S)| — 1 equations. For Sy, since the signature of
all the paths that leads to it is predefined, we have
|E~(Sp)| equations. Since this system of linear equa-
tions has a second member equal to 0, and the number
of equations is greater than the number of unknowns,
we can find a large number of solutions.

The only problem is that two different edges may
be assigned the same value, and thus they are indis-
tinguishable. O

We now describe the algorithm for generating the
system of equations that has to be satisfied to solve
the state-assignment problem. The values of the states
can be computed by solving the system of equations
generated by this algorithm. The system of equations
for computing the values of the events can be gener-
ated in a similar manner. The functions used in this
algorithm have been defined in section 2.1. S~ denotes
the set of states s; for which there exists an event e;
such that 6(S;,e;) = S.

Algorithm 1 state-assignment problem(input: A, out-
put: System)

System«+—{}
For all S € Q — {So} such that |S7| > 1
Let 51 € S ;Co a state path such that:
Jirst(Co) = So;last(Co) = S;penultimate(Co) =
S1
For all S; € S~ — {S1};
Let C; a state path such that first(C;) =
So;last(C;) = S; penultimate(C;) = S;
eqn—®(Co) = ®(C%)
System«—System U {eqn}
If | Sy | > 0 then
For all S; € S;;
Let C; a state path such that first(C;) =
So;last(C;) = So; penultimate(C;) = S;
eqn—®(C;) =0

System«—System U {eqn}
end

4.6 Computation of Run-time Signature

The signature can be generated at run-time in the
following manner.

Let zo be a given value chosen from a Ga-
lois ﬁeld, and S]E152E253E3 . En_ISn be the full
path. sq,s9,83,...5, are the values of the states and
e1,€,€e3,...e,_1 the values of events. At run-time,
the signature is computed after every event. Horner
rules are used in computing the signature [8].

Signature(i) 1= (Signature(i—1)*xo+ ;) *xo +€;

where Signature(0) = 0 and Signature(i) is the
signature after the i*" event has occurred.

Signature Static signature
Function Table
Current State
Generator Run-time Signature Checker Fault Detection

Event

OBSERVER

Figure 2: Observer Module

4.7 Advantages

1. Simple: It is step-wise computable and requires
at most two addition and multiplication operations at
each step.

2. State, event, and full-path signatures can be
computed using similar polynomials and the technique
described in section 4.6.

3. All correct paths leading to the same state have
the same static signature. This reduces the number of
comparisons to verify the correctness of the run-time
path.

4. The state and event-assignment problem can be
solved in an algebraic manner. This is elegant and
simple compared to heuristic methods used for MISR
(Multiple Input Shift Register) signatures used in [5].

5. The masking probability defined in section 4.1
can be easily computed.

5 Detection of Run-time Faults

An observer is used to detect run-time faults. Fig-
ure 2 shows the components of the observer. The ob-
server consists of a generator and a checker. During
the execution of the program, the run-time signature
is computed by the generator (In this paper, the word
program refers to the implementation of the commu-
nication protocol). The technique described in sec-
tion 4.6 is used to generate the run-time signature.
The checker compares the run-time signature with the
static signature stored in a table called static-signature
table. The comparison is performed when the program
reaches the checking state.

When the observer is internal (i.e, it is a part of
the program), we have a self-checking program. How-
ever, the observer and the program is subjected to
the same perturbations. In the case of an external
observer, the environment of the observer is different
from the program (The environment of a program in-
cludes the hardware and the software required to ex-
ecute the program). Hence, it is not affected by the
perturbations of the program’s environment. In this
paper, we address the issues related to the external
observer.

5.1 Static-signature Table

This table contains the signature corresponding to
the correct execution of the communication protocol.
The content of this table depends on the availability
of the current state information to the observer.

If the current state information is available to the
generator then this table has two columns: checking

state and signature. This table contains the static sig-
nature for every checking state. Otherwise, this ta-
ble has two columns represented by previous signature
and current signature. The signature from the pre-
vious comparison is used to find the static signature
for the current comparison. After the comparison, the
current signature becomes the previous signature for
the next comparison. In this case, the checker needs
to know when the program reaches a checking state.

It is possible to reduce the number of comparisons
by decreasing the size of the set of checking states Q..
When the size of Q. is less than the size of @, the
FSM corresponding to the checker is reduced in size
and is represented by (Q, %, 6.). This also reduces
the number of rows in the static signature table. The
advantage of this technique is the reduction in the
size of the table. However, this increases the error
latency. Error latency is defined as the time between
the occurrence of an error and its detection.

In the following sections, we present methods for
detection faults. We discuss the structure of the static-
signature table, requirements, advantages and disad-
vantages of each scheme.

5.2 Without State Information

In this case only the event information is available
to compute the run-time signature. The checker is
notified when the program reaches the checking state.
When the notification is received, the checker com-
pares the run-time signature with the static signature.

Since the external checker does not have access to
the state information, the table contains the previ-
ous and current signature. The previous signature
corresponds to the run-time signature when the last
comparison was made. The comparison is made when
the checker receives the notification from the program.
After the comparison is made, the current signature
becomes the previous signature for the next compari-
son.

The program must be modified to notify the checker
when the program reaches the checking state. A sin-
gle bit is sufficient for this notification. The generator
and checker are independent of the program. The sig-
nature function and the static-signature table are the
inputs to the observer.

5.3 With State Information

In this case, the full-path signature is computed
based on the state and event information. This
method requires the program under observation to
transmit the state information. It is necessary to ex-
tend the communication protocol to support this re-
quirement.

The static-signature table has two columns: cur-
rent state and signature. The static signature gives
the signature for the current state and is compared
with the run-time signature. The size of the static-
signature table can be reduced by reducing the size of
the set of checking states.

The communication protocol must be extended to
transmit the current state information. Every mes-
sage that is exchanged between the entities must con-
tain the current state of the program. The signature

function, the static-signature table and the checking
states are the inputs to the observer.

5.4 Discussion

In general, the size and complexity of the observer
are lower compared to those of the communication
protocol. This argument is supported by the dimen-
sions of the static signature table. The FSM table cor-
responding to the program has two dimensions (state
and event). The current state and event are used to
compute the next state. The static-signature table has
only one dimension (state). For the given state (pre-
vious signature), it gives the correct signature. The
observer uses only the current state or the previous
signature to determine the static signature. This re-
duces the complexity of the observer by one dimension.
Moreover, the number of entries in the static-signature
table can be minimized by reducing the number of
checking states.

The fault-detection mechanism is independent of
the program under observation. The static-signature
table and the signature function depend on the com-
munication protocol. They are the inputs to the ob-
server. Therefore, the observer can be used to detect
run-time faults in any communication protocol. More-
over, the observer is not affected by the perturbations
of the program’s environment. The overhead of trans-
mitting the state information to the fault-detection
module is higher than the overhead of transmitting
the signal to perform the comparison. However, the
probability of detecting a fault is higher when the state
information is used to compute the run-time signature
(refer to section 4.2).

5.5 Type of Detected Faults

1. Tllegal state/event path: When the FSM in-
correctly changes the state and traverses a different
path, it results in an incorrect signature. The proba-

1

bility of detecting the illegal path is 1 — T

2. Out-of-order events: When the events occur
out-of-order, the run-time signature does not match
with the static signature. These type of faults are
detected when the full-path or the event signature is
used for comparison.

6 Example Using TP4

The FSM model of TP4 is shown in Figure 3(a).
The visible events are CR, CC, AK, DR, DC, DT,
CR', CC’, and AK’. The input and output events
are distinguished with a ’. For the sake of clarity, the
tuple (CR, CC, AK, DR, DC, DT, CR’, CC’, AK’)
is denoted by (a,b,c,d,e,f,a’,b’,c’). Using algorithm 1,
the event-assignment problem is transformed into the
following system of equations:

D(ab'c) = ®(a’bd)

S(ab'cc) = P(ablc) 2)
b(ab'cc) = P(ablcf)

®(abede) = 0

The third equation in system (2) gives the condi-
tion that events ¢ and f must have the same value.
The other equations of system (2) can be transformed

into a system of linear equations: Alabcdea’t’c’]t =
[00000000]*, where matrix A is given below:

x? —z 1 0 0 —2z? T -1
A= x4 0 22 2 1 0 x3 0
22—z 0 1 0 O 0 r—1 1

Solving this system gives a solution: [c’ec]! =
Blabda’b']t, where B is given below:

z—z2 0 0 0 1—2z

If we assign the wvalue 2 to 1z
and (a,b,d,a’,b’)=(1,2,3,4,5), then the tuple (c’je,c)
has to be equal to (-13,-34,-7). The solution is as
follows: (a,b, c,d,e,a’b’,c’) = (1,2,-7,3,-34,4,5,-13).
Figure 3(b) shows the static signature for every state.
Table 1 gives the static-signature table corresponding
to this FSM. This signature is computed using the
event information.

Prev. Sg. | Current Sg.
0 4,1
1 7
4 10
7 7,17
10 7
17 0

Table 1: Static-Signature Table for 3(b).

Figure 4 shows the reduced FSM with the checking
states, Q. = (Closed, Open). Table 2 gives the static
signature corresponding to this FSM.

Prev. Sg. | Current Sg.
0 7
7 0,7

Table 2: Reduced Static-Signature Table

The event-state-assignment can be solved in a sim-
ilar manner. A possible solution is shown in Fig-
ure 3(c). This solution is (Closed, WFCC, WFCC",
Open, WFTRESP, AKWAIT, Closing) = (0, 0, 0, 0,
0, 2, 0) and (CR, CC, AK, DR, DC, DT, CR’, CC’,
AK’) = (1, 2, -530, 3, -172, -30, 4, 5, -62).

More details on solving the event-state-assignment
problem are discussed in [7].

6.1 Fault Detection

We now describe the technique for generating the
run-time signature for the TP4 protocol whose FSM
is shown in Figure 3(a). This FSM corresponds to the
correct execution of TP4. Table 3 shows the table of
static signatures for this example.

Consider the following correct path: (Closed CR
WFTRESP CC’ AKWAIT AK Open). This corre-
sponds to the connection-establishment phase of TP4.
Table 4 shows the signature computed after each

Closed
0

Sg: Signature before entering
state
N: Notification

Figure 4: TP4 Protocol: Reduced FSM

State Signature
Closed 0
WFCC 4
WFECC’ 18
Open 10
WFTRESP 1
AKW AIT
Closing 43

Table 3: Static-Signature Table

event. Both the event and state values are used in
computing the signature. The value of xg is 2. The
technique described in section 4.6 is used to compute
the signature. The signature computed after each
event corresponds to the static signature in Table 3.
This means that the chosen path is correct.

Now, let us consider an incorrect path: (Closed CR
WFTRESP DR Closing DC Closed). Table 5 shows
the computation of the signature. After event DR,
the run-time signature computes to 7, which does not
match with the static signature of Closing (i.e., 43).
Thus, a fault is detected after event DR.

Path Computation Sg.

Closed CR 0x2+1 1

Closed CR WFTRESP DR

(1+24+0)x2+3 | 7# 43

Table 5: Example 2: Incorrect Path

7 An Extended Transport Communi-

cation Protocol

In this section, we describe the extensions to the
communication protocol required to support the com-
putation and comparison of run-time signatures. The
extensions do not modify the communication proto-
col but require the addition of some parameters to
transmit the current state information. The original
communication protocol can still be used to commu-
nicate with entities that use the extended communi-
cation protocol. Two extensions are proposed in this
section.

Closed
CR.
@ >
CCl
Closing
WFCC'

AK'

Receiving Sendi
ending
Sg: Signature before
entering state

S: State Value
Sg: Signature before entering
state

(@) (b)

(©

Figure 3: TP4 Protocol: state and event-assignment

Path Computation Sg.
Closed CR 0241 1
Closed CR WFTRESP CC’ (1%x24+0)*x2+5 9
Closed CR WFTRESP CC’ AKWAIT AK | (9%2+2)%24(—=30) | 10

Table 4: Example 1: Correct Path

Extension 1: The current state of the program
is included in every message exchanged between the
communication entities. Every state of the program is
assigned an integer value called the state value. The
state value is used to compute the run-time signature.

Extension 2: When the program reaches the
checking state, a notification is included in the mes-
sage. A single bit is sufficient to include this infor-
mation. When this bit is set, the checker compares
the run-time signature with the static signature for
correctness.

Transport Class 4 (TP4) [1, 8] is used as an ex-
ample to illustrate the two extensions. The proposed
extensions to TP4 do not affect its functionality. The
eXtended TP4 (eXTP4) can communicate with an ex-
isting TP4 implementation without any modifications
to the TP4 implementation.

PARAMETER

| CODE |LENGTH

|:| FIXED HEADER VARIABLE HEADER % DATA

Figure 5: Transport Protocol Data Unit.

A Transport Protocol Data Unit (TPDU) has a
fixed header, a variable header, and data (see Fig-
ure 5). The fixed header contains the mandatory pa-
rameters. The variable header contains the optional

VALUE |

parameters. Each optional parameter in the header is
encoded in the following manner:

parameter = (code, length, value)

The code represents the type of the parameter and
the length indicates the number of bytes used to rep-
resent the value. The optional parameters in the TP4
header facilitates the inclusion of the current state
value in every message. The state information is
treated as an optional parameter. It is ignored by TP4
and can be used by eXTP4 to compute the run-time
signature.

For TP4, the value of |@Q| is nine. This requires
one byte to represent the state information. Four bits
are sufficient to represent 9 states. However, the min-
imum length of the value is one byte. So we use only
the first four bits of value to include the current state
information. Three additional bytes are required to in-
clude the current state information in every message.
Extension 2 requires only a single bit to be included
in the message when the program reaches the check-
ing state. Since the minimum length of the value of
a parameter is one byte, three additional bytes are
required to include this information.

The code for the new parameters (current state and
checking state) must be chosen such that there is no
conflict with the code of existing TPDU parameters.

7.1 Overhead Due to Extensions

Table 6 shows the length of headers of different
Transport Protocol Data Units. The overhead for
transmitting the current state or the checking state
information is three bytes and the overhead percent-
age is calculated as a percentage of the header length.

It does not take into account the user data which is of
variable length and is also a part of the TPDU.

PDU TYPE hdr length | Overhead(%)
CR 35 8.5
ccC 35 8.5
DT (Normal) 8 37.5
DT (Extended) 11 27.3
ED (Normal) 8 37.5
ED (Extended) 11 27.8
AK (Normal) 12 25
AK (Extended) 17 17.6
AKf(Normal) 28 13
AKf(Extended) 27 11.1
EA (Normal) 8 37.5
EA (Extended) 11 27.8
DR 10 30
DC 9 33.3

Table 6: Overhead for transmitting state information

7.2 Discussion

The number of bits required to include the state in-
formation is logs|Q|, where |Q| represents the number
of states of the communication protocol. Only one bit
has to be included in the message when the program
reaches the checking state. In general, the communi-
cation overhead for Extension 1 is much more than
that of Extension 2. The overhead of Extension 2 is
independent of |@Q]. On the contrary, the overhead of
Extension 1 depends on |@Q|. However, this overhead
permits the detection of a broader class of protocol
faults. In the case of TP4, both the extensions require
the same number of bytes. Extension 1 includes the
current state information in every message. Extension
2 does not include the checking state information in
every message. Thus, Extension 2 still has less over-
head compared to Extension 1.

It is possible to reduce the overhead of each exten-
sion modifying the protocol. The information about
the current state can be encoded in logs|Q| bytes. The
information for the checking state can be included in
a message using a single bit. This results in a modifi-
cation of the protocol and requires new encoders and
decoders to exchange the messages. The modified pro-
tocol cannot communicate with the original protocol.

8 Summary and Conclusions

In this paper, we have introduced a new method
for generating path signatures based on polynomials.
This method is simple, step-wise computable and re-
quires at most two addition and multiplication opera-
tions for each computation of the run-time signature.
This method generates unique signatures that can de-
tect illegal transitions and out-of-order events. Hence,
this method is more reliable than other existing meth-
ods which cannot detect out-of-order events. Our ob-
server is much simpler compared to the observers used
in FSM-based methods. We have proposed extensions
to communication protocols to facilitate the applica-
tion of this method to detect run-time faults in com-

munication protocols. We have also shown how the
extensions can be applied to TP4 without modifying
the original protocol, though some additional overhead
is produced. eXTP/ is an extended Transport Proto-
col that facilitates run-time fault detection using our
signature based technique.

Acknowledgments

The authors are grateful to Dr. Berthe Choueiry for
reading the paper and providing valuable comments.
This paper was partially supported by the Swiss PTT
Project F&E N°309.

References
[1] Transport Protocol Specification for Open Sys-
tem Interconnection for CCITT Applications,
CCITT X.224, ISO 8073. International Telecom-
munication Union, 1988.

[2] A. Bouloutas, G.W. Hart, and M. Schwartz. Sim-
ple Finite-State Fault Detectors for Communica-
tion Networks. IEEE Trans. on Communications,
40(3):477-479, March 1992.

[3] M. Diaz, G. Juanole, and J. Courtait. Observer-
A concept for Formal On-Line Validation of Dis-
tributed Systems. IEEE Trans. on Software
Engg., 20(12):900-912, 1994.

[4] B.T. Doshi, P.K. Johri, A.N. Netravali, and
K. Sabnani. Flow Control Performance of a High
Speed Protocol. IEEE Trans. on Communica-
tions, 41(5):707-719, 1993.

[6] Régis Leveugle. Analyse de Signature et Test en
Ligne Integré sur Silicium. PhD thesis, Institut
National Polytechnique de Grenoble, 1990.

[6] A.N. Netravali, W.D. Roome, and K. Sab-
nani. Implementation of a High Speed Trans-
port Protocol. IEEE Trans. on Communications,
38(11):2010-2023, 1990.

[7] G. Noubir and K. Vijayananda. Signature-based
Fault Detection for Communication Protocols.
Technical Report 94/93, DI-LIT, Swiss Federal
Institute of Technology at Lausanne, 1995.

[8] H.J. Nussbaumer. Computer Communication
Systems, volume 1 & 2. Wiley Chichester, 1989.

[9] M. Riese. Model-Based Diagnosis of Communica-
tion Protocols. PhD thesis, Swiss federal Institute
of Technology at Lausanne, Switzerland, 1993.

[10] K. Sabnani and A. Netravali. A High Speed
Transport Protocol for Datagram/Virtual Circuit
Networks. In SIGCOMM’89,Symposium on Com-
munications Architecture and Protocols, 1989.

[11] C. Wang and M. Schwartz. Fault Detection with
Multiple Observers. IEEFE Trans. on Networking,
1(1):48-55, 1993.

