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Abstract

1 We introduce a platform that simplifies the development, performance evalua-
tion, and comparison (DEC) of cross-layer protocols for multi-hop ad hoc networks
(MANET). To the best of our knowledge, this is the first platform that provides
an integrated API for controlling and assessing, on a per-packet basis, the phys-
ical layer and MAC/LLC parameters (e.g., frequency channel, power, rate, cod-
ing/modulation, fragmentation, number of retransmissions) for IEEE802.11 network
interfaces.

Today, performance evaluation of wireless mobile ad hoc networks heavily relies
on simulation, which is limited in reflecting real environment scenarios due to the
channel modeling approximations. Experimental comparisons of protocols in real
world propagation environment are difficult because of limited reproducibility of
the channel propagation, environment, and mobility scenarios. We introduce a DEC
platform that provides a network virtualization above the physical/link layers. It
runs multiple protocols in TDMA-like timeslots guaranteeing an equitable share
of the medium, seamless switching between protocols and synchronization between
the nodes, all in a transparent fashion to developers. An extensive experimental
evaluation demonstrates the usefulness of the platform.

Key words: MANET, Cross-Layer Design, Evaluation Platform, Testbed,
IEEE802.11, Protocol Performance

1 This research was supported by NSF CAREER AWARD CNS-0448330.
Email address: noubir, qwlli, bthapa, yin @ccs.neu.edu (Guevara

Noubir, Wei Qian, Bishal Thapa, Yin Wang).

Preprint submitted to Elsevier 16 May 2008



1 Introduction

During the last decade, research in multi-hop wireless ad hoc networks (MANET)
has become one of the most active areas in networking research. Various proto-
cols (i.e., DSR, AODV, ZRP, OLSR, TORA [9]) have been proposed and many
techniques were investigated to address issues such as scalability, robustness,
security, and energy conservation. Recently, cross-layer design has become a
popular approach to optimize the resource usage in MANET. Such techniques
make use of a coordinated adaptivity of the physical layer, MAC layer, and
routing schemes. A cross-layer protocol needs to decide on a per-packet basis
what frequency channel, power level, rate (i.e., coding and modulation), frag-
ments size, and number of MAC retransmissions are to be used. They also
require an accurate estimation of the channel and medium status. Although
significant research has been done on the design and simulation of such pro-
tocols for MANETs [6, 12, 15, 16, 23, 44, 49], there were no tools that allowed
the development of a cross-layer protocol which controls parameters such as
coding scheme, modulation, frequency, and transmission power level on a per
packet basis. Our platform provides such services to the protocol developer.

On the performance front, the current evaluations of MANET protocols mainly
relies on simulation, but little on experimental comparison. Modeling, analy-
sis, simulation and real-world experimentation are the four necessary steps for
developing and evaluating a protocol. In this process, the experimental com-
parison is as important and necessary as simulation. This is because realistic
modeling of wireless networks is intrinsically difficult. Several factors such as
the geography, interference, hardware sensitivity, and mobility can have a dra-
matic impact on the link quality [1]. The experimental evaluation of MANET
has been quite limited because it suffers from difficulty of reproducing the
propagation environment due to rapid changes in channel conditions. We did
several experiments to verify this. For example, we set the source to periodi-
cally broadcast (no retransmission) packets with a sequence number while the
receiver collects them and records the loss rate and Received Signal Strength
Indication (RSSI) for each received packet. After 10 minutes, without chang-
ing their positions, we repeat the same experiment again. We find substantial
differences in RSSI and Packet Loss Rate between two experiments run con-
secutively in both indoor and outdoor cases [See Figure 1]. Thus, even a few
minutes gap can become a huge obstacle in reproducing the propagation en-
vironment. For details of this experimental setup, please refer to Section 3.

In this paper, we propose a platform that aims at comparing multiple pro-
tocols in an “almost identical” propagation environment. It provides a physi-
cal/link layer virtualization that allows to run multiple protocol stacks in an
interleaved manner. It enforces fairness between the various protocol stacks
by scheduling them in a TDMA-like fashion, which also has the advantage of
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preventing a stack from interfering with another stack globally. So far, we have
focussed on the virtualization and comparison of routing and lower-layer pro-
tocols. However, our platform can be extended to support stacks covering the
transport layer. The platform is responsible for the node synchronization and
time virtualization, which allows a transparent implementation of protocols.
With this approach, the protocols experience the similar changes in macro-
characteristics of the channel propagation. For example, the changes in frame
loss-rate and RSSI that happens within a second is much lower compared to
the changes during a 10 minutes span [See Figure 1]. Since the interleaving
period we choose for running experiments on the platform are within a sec-
ond (250ms-500ms), the protocols undergo similar non-instantaneous channel
propagation effects.

The main assumption of our platform is that the coherence time for the chan-
nel macro-characteristics (loss rate, RSSI) is in the order of the interleaving
period. We believe that this is a reasonable assumption because in a mobile en-
vironment, obstructions (e.g., a car passing by, a door closing) and, in general,
the geography and interference do not appear and disappear instantaneously.
Clearly micro-characteristics of the channel are not stable, but they do not
impact the average link quality over the scheduling period. We did an exten-
sive experimental evaluation of our platform by comparing two instances of
a MANET protocol. Highly correlated performance between instances in the
interleaved case against weakly correlated performance in the non-interleaved
case confirms this assumption.

There are several drawbacks to the experiment-based protocol evaluation meth-
ods which run different protocols separately and compare their performance.
For example, reproducing the exact mobility patterns and channel conditions,
avoiding hardware failures and battery drain, and running a large number of
experiments to reach a statistically stable result. Our platform aims at resolv-
ing those issues.

Contributions:

• We developed a platform for simplifying the development of cross-layer
MANET protocols. The platform allows to control the physical layer and
MAC layer parameters on a per-packet basis (e.g., transmission power level,
frequency channel, coding/modulation). It also allows a fine grain channel
and medium status assessment.

• It provides an “almost identical” propagation environment with the trans-
parency in implementing protocol stacks (without knowledge of virtual-
ization and time scheduling details) for comparing multiple protocols. It
also features node synchronization, resource usage monitoring, and proto-
col stacks deployment.
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We introduced the idea of our platform in [43]. Now, the complete system is
available to the wireless community along with the experimentation data from
the evaluation [51].

The paper is organized as follows. In Section 2, we discuss the related work. In
Section 3, we motivate our work by showing the channel irreproducibility in the
case of single-hop communication. In Section 4, we describe the architecture
of our framework and its main components. In Section 5, we describe the
techniques we used to evaluate our framework, and present the results of the
evaluation.

2 Related Work

Cross-layer Design: Cross-layer protocol design has gained substantial in-
terest in the last few years. Various protocols that require a coordinated effort
from the network stack have been proposed. However, most of the proto-
cols that require an access to PHY/MAC layer control and assessment were
limited to the simulation [6, 12, 15, 16, 23, 30, 44, 49]. Implemented cross-layer
protocols were limited by the inability to adequately control the physical layer
parameters on a per-packet basis. From the simulation results it appeared that
significant energy saving and capacity increase could be achieved if tools sup-
porting the implementation of cross-layer optimization were available [2,4,17].
This motivated us to develop a platform that provides the tools for cross layer-
protocol development and evaluation.

Protocol Evaluation: On the evaluation aspect of protocols, the perfor-
mance evaluation of MANET protocols has mainly relied on simulation [39,
41, 45, 55]. Simulation has the advantages of reproducibility, lower-cost, time-
efficient evaluation and is more feasible for larger network deployments. How-
ever, simulation environments have many limitations:

• Several flaws have been discovered. For example, the most widely used mo-
bility model for simulation, called the random waypoint model, was shown
suffering from a speed decay problem [8, 53]. Other problems were also
pointed out in [13]. Although several solutions have been proposed [10,
32, 54], it is still very difficult to model and simulate real-world mobility
patterns.

• Existing simulation environments are not always consistent. In [10], the
performance of a flooding protocol was shown to significantly diverge from
one simulator to another (i.e., OPNET, GloMoSim, NS-2).

• The physical layer modeling is limited. Many simulation environments do
not accurately model the physical layer propagation (e.g., terrain influ-
ence, fading, shadowing) [50]. The interference is inaccurately taken into
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account in NS-2 to compute the Bit Error Rate (BER) and Frame Error
Rate (FER) [11,15,29]. This translates into performance that is not always
realistic compared to the real-world performance [27].

• In the case of IEEE802.11 simulation, the physical layer and link layer are
not always fully implemented. Some simulation environments do not imple-
ment all transmission rates. Simulators that support multiple transmission
rates impose that only a single rate can be used throughout the simulation
period.

• Finally, different transmission rates should correspond to different receiver
sensitivity thresholds (as specified by most IEEE802.11 cards manufactur-
ers). However, current simulation environments only allow to specify a sin-
gle sensitivity threshold for all rates. For a list of reasons that explains
the discrepancies between simulation and field measurements one can refer
to [3, 11, 26,31].

An alternative to real-world experiments could be using channel emulators to
connect the RF front ends. However, such instruments are expensive. There-
fore, such approach is not appropriate when a large number of links is needed
as is the case in MANETs. Now, the experimental comparison of MANET
protocols also has an issue [1, 11, 15, 29, 35, 46]. It suffers from the difficulty
of reproducing the same channel conditions for multiple protocols under eval-
uation. An interesting approach taken in [19, 22, 42, 47] aimed at develop-
ing hardware/software platforms that allow to carry experiments in a remote
controlled reproducible environment. This allows more accurate performance
comparison of protocols. Our platform is a tool for evaluation of protocols in
a real-world setting that any research team with a set of laptops can use. Our
platform modifies and builds on the highly popular Madwifi driver in a similar
way as SoftMAC [52] but for a different purpose.

3 Unpredictability of Single-Hop Communication

To motivate the usefulness of our approach, we first ran a few sets of experi-
ments to characterize single-hop communication. We tried both static-indoor
and mobile-outdoor scenarios. In both scenarios, the nodes operate in the ad
hoc mode. The source periodically (every 50ms) broadcasts packets with a
sequence number. The receiver collects the received data and determines the
frame loss rate per second [See Figure 1]. The transmission power level used
for the indoor and outdoor experiments is 5mW (7dBm) and 50mW (17dBm)
respectively. The collected data was part of a part of a larger experiment
to characterize the IEEE802.11 wifi interfaces for multiple power-levels and
rates [51].
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Fig. 1. RSSI and Packet Loss Rate comparison between two experiments at 10
minutes interval with 2.5K packets/sec. (Left::Indoor) Computer Science building,
Northeastern University. (Right::Outdoor) Museum of Fine Arts, Boston.

The static-indoor experiments were performed inside the WVH building in
Northeastern University. We observe that the RSSI 2 and the number of pack-
ets lost within a second were mostly stable, however, there were huge fluctua-
tions inside a 10 minutes interval [See Figure 1]. Several explanations could be
given, such as microwave oven activity or neighboring access points load (i.e.,
co-channel and adjacent-channel interference) or human activity (e.g., doors
closing, people moving) resulting in multi-path fading.

The mobile-outdoor experiments were run around the Museum of Fine Arts
in Boston. The mobility covered an area of approximately (50 meters × 300
meters). While running each of the outdoor experiments, we made every pos-
sible effort to follow exactly the same mobility pattern with minimal human
perturbation. The experimental results indicate that the loss is very sensitive
to the environment conditions such as, vehicular traffic (trains, buses, cars),
people moving around, and the physical orientation of the device.

We conclude that it is very difficult to predict and reproduce the physical layer
characteristics over a long period of time. Therefore, comparing two protocols
by running them separately over a 5 minutes span, while trying to reproduce
the mobility pattern as accurately as possible, still leads to unreliable and
unpredictable results. This observation is further verified in section 5.

2 According to the Atheros chipset description the received power in dBm is
P (dBm) = RSSI − 95, where RSSI is provided by Atheros firmware for each re-
ceived packet.
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4 Virtualization Architecture and Components

Our proposed framework allows the comparison of multiple protocol stacks
in a transparent way to the protocol designer and implementer. Our focus
has so far been routing and lower-layer protocols, however the platform can
be extended to higher layers. It also provides several tools for controlling
physical layer parameters, protocols deployment, and experimental data log-
ging/gathering. The framework does not depend on a particular physical layer
implementation. As long as the physical layer API supports the dynamic selec-
tion of frequency channel, power level, rate (i.e., combination of modulation
and coding), it can be straightforwardly supported by the framework. The
framework has been implemented as a platform that runs on a testbed of
Linux laptops. It uses Madwifi [33] driver and supports the IEEE802.11a/b/g
chipset from Atheros. The Madwifi driver is compatible with cards produced
by over 50 manufacturers [34]. The platform works within the click modular
router environment [14,28]. We first outline the platform architecture and its
components, then we discuss them in greater details.

Virtual environment: Each instance of a physical protocol is called a vir-
tual protocol. A virtual protocol has access to a virtual link layer, and to the
virtual time. The communication between the virtual protocol stack and the
virtual link is accomplished through two queues (In/Out). The packets are
multiplexed/demultiplexed by the platform. The protocol scheduler interleaves
multiple instances of a set of protocols specified by the user. The protocol
scheduler guarantees that at each instant of time, same virtual protocol is
running across the whole network. All reference to time (e.g., timers) is inter-
cepted by the platform and virtualized. The running instance has only access
to the virtual time. Therefore the underlying interleaving has no impact on
the protocol mechanisms such as timeouts and retransmissions. The Virtual
link scheduler is synchronized with the protocol scheduler. It guarantees that
during each timeslot only the packets of the active protocol are considered
by the MAC/Physical layer. Finally, new protocols can be straightforwardly
implemented and integrated within the platform.

MAC/Physical layer control: The platform also provides an enhanced
API to the physical layer (driver/firmware) to specify for each packet the de-
sired transmission frequency channel, power-level, rate (i.e., combined mod-
ulation/coding scheme), fragmentation threshold, and maximum number of
retransmissions to be used.

Peripheral tools: In order to operate the platform correctly, the nodes are
synchronized using a driver-level light-weight protocol that achieves a synchro-
nization below 15µs. This level of synchronization allows us to support inter-
leaving period of few hundreds of milliseconds. The driver also incorporates a
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monitoring service that gathers information about all the packets transmitted
(for e.g., number of retransmissions, rate, power-level, timing, RSSI of received
packets).

Protocol Development, Evaluation and Comparison (DEC) Platform

Link Virtualization

Protocol

Monitor

Time Slot 

Sync.

Protocol Scheduler

MAC Ack

DSR AODV DSDV

Time Virtualiztion

Network

Time Sync.

Rate ControlFrequency Control RSSI

Network Layer

Phy/Mac Layer
Power ControlMAC Control

Fig. 2. Platform Architecture.

4.1 Experimentation Testbed: Hardware and Software

The testbed used for the experiments consists of several IBM laptops. They
are equipped with Madwifi compatible IEEE802.11 wireless cards (Netgear
WAB501 in this case). Each node runs an instance of the platform built within
the Click modular router environment.

Operating System: The experimentation laptops used Red Hat Linux with
the kernel version 2.4.24. The default tic-time 3 of the kernel is 10 milliseconds.
We modified this value to 1 milliseconds in order to achieve an adequate-
accuracy for the protocol scheduling in our platform.

Wireless Interface: The platform supports dynamic frequency, power, rate,
modulation and coding control on a per packet basis. Traditional approaches
to dynamic frequency, power and rate control rely on iwconfig command [24].
But its usage results in resetting the wireless adapter, which in turn disrupts
the normal network traffic [17]. This results in a broken link and can take more
than one second to recover. This approach would make per-packet control
impractical for a cross-layer protocol. In our platform, we take advantage of
the available and modifiable features of Madwifi to resolve this issue.

Madwifi is an open source Linux kernel driver for wireless LAN devices. It
is compatible with a large number of cards (over 100) manufactured by over
50 companies. For more information on supported hardware, please refer to
the Madwifi’s compatibility list [34]. It provides an interfaces for dynamic
control of many physical, link, and MAC layer parameters without interrupting
ongoing network traffic. In our testbed, we use Netgear WAB501 wireless
cards which are based on Atheros AR5001X+ chipset and compatible with
the Madwifi driver. For new wireless cards, as long as they are compatible

3 CLOCK TICK RATE
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with Madwifi driver they can be used in our platform seamlessly. We extended
the existing Madwifi driver to support link virtualization of our platform to
achieve a per-packet selection of the physical, link, and MAC layer parameters,
link quality information gathering, and nodes synchronization. Due to the
FCC regulation on transmission power, the modified driver only supports two
power-levels (out of the possible three): 50mW (17dbm) and 5mW (7dbm) [20].
The Netgear WAB501 wireless card supports both 802.11a and 802.11b. In
802.11a mode, the platform allows the protocols under evaluation to switch
between 13 channels from 5.15 to 5.825GHz and 8 rates (6, 9, 12, 18, 24,
36, 48 and 54 Mbps). In 802.11b mode, the platform allows the protocols to
switch between 11 channels from 2.412 to 2.462GHz and 4 rates (1, 2, 5.5 and
11Mbps).

Platform Infrastructure: The platform is implemented within the Click
environment [14]. Click is a novel environment for building flexible and con-
figurable software-routers. It provides a rich collection of modules called ele-
ments, and each element realizes one aspect of the router’s behavior. It takes
a configuration file that specifies connections between user-specified elements
to build software routers. It also allows users to write their own elements.
We develop our DEC platform as a Click element. Several MANET protocols,
such as AODV and DSDV, have been implemented within Click. For more
information on source code, user manuals and experimental results related to
the DEC platform, refer to [51].

4.2 Platform Architecture

Within Click Architecture: The platform is implemented as a Click ele-
ment [See Figure 3], which coordinates with four other Click elements, FromHost,
ToHost, FromDevice, and ToDevice, to become a user-space software router.
In one direction, the user-space router intercepts the packets originated at user
applications from the kernel, processes them, and hands them to the appro-
priate network interface. In the other direction, the user-space router retrieves
incoming packets from the specified network interface, processes them, and
either passes them to the network interface for forwarding, or injects them
into the kernel to be delivered to local applications.

• FromHost: intercepts host application packets from the kernel and puts
them in the platform for processing.

• ToHost: injects incoming packets destined to the host into the kernel and
the kernel delivers them to applications.

• FromDevice: retrieves incoming packets from the given network interface,
and put them in the platform for processing.

• ToDevice: transmits outgoing packets through the given network interface.
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From Host

Discard

To Host

From Device

To Device

Protocol Development, Evaluation and Comparison (DEC) Platform

0 1 2 3 4

0 1

0 1 2 3 4

Classifier

Classifier Channel 0: Platform Packet
Classifier Channel 1: Broadcast Packet
Classifier Channel 2: MAC Acknowledgment
Classifier Channel 3: Time Synchronization packet
Classifier Channel 4: Unclassified packet (discarded)

Fig. 3. The platform within Click architecture.

Platform Internal Structure: From the external point of view, the platform
acts as a normal user-space router. Internally, it is both a packet multiplexer
and a demultiplexer. On one hand, it collects processed packets from all the
protocols and either forwards them to remote sites or passes them down into
the kernel. On the other hand, it receives raw packets from outside, either from
the kernel or from remote nodes, and dispatches them to appropriate proto-
cols. The platform consists of several components: Network-Time Synchroniza-
tion, Timeslot Synchronization, Time Virtualization, Protocol Scheduler, Link
Virtualization, and MAC Acknowledgment [See Figure 2]. Each component
plays a significant role in providing a fair and accurate evaluation of multiple
protocols. The platform extends into the Linux driver to collect low-level in-
formation about the underlying physical and MAC layers and provide tight
time synchronization.

4.3 Time-related Components

In the testbed, each node runs an instance of the platform with multiple
protocols under evaluation. The platform schedules protocols under evaluation
in a TDMA-like fashion. Each protocol is periodically activated over a fixed-
length timeslot. In order to achieve a fair and accurate evaluation of protocols,
all the testbed nodes must be synchronized both at the system-time level and
the timeslot level. In other words, the same virtual protocol on different nodes
must wake-up at the same physical time. Furthermore, the protocol scheduling
should not affect the behavior of the protocols, that is, the protocol scheduling
must be transparent. Thus, it is imperative for each protocol instance to have
access to an independent virtual time clock. Our platform allows each protocol

10



instance to have its own virtual time clock such that the protocol itself only
sees a continuous virtual time that is indeed fragmented over physical time
intervals.
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Fig. 4. The left side corresponds to the log of a sender node and the right corresponds
to the log of the destination node. The log shows the nodes synchronization and
packets exchanged. The circled numbers indicate the time in milliseconds on the
two nodes when the platform switches protocols.

4.3.1 Network-Time Synchronization

Platform requirement:

Time synchronization between distributed nodes is critical to the platform to
avoid neighboring (i.e., interfering) nodes from running non-matching virtual
protocols. Ideally, all the nodes within the system should be perfectly syn-
chronized, but in MANETs, it is difficult to achieve a precise synchronization.
Plus, there is an increase in overhead associated with implementing a tighter
synchronization. Therefore, synchronization is a tradeoff between overhead
and accuracy.

In our platform the required accuracy for time synchronization is dependent
on the duration of the timeslot. To limit the impact of the nodes clock asyn-
chrony, we set our target asynchrony upper bound to be 1 percent of the
timeslot duration. On the other hand, the timeslot duration has to be large
enough to comfortably allow the hardware and software to (1) reconfigure the
network stack parameters (e.g., frequency selection, power setting), (2) switch
to the next virtual protocol, and (3) finish transmitting at least one packet
with possible retransmissions and an acknowledgement within the timeslot.
The time to reconfigure the physical layer parameters depends on the specific
hardware implementation. It varies from several hundred microseconds to tens
of milliseconds [38]. The software switch of virtual protocols takes only a few
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CPU cycles in our platform. This is a negligible time delay given the speed of
today’s laptops. The duration of transmitting one packet varies significantly
depending on the packet length, the transmission rate, the medium access
time, and the number of retransmissions. As many of these values are unde-
termined and difficult to estimate, we chose by design a relatively large lower-
bound on the duration of a timeslot to run experiments in our platform. This
lower bound value is 100 milliseconds and is large enough to accommodate
protocols unpredictability. At the same time, it is small enough to not lose the
effectiveness and fairness of the evaluation. Therefore, this sets our target on
upper bound to clock asynchrony to be 1 millisecond. In the platform evalu-
ation, Section 5, we show that our light-weight time synchronization protocol
achieves an accuracy well below this target value. The single-hop neighbors
are synchronized below 15µs in our current testbed. Even in a network with
several hops, the accumulative error is still within the design target.

Existing schemes in time synchronization:

Network time protocol (NTP) [37] is widely used for the Internet time synchro-
nization. But this protocol is designed for the wired network. It is also complex
and computationally intensive while a light-weight time synchronization pro-
tocol is necessary for our platform to achieve its goal. Other techniques such as
the NIST’s short wave radio station (WWV/WWVB) [7] and the Global Po-
sition System (GPS) [25,40] achieve global time synchronization but they rely
on dedicated external devices which adds an extra cost (possibly unnecessary)
to the platform.

Significant research has been done in wireless multi-hop ad hoc networks and
sensor networks [5, 48, 56]. Unlike applications using GPS/WWV/WWVB to
achieve a global time synchronization, most applications in wireless ad hoc net-
works and sensor networks only require local time synchronization. So does our
platform. Several protocols have been proposed: Reference Broadcast Synchro-
nization (RBS) [18], Timing-sync Protocol for Sensor Networks (TPSN) [21],
Flooding Time Synchronization Protocol (FTSP) [36]. These protocols can
reach a synchronization accuracy of a few microseconds to a few tens of mi-
croseconds depending on the underlying hardware and support OS. It is worth
noting that much better clock synchronization can be achieved in sensor net-
works in comparison with ad hoc networks. First, this is due to the absence
of real time support in the used operating system of ad hoc nodes (mainly
linux or Microsoft Windows). And second, it is because of the loose coupling
between the communication chipset and the synchronization software. The
above mentioned protocols either involve complex message exchanging or re-
quire the establishment of hierarchical structures. These constraints do not
match our platform’s architecture and system requirement. Our synchroniza-
tion period has to be limited between timeslots and finished before the next
timeslot starts. Our protocol is similar to FTSP. However, FTSP also relies
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on a hierarchical structure starting at the root, which makes it vulnerable to
a single point of failure. Although, FTSP provides a root recovery algorithm,
for the ease of implementation, which is an important feature to our platform,
we chose not to adopt the hierarchical structure and instead use a peer-to-
peer mechanism for time synchronization. Our evaluation results show that
our synchronization protocol does not compromise accuracy. Its performance
is comparable to the existing protocols, and well exceeds the needs of our
platform.

Platform time synchronization protocol:

The time synchronization protocol used in the platform consists of two phases:

Phase I: Initialization. All the mobile nodes first synchronize to the system
time of one of the nodes (called master). They must be within the master’s
broadcasting range to estimate their clock’s drift-rate and offset to the master’s
clock.

The clocks’ drift-rate varies over long periods of time due to the clock aging
and temperature, but tends to be stable in a fairly short period of time (few
experiments). We verified this by monitoring the time difference between two
nodes. The clock drift turns out to be linear (represented by the cross-points
straight line of Figure 5). It implies that the two nodes’ clocks are stably
running at slightly different rates. This is observed for a typical evaluation
experiment of several hours. Even for experiments lasting several days, the
clocks’ drift-rate can be estimated once in a while, if the clocks’ rates have
non-negligible change. We also note that although the clocks drift is linear (as
shown on Figure 5), the instantaneous measurement values do not perfectly
lie on the drift-rate line. In our experiments, we found that this deviation
(error) has a zero-average, and 93% of the time, is within the [−7.5, 7.5] inter-
val. Figure 6, shows the histogram of the deviation. One explanation of this
inaccuracy is the inability of the non-real time operating system (i.e., linux)
to make the reading at the specified instant of time. This inaccuracy can be
mitigated by taking a sufficiently large number of measurements to estimate
the clock drift-rate. In this phase, the master first broadcasts a series of ref-
erence packets and then each slave computes it’s clock’s drift-rate respect to
the master’s clock using a linear regression.

To find out the initial clock offset, the master needs to broadcast its timestamp
to all the slave nodes. But for each slave node to make the right adjustment,
they must know the communication latency. This latency is composed of the
processing time for transmitting and receiving messages and the propagation
time. In our platform the processing time is deterministic and according to
our measurement this value is approximately 155µs. The propagation time,
however, is not a constant as it depends on the distance between the trans-
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mitter and the receiver. Under similar assumptions made by many existing
synchronization protocols [18], we consider this value to be negligible. This is
because the propagation speed of radio frequency signals is close to the free-
space speed of light c. For typical MANET links covering tens of meters, this
propagation time varies only in nanoseconds which is negligible with respect
to the precision required by the platform.
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Phase II: Re-synchronization. Due to the inaccuracy of the clock drift and
offset estimation, a synchronization error will accumulate over time. To pre-
vent this asynchrony from having a non-negligible impact, mobile nodes need
to regularly re-synchronize with their neighbors by broadcasting the synchro-
nization packets in a given time window. In our platform, the user can easily
adjust the frequency of the time synchronization messages being sent accord-
ing to the synchronization accuracy he/she to achieve. By default, the average
synchronization period is set to 1 second which causes limited overhead while
still achieving good synchronization accuracy. To avoid collisions each node
randomly picks a instant within the synchronization window to broadcast a
packet with its timestamp. Since the synchronization packets are broadcast,
they are not delayed by the IEEE802.11 MAC RTS/CTS or backoff mecha-
nisms. Therefore, the received timestamps have better freshness characteris-
tics.

On the receiver side, when the wireless card driver receives a time synchro-
nization packet, it extracts the timestamp out of the packet, adjusts it to take
in account the estimated communication latency, retrieves its own current
timestamp, and uses the average of the two to set the system time.

In our network-time synchronization scheme, the synchronization packet orig-
inates within the user-space platform, while the actual time synchronization
operations are performed within the driver [See Figure 2]. Since, the latter is
implemented at the driver level, it minimizes the delay between the timestamp
generation at the source and time update at the receiver side. Our experiments
confirm that the system time difference between adjacent nodes can be limited
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to within 15µs when the average synchronization period is set to 1 second. A
run-time snapshot of the synchronization process is demonstrated in Figure 4.

4.3.2 Timeslot Synchronization

When the system time of the testbed nodes is synchronized, the nodes must
also agree on when to start a new timeslot, and which protocol to activate.
The platform protocol scheduler determines which protocol to activate for
each timeslot according to a deterministic rule (partially defined by the user
for each experiment via a configuration file), which is discussed in section 4.4.
That rule is solely based upon the knowledge of the number of protocols
and their identification along with the length of the timeslot. Such informa-
tion is common to all the nodes. Thus, it allows the testbed to synchronize
the timeslot and schedule protocols without exchanging any information. The
scheduling pattern simply repeats over time at all nodes.

Our platform also considers the issue of overlapping packets. It happens when
a packet is initiated in one timeslot but delivered while the destination node
has already switched onto the next timeslot. In our platform, this issue is first
addressed by maintaining a buffer for each protocol to store those overlapping
packets instead of mis-delivering them to a wrong target protocol. Since only
the active protocol has access to the system resources and network bandwidth,
the overlapping packets will be held for delivery until the target protocol be-
comes active again. Another way to resolve this problem is by adding a guard
time between the switching of protocols. This allows the transmission of cur-
rent protocol packet to complete before the platform switches onto the next
protocol. However, this approach causes another issue of protocols deviating
from their normal behavior. For example, less contention among the partici-
pating nodes during the guard time. The bottom line is that there is at most
one overlapping packet at the boundary. Thus, the problem of overlapping
packets should have a relatively small impact on the performance if there are
a large number of packets are transmitted in a timeslot.

4.3.3 Time Virtualization

Each protocol in the platform has its own virtual time clock, which is contin-
uous from the protocol’s point of view. Assume V TX is the virtual time for
protocol instance X. Then, in the platform, V TX freezes whenever the cur-
rent timeslot is running other protocols. In other words, V TX freezes whenever
protocol X is not currently active. V TX resumes once the protocol X becomes
active again. For instance, if a protocol sets up a timer to expire in 20 mil-
liseconds and the current timeslot terminates in 5 milliseconds, then the timer
will fire 15 milliseconds after the reactivation of the considered protocol. An
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example of slotted virtual time and physical time is shown in Figure 7.

The platform keeps track of the virtual time for each protocol. The virtual time
advances only when the associated protocol becomes active. The protocols can
be perfectly interleaved as long as they use the virtual time methods provided
by the platform to manage their time and set their timers.

The length of each timeslot (TS) is a critical parameter of the platform. Intu-
itively, this length should neither be too short because of the overhead, time
synchronization inaccuracies, risk of packets overlapping and interfering with
the TS switching-time. The length should also not be too long otherwise the
macro-characteristics of the environment will change (less stable) during a
longer timeslot and therefore the fairness and accuracy of the evaluation re-
sult will be compromised. Refer to Section 5 for detailed discussion and our
experiment result on the optimal value for the timeslot duration.

Virtual Time

AODV

DSDV

DSR

VT0 VT0 VT0 VT1 VT1 VT1 VT2 VT2 VT2

T0 T1 T2 T3 T4 T5 T6 T7 T8

Physical Time

AODVAODV

DSDVDSDV

DSRDSR

Fig. 7. Protocols scheduling and virtual time vs. physical time.

4.4 Protocol Scheduler

The Protocol scheduler decides which protocol to activate for each times-
lot. For each experiment, the user specifies which protocols to compare. The
scheduler uses a rule that requires the product of the timeslot duration and the
number of protocols, to be either a multiple of a second or a perfect divider of
a second. Thus, the protocol scheduling pattern will repeat every N seconds,
where N is the smallest positive integer that is a multiple of the product value
from the rule. For instance, if the number of protocols is 3 and the timeslot
is 400 milliseconds, the scheduling pattern repeats every N = 6 seconds. The
platform mandates that the first protocol is always scheduled to be active at
a system time that is a multiple of N seconds. When the platform starts, it
loops on the current system time until the system time advances to become
a multiple of N seconds. Then it activates the protocol scheduler, which in
turn wakes up the first protocol. The protocol scheduler always wakes up at
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the beginning of each timeslot, puts the current protocol into sleep mode and
activates the next protocol.

The protocol scheduler is driven by a system timer, whose precision is deter-
mined by the tic time (1 millisecond). A tiny difference might happen between
the protocol scheduler’s actual wake-up time and the expected wake-up time.
In our testbed, this difference is about 1 microsecond. But the protocol sched-
uler continuously corrects those tiny drifts to avoid the accumulation of such
drifts.

4.5 Link Virtualization

The platform provides each protocol instance with a virtual link. The same
protocol instance runs on all the nodes and is scheduled at all nodes at the
same time. So, the platform makes sure that the packet sent by a protocol
instance is received by its corresponding instance on the remote nodes. This
is achieved by introducing an additional layer, that we call a virtualization
layer, into the traditional IP architecture. The virtualization layer takes care of
the scheduling of protocol-instances, queues multiplexing/demultiplexing, and
segregation of the instances. The platform inserts the virtualization header into
the packet received from the protocol before passing it to the network interface.
On the remote nodes, the platform removes this header before dispatching it to
the appropriate protocol. This process is totally transparent to the protocol-
instances running in the platform. The platform header is only 8 bytes in
length, thus introducing a very small (compared to the size of the network
payload) overload to the network traffic [See Figure 8].

802.11 

Header

Platform

Header 

(8 Octets)

IP/Routing

Header

Transport 

Header
Application Data

Length

(1 Octet)

ID

(1 Octet)

MP

(1 Octet)

Power

(1 Octet)

RSSI

(1 Octet)

Rate

(1 Octet)

Platform Header

(8 Octets)

Type

(1 Octet)

Frequency

(1 Octet)

Fig. 8. Packet header.

The platform header contains eight fields, Type, Length, ID, MP, Frequency,
Power, Rate, and RSSI:

• Type field contains the type of the next frame.
• Length field contains the size of the platform header.
• ID field identifies the protocol that the packet belongs to.
• MP field contains MAC Control Parameters: RTS/CTS, fragmentation,

number of retransmissions.
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• Frequency field selects the RF frequency channel on which the wireless
NIC is working.

• Power field selects the transmission power.
• Rate field selects the transmission rate.
• RSSI field is updated at the receiver node to include the RSSI value that

the packet was received at.

This virtual link allows users to send data packets at the frequency/power/rate/
modulation specified by the protocols. The actual execution of these parame-
ters is carried out at the driver level. When the driver receives a packet from
the platform, it extracts the frequency, power and rate specification and in-
structs the firmware to transmit the packet at those specified values. When
the driver receives an incoming packet, which contains the platform header,
it collects the RSSI value for the packet and writes it in the RSSI field of the
platform header in the packet.

4.6 MAC Acknowledgment and Protocol Performance Monitor

MAC acknowledgments are not only useful to determine if a link is broken but
also to estimate the network medium and channel state. Whenever a packet
is successfully sent from the platform and acknowledged (at IEEE 802.11
level) or if the maximum retransmission threshold is reached and the packet is
dropped, a MAC acknowledgment is generated within the driver and passed
up to the platform. The MAC acknowledgment contains the information about
how many retransmissions the packet attempted, at which frequency channel,
power level, and rate the packet was sent, and which protocol the packet be-
longs to. The MAC acknowledgment also helps the cross-layer protocols to
estimate the link quality. The protocol performance-monitor running in the
platform logs this information for each packet, which is eventually used to
evaluate the performance of each protocol (in terms of resource usage such as,
bandwidth, and energy/power).

4.7 Developing New Protocols for the Platform

The platform allows a transparent development and integration of new pro-
tocols. The protocols developed for the platform can be used in other envi-
ronments such as network simulators. Likewise, the protocol implementations
from other environment can also be ported onto the platform as long as they
respect a simple interface described below.

The platform is implemented in C++. A new protocol has to be declared
as a C++ class and be inherited from the super class PhysicalProto. The
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default implementation of PhysicalProto registers the derived protocol with
the platform and provides the protocol with the interfaces to receive packets,
deliver packets and access virtual time. Subclasses of PhysicalProto are easy to
write. Essentially there are three virtual methods that need to be overridden.

virtual VOID Process() = 0;

virtual VOID ReceiveNetPkt(Packet* p, PROTO_RX rx) = 0;

virtual VOID ReceiveHostPkt(Packet* p);

The platform notifies the custom protocol of incoming packets from other hosts
through the method ReceiveNetPkt(). The method ReceiveHostPkt() al-
lows the custom protocol to receive packets originated within the local host.
The method Process() can be used to process pending packets and do house-
keeping tasks. The implementation of these methods is fairly simple. In most
cases, they are just forwarding the function calls. For example, the DSR proto-
col we implemented for the platform only overrides the above-mentioned three
methods. The methods ReceiveNetPkt() and ReceiveHostPkt() both have
only one statement inside them, which simply forwards the call to the packet-
processing function. The Process() method calls another method that polls
the sub-modules for internal processing. It is easy to see that these methods
are just wrappers to integrate the developers protocol into the platform.

The protocol must use the virtual time provided by the platform instead of the
real system-time and needs to notify the platform every time it has packets
to transmit. Then, the platform provides virtual time and packet delivery
services to the protocol through several protected methods defined in the class
PhysicalProto:

VOID __SendPkt(Packet* p, UINT freq, UINT power,

UINT rate, BOOL monitored = FALSE);

VOID __SendPkt(Packet* p, UINT freq, UINT power,

BOOL monitored = FALSE); // use fixed or auto-rate

VOID __IndicatePkt(Packet* p);

VOID __SetTimer(CALLBACK func, VOID* arg, UINT t);

DOUBLE __GetCurrTimeInMs();

The method SendPkt() sends out a packet to remote hosts. The protocol
can either specify the desired frequency channel, power and rate or just fre-
quency channel and power and let the driver use the default fixed/auto-rate
mode. IndicatePkt() indicates a packet to the local host. The method
SetTimer() sets up a timer in the virtual time space. The protocol can ob-

tain the current virtual timestamp by calling GetCurrTimeInMs(). All these
methods are abstract and the implementation details are hidden from the
cross-layer protocols. This way, the protocol implementation is independent
of the platform and can be used in other environments.
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Existing cross-layer protocols implemented within other platforms, for exam-
ple in network simulators, can be ported into our platform with a small set of
modifications, similar to the ones illustrated above. If the protocol is imple-
mented as a C++ class, one can declare it as a subclass of PhysicalProto,
override the necessary public interfaces defined in PhysicalProto, replace the
physical time with virtual time, and use the platform to deliver the packets.
Plugging a new protocol into the platform for evaluation is straightforward as
well. It only requires a user to declare an instance of the new protocol inside
the initialization method of the EvalPlatform class:

new Proto (this, __hostIp, __hostMac);

5 Platform Evaluation

We first evaluate the network-time synchronization protocol used in our plat-
form. Then, we evaluate the capability of our platform to fairly compare two
protocols.

5.1 Evaluation of Network-Time Synchronization

The platform relies on the information delivered by broadcast packets in get-
ting the nodes to synchronize with each other in the network. Therefore, the
higher frequency of these packets being broadcasted implies the better accu-
racy of the synchronization. However, an unnecessarily high accuracy of the
synchronization might result in a significant communication and energy over-
head to the platform. We must optimize the tradeoff that time synchronization
introduces in terms of the overhead and the synchronization precision.

Our experiments show that with an average re-synchronization period of 1
second, which does not add significant cost to the system, our synchroniza-
tion protocol achieves a very good synchronization accuracy of well under the
design target (1ms). We measured the clock difference between two adjacent
nodes for a time span of 30 minutes. Figure 9 shows the histogram of the
clock differences. As we can see, the majority of the clock differences over
time are between 5 to 10 µs. From Figures 10, we find that over 95% of the
time, the clock difference is bounded by 15µs. We also notice that there are a
few clock asynchrony jitters above 45µs. This is mainly due to the fact that
the operating system we are using is not a realtime system and at times, it
might allocate the CPU resources to deal with an unexpected interrupt (which
would temporarily mask the wireless card interrupts) thereby causing a jitter.
Porting the platform to a realtime operating system would better guarantee
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the prioritized execution of time critical components.
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Fig. 9. The histogram of the clock
difference of two adjacent nodes with
re-synchronization period 1s.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  5  10  15  20  25  30  35  40  45

P
er

ce
nt

ag
e

Time (microseconds)

Fig. 10. The accumulative percentage of
clock difference of two adjacent nodes
with re-synchronization period 1s.

5.2 Evaluation of the Platform Protocol Comparison Capability

We run an extensive set of experiments to validate the DEC platform capa-
bility in fairly comparing two protocols (over 100 experiments). We run two
instances of the same protocol in our platform and showed that the instan-
taneous performance (number of packets received per timeslot, transmission
energy, etc.) is highly correlated. We picked DSR as our test protocol. When
we compared the separate runs of DSR (non-interleaved) following the same
mobility patterns with minimal human perturbation and found a much lower
correlation.

Fig. 11. Mobility pattern 1. In/Around Northeastern University, Boston.
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Fig. 12. Mobility pattern 2. Around Museum of Fine Arts, Boston.

5.2.1 Experimental Setup

Scenarios: We choose three different scenarios to run our experiments, two
outdoor and one indoor. Our setup aims at distinguishing the platform’s inno-
vative approach and establishing its main inspiration: fair and credible com-
parison of MANET protocols. Figures 11 and 12 show two outdoor mobility
patterns that span areas of around 500 meters × 300 meters. Pattern 1 features
a typical (busy streets with buses and cars) MANET scenario around North-
eastern University, Boston. Pattern 2 features another typical (busy streets
with buses and cars along with the trains passing by) MANET scenario around
the Museum of Fine Arts, Boston. We choose the Computer Science building
of our school as the sit to run the indoor experiments, that consisted of a
predefined trajectory around a big lab with no line of sight.

Experiment: (Outdoor) We have three people, each carrying a laptop, walk-
ing in the pattern defined in Figures 11 and 12 that establishes a multi-hop
communication. (Indoor) We have two people, walking around a (13 meters
× 13 meters) lab carrying two laptops with no line of sight. The third lap-
top is stationary sitting in a lab desk inside the room, again establishing a
multi-hop communication (when the source and destination are not within a
reachable distance). The latter of the setups has significant channel interfer-
ence due to the presence of foreign wireless networks and microwave ovens.
Both indoor and outdoor interleaved experiments are run for 10 minutes each
and the non-interleaved ones are run for 5 minutes each.

Parameters and Analysis: In all scenarios, there is a single source and a
single destination with an intermediate node. We inject 50 or 10 packets per
second into the platform where each packet is 512 bytes in size. Our platform
does not incorporate any coordination with the fourth or higher layer proto-
cols. Typically, we ran 10 interleaved and 8 non-interleaved experiments for
each scenario (two outdoor and one indoor). The experiments covered cases
where the interleaving period spans 100ms, 250ms, 500ms, 1000ms, 2000ms
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Fig. 13. Number of packets received by interleaved instances of DSR protocol in a
typical experiment with mobility pattern 1.(Figure 11)

and 3000ms in order to compare the correlation and thus identify the best
average interleaving period corresponding to the best correlation for the envi-
ronment we chose to run experiments in. With non-interleaved runs, we tried
our best to accurately reproduce the same mobility pattern as of the previous
run.

5.2.2 Results
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Fig. 14. Number of packets received by interleaved instances of DSR protocol in a
typical experiment with (LEFT) mobility pattern 2 and (RIGHT) indoor scenario:
CCIS building - Northeastern University.

Correlation of Instantaneous Throughput, Loss Rate, and Energy:
Figures 13, 14 and 15 show typical graphs of the number of received packets
vs. timeslots. Figures 13, and 14 represent the interleaved case, which shows
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a strong similarity in received packets per timeslot. Figure 15 represents the
non-interleaved case where we run two instances of DSR protocols individually
at a 5 minutes time interval with exact mobility pattern and least human
perturbation. The non-interleaved case exhibits evident dissimilarity between
the received packets pattern. The correlation between the number of packets
received by two interleaved instances computed over all the experiments was
0.89 (indoor) and 0.85 (outdoor). The average pairwise correlation between
non-interleaved runs was 0.38 (indoor) and 0.28 (outdoor).
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Fig. 15. Number of packets received by non-interleaved runs (ran at 5 minutes
interval) of DSR protocol.(Left::Outdoor) and (Right::Indoor)

Figure 16 is the average histogram of difference between the number of packets
received by two DSR instances. We notice that a packet difference of 1 or
2 is more common in the interleaved case than in the non-interleaved case.
Consequently, bigger discrepancies are rather frequent in separate runs (non-
interleaved case) of DSR protocol instances 4 . In particular, the 10 packets
difference is very frequent among non-interleaved runs of protocol instances.
This is because the excerpt is from the experiment set where we were sending
10 packets per timeslot into the platform. So, the discrepancy indicates that
one link is broken while another is still active in the test-bed.

The platform also provides information about the number of retransmissions,
rate, and transmission power. We aggregate this information and compared
the energy expenditure between the interleaved protocol instances and the

4 The ”zero” difference bar is almost of the same height in both interleaved and
non-interleaved instance because in our setup, link breakage and perfect links occur
periodically in all scenarios.
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Fig. 16. The average of differences in number of received packets between two
instances of protocol (LEFT::Outdoor) and (RIGHT::Indoor), (TOP::Interleaved)
and (BOTTOM::Non-Interleaved).

separately run protocol instances. We observe that the separately run pro-
tocols exhibit a very different energy pattern while the instantaneous energy
expenditure of the interleaved runs is relatively similar. See Figure 17 for the
energy expenditure in a typical interleaved and a separate-run experiment.
For the complete experimentation results and detailed graphs, the reader is
referred to [51].

Impact of Interleaving Period and Averaging Window: In order to
identify the best interleaving period, we carried the experiments with various
interleaving periods. Figure 18 shows the varying correlations when different
interleaving periods were picked for both indoor and outdoor experiments.
The demonstrated correlation is between the number of packets received per
timeslot by two interleaved protocol instances. We find that 500ms interleaving
period gives the best correlation value among 100ms, 250ms, 500ms, 1000ms,
2000ms and 3000ms under the current setup.

We define the averaging window as a time frame (collection of timeslots) that
we used to accumulate the number of received packets or other performance
measures. Figure 19 shows the correlation variation as per the increase in the
averaging window size. The figure indicates that as the averaging-window size
gets larger, the correlation gets closer to 1. The average difference in total
delivered packets reaches less than 1.5% for the interleaved runs, and over
17% (with high variance) for the non-interleaved runs [51].
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Fig. 17. Transmission energy expenditure between (upper 4 graphs) interleaved and
(bottom 4 graphs) non-interleaved runs of DSR protocol.

6 Conclusion

We proposed a platform for the performance evaluation and comparison of
multiple protocol stacks under an almost identical physical environment that
includes same channel macro-characteristics, topology, and geography. We im-
plemented the framework and demonstrated its validity by showing that the
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as the best interleaving period.
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instantaneous performance of two interleaved DSR instances is highly corre-
lated, while the performance of separately run instances are weakly correlated
(even if we did our best to accurately reproduce the same mobility pattern).
In addition to allowing a fair comparison of multiple protocols, our framework
also provides a set of services to control the physical layer and MAC/Link
layer parameters on a per-packet basis(e.g., per packet frequency/power/rate
control, fragmentation, and retransmissions threshold).

We plan to port other MANET protocols to the platform in order to com-
pare them within our platform and compare our results with those obtained
through simulation. Finally, we plan to develop a set of tools for easy deploy-
ment of new protocol stacks over the testbed. With these tools new member
nodes of the testbed only need to have a bootstrap daemon to download the
configuration files and the added protocol stacks to join an experiment. Source
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code, documentation, and experimentation results of the current platform are
available from [51].
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