Fault Tolerant Multiple Observers Using Error Control Codes

Guevara NOUBIR, Berthe Y. CHOUEIRY and Henri J. NUSSBAUMER
Department of Computer Science
Swiss Federal Institute of Technology in Lausanne (EPFL)
CH-1015 Lausanne, Switzerland
{noubir|choueiry|nusshaumer } Qdi.epfl.ch

Tel : +41-21-693.27.87

Abstract

We address the problem of detecting execution errors
m communication protocols. A communication protocol
is modeled as a Finite State Machine (FSM) that can
be used as an external observer for detecting execution
errors. In [16, 17], Wang and Schwartz introduce the
concept of multiple observers obtained by an adequate
decomposition of the FSM. In this paper, we first ad-
dress the decomposition procedure from the perspective
of error control codes and show that the decomposition
algorithm can be restated as a simple state coding algo-
rithm. Then, we discuss the features of fault tolerance
of the resulting decomposition. We generalize the con-
cept of multiple observers into the one of fault tolerant
maultiple observers. A set of observers is said to be
fault tolerant if 1t is capable of detecting the execution
errors of a protocol even when a subset of the observers
15 faulty. We show that error control codes can be used
to generate multiple observers that are fault tolerant.
We illustrate our approach on the ISO transport proto-
col class | (TP4). Finally, we give some hints on how
to assign codes to the states while mazximizing the fault
coverage of the resulting decomposition.

1 Introduction

Communication protocols are a central mechanism
for enabling communication among the distributed en-
tities of a computer network. First, these protocols are
specified then they are implemented. At a later stage,
they are tested to ensure that they comply to the initial
specifications and are free from coding errors. Finally,
they are integrated into a real system and made ava-
ilable for use.

Despite the various stages of testing before imple-
mentation, it is often true that some errors remain un-

Fax : +41-21-693.47.01

detected and appear only when the protocol is made
operational. Other errors may also appear when an
underlying software or hardware component of the pro-
tocol is modified. Finally, execution errors may be in-
duced by the physical and software environment itself
(e.g., memory errors, electro-magnetic perturbations,
etc.). If errors are not adequately handled when they
occur during the execution of the protocol, they may
cause a snowball effect and result in a more or less
long interruption of communications, which may yield
important financial losses.

Various techniques and strategies [16, 17, 13, 3] for
handling execution errors in communication protocols
are proposed in the literature. Some strategies detect
the errors and then proceed to a diagnosis task in order
to fix them afterwards. Other strategies try to correct
the errors on-line then resume a normal execution of
the protocol. Fig. 1 illustrates both strategies.

Protocols stack Protocols stack

Protocol layer i
FSM

Layer i

Internal error
__detector

Physical layer

I Communication channel I
1
Passive observer

External error detector
i
Diagnosis system

Figure 1. Communication protocols are generally
modeled as finite state machines. Two main strate-
gies for error detection exist: passive (external) that
aims at diagnosing the errors and active (internal)
that aims at correcting the errors.

When error detection is carried out in real-time (on-
line), the mechanism for fault detection is required to
be efficient. In this context, efficiency means high exe-
cution speed and low complexity. Efficiency becomes
a critical issue when the error detection mechanism is
integrated into the communication protocol itself.

In this paper, we address the problem of error dete-
ction a in communication protocol, which we model as
a Finite State Machine (FSM). The entity that carries
out the error detection process is composed of multiple
independent observers. Together, these observers can
detect the set of possible faults.

This paper is organized as follows. First, we summa-
rize the state of the art of techniques for detecting exe-
cution errors in communication protocols (Section 2).
In Section 3, we recall the technique of multiple ob-
servers, which we generalize in this paper. We intro-
duce our contribution in Sections 4 and 5 and illustrate
it through an example of the ISO transport protocol
class 4 (TP4). Finally, we give a few hints on how to
reduce the amount of non-determinism in the decom-
posed sub-FSMs.

2 Methods for fault detection in com-
munication protocols

In this section, we recall some techniques proposed
in the literature for low cost detection of execution er-
rors in communication protocols.

2.1 Signatureanalysis

In [8, 7, 6], we show how the signature analysis of
the paths of a control flow graph can be used to detect
execution errors of communication protocols. The ba-
sic idea is based on the following mechanism: at each
control state, the signature of the current path must
be equal to the signature of a correct path leading to
the current state.

In order to enhance the efficiency of this technique,
Leveugle [5] proposes to encode the states of the FSM
in such a way that all signatures of correct paths le-
ading to a same state are equal. Thus, every state has
one static entering signature, which is compared to the
signature computed during execution. In [8, 7, 6], we
introduce new signature functions based on the evalu-
ation of polynomials. These functions have the follo-
wing advantages: (1) They can be efficiently implemen-
ted for software applications. (2) They are suited for
an algebraic optimization of the signature controller.

Although the signature approach is very efficient, it
suffers from being a probabilistic approach and may

require a modification of the original FSM. Consequ-
ently, 1t is particularly suited for those cases where the
computational complexity of error detection is an im-
portant issue. This holds, for instance, when the error
detection mechanism is carried out by the entity that
executes the protocol itself (self-checking).

2.2 Abstraction

Oikonomou [11, 12] proposes to use an abstraction
technique in order to reduce the complexity of the ob-
server. An abstract FSM 1s obtained from the initial
FSM by aggregating several states into one. Note that
the abstract machine obtained by this mechanism al-
lows only the detection of a fraction of all possible
Oikonomou distinguishes several error types
(e.g., immediately detectable errors, statistically dete-
ctable errors, undetectable errors, etc.). However, the
problem of building (or even approximating) the smal-
lest FSM that allows the detection of a given error
type often appears to be NP-hard. Moreover, the user
cannot control the complexity of the resulting abstract
machines.

Lee et al. [4] propose abstraction techniques to re-
duce the complexity of the implementation of a commu-
nication protocol. Their contribution is based on the
following idea. A given communication protocol offers
a set of services. If one is interested only in a subset of
the provided services, it is possible to extract, from the
original implementation, a partial one that offers only
the required services. This partial implementation has
a lower complexity and higher efficiency than the ori-
ginal one. This specialization or abstraction technique
is also called protocol prunning or protocol thinning. It
can also be useful for conformance testing. However,
since this technique yields a deterministic implementa-
tion, it cannot reduce the complexity of an optimized
implementation that offers all services of the conside-
red protocol. The adaptation of these techniques to
the detection of execution errors has not been, in our
knowledge, addressed by the community and is a po-
tentially promising direction for future research.

€Irrors.

2.3 Afault tolerant TTP protocol

Kopetz and Griinsteidl [3] propose a fault tolerant
communication protocol for real-time systems. One of
the techniques used by their protocol consists of syste-
matically verifying that the state variables of the en-
tities involved in the communication process are all
identical. This operation is carried out without incre-
asing the size of the protocol frames by computing the
Cyclic Redundancy Code (CRC) of the concatenation

of the transmitted data and of the values of the state
variables. When a node in the network is in a faulty
state (i.e., the state variables are incompatible with
those of other nodes), the CRC is different from the
one expected by the other nodes. This is illustrated in
Fig. 2. This technique is interesting because it allows
the detection of some errors without increasing the size
of the communication frames. Tts disadvantage is that
it requires the cooperation of the two communicating
entities and the modification of the protocol that is
monitored.

Node i State Node j State

variables variables

‘ Data to be transmitted }—‘ LFSR ‘ Received data

\ error

\ Frame
| Data

| crc |

Figure 2. In the TTP protocol, the CRC is computed
(using a Linear Feedback Shift Register, LFSR) over
the transmitted data and the values of the state va-
riables, which must be identical in all nodes. When a
frame is received, a node recomputes the CRC using
its own values for the state variables. This allows us
to simultaneously detect communication errors and
verify the coherence of state values across the nodes.

3 The technique of multiple observers

Wang and Schwartz [16, 17] propose a very inte-
resting technique for detecting the execution errors of
communication protocols using multiple external ob-
servers. The communication protocol is modeled as an
FSM. The multiple observers are obtained by an ade-
quate decomposition of the FSM. An error is detected
whenever at least one observer is in a state such that
there is no transition starting at this state and labe-
led with the received event. This technique reduces
the computational complexity of error detection and
exhibits an interesting behavior of graceful degradation
when the detection mechanism itself is faulty. Indeed,
as long as a subset of the observers remains opera-
tional, a subset of the errors can still be detected. This
technique has been extended by Vijayananda [15] for
the detection of an even bigger class of errors through
the use of extended finite state machines.

In this section, we introduce the technique of mul-
tiple observers of Wang and Schwartz that we genera-
lize in the rest of the paper.

3.1 Basicprincipal

The basic principal of the multiple observers techni-
que is to decompose the studied FSM of N states into
[logy N independent FSMs each comprising two sta-
tes and thus called 2-FSM, as shown in Fig. 3. Since

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

accept/reject

Events|| « __ % o _____ t}vi - __ > Fault Mangement
] fm mmmm e e e ‘ system
| a, d ‘
' 1
! 1
i b "Taccept/reject
__C a,c !

Figure 3. Error detection mechanism using multiple
observers.

the number of the resulting 2-FSMs is very small with
respect to the total number of states and since the
computational complexity of each 2-FSM 1s very low,
the computational complexity of the error detection
mechanism is considerably reduced. Moreover, since
the 2-FSMs are independent, it remains possible to de-
tect a subset of the occuring errors even when some
2-FSMs become faulty.

The disadvantage of this technique is that some non-
determinism may appear at the level of the 2-FSMs be-
cause of the decomposition process!. In order to cope
with this non-determinism during execution, Wang and
Schwartz propose to process the events to eliminate the
non-determinism before sending them to the 2-FSMs.
The resolution of the non-determinism is made possible
through the use of a buffer that memorizes all ambi-
guous event sequences until ambiguity can be resolved.

The decomposition algorithm proposed in [16, 17]
for building m 2-FSMs out of the initial FSM of N
states (with m = [log, N) is the perfect shuffle algo-
rithm recalled in Section 3.2. Each 2-FSM is built by
partitioning into two sets the N states of the initial
FSM.

A finite state machine A is defined as follows: A =
(@,%,6); where @ is the set of states (|Q| = N), &
is the set of events (vocabulary), and 4 is the tran-
sition function. A is decomposed into m machines
Al ..., Ap. Each machine 4; = ({Q%,QL}, %, 4) is
chosen such that @} and Q% are a partition of @, the
set of states of A. Consequently, Q) U@} = @ and
Q' N Q% = 0. The transition function of A; is chosen

1As a reminder, non-determinism occurs when, starting from
a given state, it is possible to reach two or more different states
at the occurrence of a given event.

as follows:

Vike{1,2),VEEY; 6(Q},) = Q;

Informally speaking, a transition from the state Q; to
the state Q}C occurs at the event E, when a transition
happens in the machine A from a state S, € @} to a
state S, € Q}C at the occurrence of the event F.
Furthermore, an optimal decomposition is obtained
when each state S of the machine A is uniquely de-
termined by a combination of states of the machines

A
3.2 Perfect Shuffle algorithm

In this section, we recall the perfect shuffle algorithm
proposed by Wang and Schwartz [16] for decomposing
an FSM of N states, with N = 2. When N is not a
power of 2, an adequate number of “ghost” states? is
added to N in order to make it a power of 2. The de-
composition algorithm generates m = log, N 2-FSMs.
The elements of a state Q; are ordered and denoted
q;:yl, ce q;,n/2~ The algorithm generates partitions that

are symmetric (i.e., with states Q; of equal size).

Algorithm 1 [17] Perfect shuffle(Q)

Q1 ={S1,...,Snya}; Q5 = {Snyog1, - -
Fori=1Tom—-—1Do

1 K

Q21+ :{qllylaql271a"'aqllyN/4aq227N/4}a

i+1 ={ i i i

2 T Njarr Do Njagr

SN

141 N2 Do, N2)

end

Figure 4. An ezample of a Finite State Machine.

Consider the FSM of Fig. 4 with @ =
{5, S5,53,54}. The application of the Algorithm 1

reported above yields the following decomposition:

Q1 ={51,5} Qi ={Ss 54}
Q7 ={51,5} Q3 ={52, 54}

2The “ghost” states are then eliminated from the decomposed

sub-FSMs.

4 Decomposition by state coding

In this section, we show that the Algorithm 1 can
be interpreted as the state coding algorithm reported
below (Algorithm 2), which is much simpler than the
former. Then, we generalize Algorithm 2 in order to
allow decompositions into finite state machines of k
states (k-FSMs instead of 2-FSMs).

4.1 Decomposition into 2-FSMsby binary coding
of states

The basic idea here is to encode each of the () states
of the initial FSM in base 2. Each state can be coded
in [log, N1 = m bits. Such a coding can be made ar-
bitrarily provided that distinct states are given distinct
codes®. Then, the states of a machine A; are constru-
cted by only considering the i*” bit of each state in @,
as shown in Algorithm 2.

Algorithm 2 Decomposition by binary coding
For:=0Tom—1DO
Qi = {S; € Q| the " bit of S; is equal to 0}
Q5= {S; € Q|the i'" bit of S} is equal to 1}

end

This algorithm yields exactly the same result as Al-
gorithm 1. Consider the example in Fig. 4. The Al-
gorithm 2 generates the following codes for the states:
S1 = 00, S, = 01, S3 = 10, and S4 = 11. This yields
the states @1, @, Q% and @3, as follows (see Fig. 5):

Q1 ={51,5} Q3 ={Ss54}
Qi ={5,5} @Q3={52, 54}

It is easy to check that such a decomposition strategy

a [b, c
%’,C

Figure 5. An example of a decomposition by binary
coding.

uniquely identifies a state. Indeed, two states that be-

long to the same sets Q]ll, ..., Q7" must have the same

binary encoding, which is impossible.

3In Section 6, we argue that an arbitrary coding can lead
to non-determinism whereas careful coding can reduce non-
determinism.

Theorem 1 Fach state of the protocol i1s uniquely de-
termined by the state of the 2-FSMs.

Proof: When the initial machine A is in a state .S,
the state of each 2-FSM is uniquely determined. This
holds since the binary coding of a state selects either
0 or 1 for any bit of the code. Thus, a state S cannot
belong to both @} and Q7.

Conversely, when the 2-FSMs A; are in states

1., @™, the initial machine A can be in one and
only one state. Since each bit of the binary code of
the current state of A is defined by the Q' states, the

current state is thus uniquely determined. a.

4.2 Decompaosition into k-FSMsusing a codingin
base &

A k-FSM is a finite state machine of k states. A de-
composition into k-FSMs (k > 2) yields sub-machines
that are more complex than the 2-FSMs obtained by a
decomposition by binary coding. However, it is often
useful (sometimes necessary) to resolve to such a de-
composition for the following reasons:

1. Non-determinism of a decomposition into 2-FSMs
reduces the efficiency of error detection (i.e., the
capacity to detect errors). A decomposition
into k-FSMs reduces the probability of this non-
determinism.

2. When the decomposition is required to be tole-
rant to faulty observers (see Section 5), the codes
for error control that need to be used must have a
symbol size equal to the number of states in the k-
FSMs. A decomposition into 2-FSMs requires bi-
nary codes. These codes are difficult to find for ar-
bitrarily chosen Hamming distances. For instance,
a decomposition into 4-FSMs (by coding in base 4)
generates log, |@| sub-machines. These 4-FSMs
are more complex than 2-FSMs but allow the use
of Reed-Solomon codes [2, 10], which can be built
for different Hamming distances. Thus, the use of
Reed-Solomon codes enables us to tolerate more
errors from the observers (see Section 5). Note
that, although two decompositions of an FSM,
one into 2-FSMs and another one into k-FSMs,
are equivalent from the point of view of fault tole-
rance, the use of k-FSMs enables the use of a larger
class of error correcting codes (of symbol size k)
and thus can be used when no optimal binary code
exists for the desired Hamming distance.

For a decomposition into k-FSMs, one can encode the
@ states in base k. The decomposition of an FSM of N
states into FSMs of k states generates [log, N finite

state sub-machines (log;, denotes the logarithm in base

Note that it is possible to combine decompositions
of several bases. Generally speaking, an FSM of N sta-
tes is decomposable into n t;-FSMs of respective sizes”
ti1,ta,...,t, ifand only if t1 x t5 x --- xt, > N.

For instance, a machine containing 6 states can
be decomposed into one machine of 2 states and one
machine of 3 states. Fig. 6 shows such a decomposition
for the case of the Alternated Bit Protocol (ABP) [1].
The states Sy, Ss, Sz, S4, S5, and Sg are coded as

follows:

S; =00 S3=02 S;=11
Sy =01 S4=10 Ss=12

Moreover, the decomposition into a combination of

d >
d
a,b,c a,c,e

a
O=C) e
a: user msg

b: data0 d: ack
c: timeout e: datal

d

Figure 6. Decomposition of the alternated bit protocol
(ABP) into one 2-FSM and one 3-FSM.

k-FSMs of various sizes allows the resolution of the
non-determinism locally by mixing decompositions of
k-FSMs (k > 2) (when non-determinism must be pre-
vented) and decompositions of 2-FSMs (when non-
determinism does not occur).

5 Error control codes for fault tolerant
decompositions

In this section, we show how to use error dete-
cting/correcting codes so that the decomposition re-
mains robust against a breakdown of a subset of the
observers. This characteristic of fault tolerance of our
decomposition strategy should be contrasted to the be-
havior of the decomposition obtained by the perfect
shuffle algorithm of Wang and Schwartz, which can
only detect a reduced subset of faults when faced with
the same problems.

4The size of an FSM designates its number of states.

51 Theprinciple

The decomposition into 2-FSMs is interesting in that
the system for error detection does not suddenly col-
lapse but remains capable of detecting a subset of the
faults as long as some 2-FSMs remain operational. In
this section, we propose a decomposition strategy that
is fault tolerant to the malfunctioning of £ 2-FSMs.
The goal here is to decompose an FSM A into n 2-
FSMs such that any subset of 2-FSMs of size m be a
decomposition of A. Two cases may arise:

1. A faulty 2-FSM stops contributing to the error
detection process. In this case, the remaining 2-
FSMs need only be a decomposition of the initial
FSM. A code for error detection with a Hamming
distance of £ + 1 and of size n is sufficient for this
purpose®. Since a state in the machine A can be
uniquely determined from any (n — k) bits, it is
thus possible to tolerate k faulty 2-FSMs.

2. A faulty 2-FSM continues to participate in the er-
ror detection process. The results of the faulty
2-FSM may be incorrect and may induce the glo-
bal fault detection mechanism into error. To avoid
such a situation, it becomes necessary to use an er-
ror correcting code of Hamming distance equal to
2k 4+ 1. A state in the original FSM is determined
uniquely with n bits even when k bits (out of n)
are faulty [2, 9].

Whenever a faulty observer is again made opera-
tional, it needs to be resynchronized with the current
state of the protocol. The mechanism proposed for this
purpose by Wang and Schwartz in [16, 17] requires the
availability of input classes of minimal length to allow
a quick re-synchronization of the observer when 1t 1s
brought back into operation. Another advantage of the
use of a set of redundant observers is that the newly
made operational observer need only get the current
state of the protocol from those observers that are still
functioning. Such a feature remains true as long as
the number of faulty observers does not exceed the ca-
pacity of detection (or correction) of the error control
code that is used.

5.2 Example

Consider the set of) states of the example of Fig. 4.
It is possible to use a parity code to generate three 2-
FSMs such that any 2-FSMs be a decomposition of
the original FSM. The states can be chosen as follows:

5In a code of size n and Hamming distance d, any two code-
words differ in at least d bits.

S1 = 000, Sy = 011, Sg = 101, and Sy = 110. This
yields the three 2-FSMs shown in Fig. 7:

Q1 ={51,5} Q3={Ss54}
Q7 ={51,5} Q3 ={52,54}
QY ={51,5} Q3 ={52 53}

‘@ - @,
C

a b, c

‘@ - @’

¢ b ac

Figure 7. An exzample of a fault tolerant decomposi-
tion. In this case, when any 2-FSM becomes faulty,
the two 2-FSMs left remain a decomposition of the

original FSM.

It is difficult to build error control codes that are bi-
nary and optimal (every redundancy bit increases the
Hamming distance by 1). Furthermore, Reed-Solomon
codes [2, 9] are codes with symbols coded on several
bits but that are easy to build for variable Hamming
distances. The use of such codes enables us to tolerate
several faulty observers. The disadvantage of these co-
des 1s that the symbol size requires the decomposition
into FSMs of k states, with k = 9(size (symbol)) gy
example, decomposing into 4-FSMs allows us to use a
Reed-Solomon code that detects up to 3 errors or cor-
rects 1 error, which allows us to tolerate the breakdown
of up to 3 observers or one malicious observer.

5.3 lllustration: Transport protocol TP4

We restrain ourselves to a simplified version of the
transport protocol TP4 to illustrate our decomposition
strategy based on coding theory.

The original finite state machine of TP4 is shown in
Fig. 8. In order to decompose this FSM, we arbitrarily
code the states as follows:

Closed = 000 wWrcCc = 100
WFTRESP = 001 Wrcc’ = 101
AKWAIT = 010 Closing = 110
Open = 011

This coding yields the following decomposition, shown
in Fig. 8:

Q1 {Closed, WFTRESP, AKWAIT, Open}
QL = {WFCC, WFCC", Closing}

CR,CC', AK, DT CC bC

(575

Figure 8. Decomposition of TPj.

CR AK, CC ’
CC, DR

DT, AK, AK'

Q? = {Closed, WFTRESP, WFCC, WFCC'}
Q2 = {AKWAIT, Open, Closing}

Q3 = {Closed, AKWAIT, WFCC', Closing}
Q3 = {WFTRESP, Open, WFCC"}

In order to be able to replace any one of the three 2-
FSMs of TP4 or to detect that it is faulty, it is possible
to add one additional 2-FSM by using a parity code.
The states of TP4 are coded as follows:

Closed = 0000 WrcC = 1001
WFTRESP = 0011 WrCcc” = 1010
AKWAIT = 0101 Closing = 1100
Open = 0110

The states of the 2-FSM added for tolerance are defined
as follows:

Q1= {Closed, Open, WFCC’, Closing}
Qi = {WFTRESP, AKWAIT, WFCC'

The new 2-FSM is shown in Fig. 9.

‘ . ’
CC, AK

AK, AK' , DR, DT cc

Figure 9. A parity 2-FSM to replace any 2-FSM in
the decomposition of TP4.

6 Hints for resolving non-determinism

As mentioned earlier, an arbitrary coding of the sta-
tes may yield more non-determinism in the sub-FSMs
than if the codes for states were chosen in a well-
thought manner.

In [14], Vijayananda discusses fault coverage of a
given decomposition. In this section, we give two in-
dications on how to code states such that the resul-

ting decomposition exhibits a reduced ‘amount’ of non-
determinism. First we define the source and destina-
tion sets as follows:

Definition 1 The source set E~ of an event F is the

set of states that accept the event F:
E-={Se€Q|35 e€Q,i(S,F)=25"}

Definition 2 The destination set E1 of an event F is
the set of states that can be reached with the event £

Et={SeQ|35€Q,65,F)=5}

One way to reduce the non-determinism and to
increase the fault coverage of a decomposition is to en-
code the states of the initial FSM such that:

1. For every event F, the Hamming distance between
two states in the source set £/~ is minimized.

VE € ¥; {Hamming-distance(S1, S2)[S1, S2 € E~}

1s minimal.

2. For every event | the Hamming distance between
two states in the destination set £t is minimized.

YE € ¥; {Hamming-distance(S;, S2)|S1, S2 € T}

1s minimal.

Intuitively, the condition expressed in Expression (1)
increases the fault coverage of the decomposition; whe-
reas the condition expressed in Expression (2) reduces
potential non-determinism.

The states of the initial FSM are placed on the ver-
tices of a hypercube of dimension [log, |@Q|]. When the
states of the source set (respectively, destination set)
of an event F are placed (coded) on the same edge,
face, cube, etc. of the hypercube, the maximal Ham-
ming distance between any two states in the source
set (respectively, destination set) is reduced. The size
of the source set (respectively, destination set) of E is
thus reduced.

Consider the FSM corresponding to the ABP proto-
col shown in Fig. 6 (left). The source and destination
sets of the events ¥ = {a,b, ¢, d, e} of this FSM are as

follows:
a- = {Sl, 54} at = {52, 55}
b~ = {Ss} bt = {S3}
¢” = {5, 5} T = {5, S5} (3)
d- :{53,56} d+ 2{51,54}
e” ={Ss} et = {5}

The only events that have a source or destination set
that is not a singleton are events a, ¢, and d.

(1)

o1 N d
¥’ :
a
S1 010 ab.c
c a
S2 3
001 5 011 d

Figure 10. ILeft: The states of the initial FSM
of ABP are placed on the vertices of a hypercube.
The hard lines represent the transitions in the initial
FSM. Right: Decomposition into deterministic sub-
machines.

In Fig. 10 (left), the states of the ABP protocol are
coded in a hypercube of dimension 3 (i.e., a cube). The
states in the source set of each of the events a, ¢, and
d are placed on the same edge in the cube. This is
also true for the states in the destination set of these
events. This assignment results in a deterministic full-
coverage decomposition. This decomposition must be
contrasted with the decomposition obtained by the per-
fect shuffle algorithm [16, 17], which does not cover all
faults.

However, automating this decomposition technique
is still an open problem and requires further investiga-
tions.

7 Conclusion

In this paper, we address the problem of detecting
execution errors in communication protocols. We base
our approach on the multiple observers strategy pro-
posed by Wang and Schwartz [16]. We show that this
problem can be studied from the perspective of coding
theory. This allows us to generalize the technique of
multiple observers into a fault tolerant one.

As a future research direction, we intend to develop
an adequate encoding of the states in order to solve the
problem of non-determinism of the sub-FSMs resulting
from the decomposition.

References

[1] K. Barlett, R. Scantlebury, and W. Wilkinson. A Note
on Reliable Full-duplex Transmission over Half-duplex
Links. Communications of the ACM, 12(5):260-261,
1969.

[2] R. E. Blahut. Theory and Practice of Error Control
Codes. Addison-Wesley, Reading, MA, 1983.

(3]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Hermann Kopetz and Gunter Grunsteidl. TTP - A
Protocol for Fault-Tolerant Real-Time Systems. Com-
puter, 37:14-23, 1994.

David Lee, Arun N. Netravali, and Krishan K. Sab-
nani. Protocol Pruning. Proceedings of the IFEFE),
83:1357-1372, 1995.

Régis Leveugle. Analyse de Signature et Test en Ligne
Integré sur Silicium. PhD thesis, Institut National Po-
Iytechnique de Grenoble, January 1990.

Guevara Noubir. Nouwvelles Techniques pour la
Tolérance auxr Pannes Basées sur l’Algébre des Po-
lynomes. PhD thesis, Swiss Federal Institute of

Technology in Lausanne (EPFL), Switzerland, 1996.

Guevara Noubir, Kateel Vijayananda, and Henri J.
Nussbaumer. A Robust Transport Protocol for Run-
Time Fault Detection. In Proceedings of ICNP’95:
IFEEE International Conference on Network Protocols,
pages 164-171, Tokyo, Japan, November 7-10, 1995.

Guevara Noubir, Kateel Vijayananda, and Prasad
Raja. Signature Based Technique for Fault Detection
in Communication Protocols. In Proceedings of the
IFEEE International Symposium on Information The-
ory, page 43, Whistler, BC, Canada, September 17-22,
1995.

Henri J. Nussbaumer. Téléinformatique I. Presses Po-
Iytechniques Romandes, 1987.

Henri J. Nussbaumer. Computer Communication
Systems, volume 1 & 2. Wiley Chichester, 1989-1990.

Abstractions of Finite-State
Machines Optimal with Respect to Single Undete-
ctable Output Faults. IFEF Transactions on Com-
puters, C-36(2):185-200, 1987.

Kostas N. Oikonomou. Abstractions of Finite-State
Machines and Immediately-Detectable Output Faults.
IEEE Transactions on Computers, 41(3):325-338,
1992.

Kostas N. Oikonomou.

Marc Riese. Model-Based Diagnosis of Communica-
tion Protocols. PhD thesis, Swiss Federal Institute of
Technology, Lausanne, Switzerland, 1993.

Kateel Vijayananda. A Framework for Diagnosis of
Communication Protocols. PhD thesis, Swiss Federal
Institute of Technology in Lausanne (EPFL), Switzer-
land, 1996.

Kateel Vijayananda. Distributed Fault Detection
in Communication Protocols Using Extended Finite
State Machine. In JCPADS, International Conference
on Parallel and Distributed System, Tokyo, June 3-6,
1996.

Clark Wang and Misha Schwartz. Fault Detection with
Multiple Observers. In IEFEE INFOCOM’92, Florence,
pages 2187-2196, 1992.

Clark Wang and Misha Schwartz. Fault Detection with
Multiple Observers. TEFEFE Transactions on Networ-
king, 1(1):48-55, 1993.

