
1

A Scalable Key-Distribution Scheme for Dynamic Multicast Groups∗

Guevara Noubir
Real-Time and Networking Group, CSEM SA

Neuchâtel, CH-2007
guevara.noubir@csem.ch

∗ This work was done within the project “Optimisation of the Internet Protocols over Satellite”. This project
was financed by the European Space Agency.

Abstract: In this paper, we address the problem
of key distribution for large dynamic groups. We
propose algorithms that require only an O(log
|M|) (where |M| denotes the size of the group)
message communication complexity when a
member leaves the group [Noub98]. The other
advantage of these algorithms is that they can be
implemented in a centralized entity, which makes
them very adapted to multicast over satellite.

1. Introduction

Key distribution for large multicast groups is an
active area of research. It was recognized as such
in the latest internet drafts on IP security
[RFC1825 (Section 5.2), KS97arch (Section
4.7)]. Recent work on group key distribution
either ignores the scalability problem (GKMP)
[HC97], does not support dynamic groups
(SMKD) [Ball96], or has a limited scalability
(Iolus) [Mitt97]. A brief description and
discussion of the existing algorithms will be
discussed in Section 2.

The problem of dynamic groups is that when a
new member asks for joining the group, (if
authentication succeeds and access control
checks the validity of the request) the group key
has to be changed and securely communicated to
all the members of the new group. Changing the
key is necessary because otherwise the new user
may be able to decrypt the packets transmitted
before he joined the group (for that he would
have to record the encrypted packets and decrypt
them after joining). The other condition on the
key is that it also has to be changed whenever a
member leaves the group. Otherwise the leaving
member could still have access to the group
exchanged information. Thus we need a
mechanism that allows to share a key with all the
group members and only the group members.

KK11 KK22 KK33 KK44 KK55

Alice JoinsAlice Joins

Bob LeavesBob Leaves

Carol JoinsCarol Joins

Alice LeavesAlice Leaves
ttii tti+1i+1 tti+2i+2 tti+3i+3

Figure 1. Whenever a new member joins the group or
a member leaves the group, the key shared by all the
members have to be changed.

We assume that there exists a group controller
GC that controls the membership of the group.
We also assume that this group controller has a
mean to share a unique secret key KMi with each
group member. This assumption is realistic, since
establishing such a key could be done through a
trusted party or when the member asks to join the
group by using asymmetric (public/private keys)
encryption and certificates.

In section 2, we will recall the existing schemes
for multicast key distribution and present their
limitations. In section 3, we will present our first
scalable key distribution scheme and present its
failure to resist to a coordinated attack of the
group members. Finally, in section 4, we will
present a scheme, which both scales efficiently to
large dynamic groups, and resists to coordinated
members attacks.

2. Existing approaches to key
distribution

2.1 Group Key Management
Protocol

The Group Key Management Protocol (GKMP)
[HC97], describes an architecture for the
management of cryptographic keys for multicast
communications. GKMP provides no way for
efficiently changing the group key when the
group membership changes (leaving or joining
members). In fact it is almost based on a

2

generalization of unicast type key establishment.
Thus it cannot scale efficiently to large groups.

2.2 Scalable Multicast Key
Distribution

The Scalable Multicast Key Distribution
(SMKD) [Ball96] is a proposition for a key
distribution protocol as part of the Core Based
Tree (CBT) architecture. While SMKD uses the
implicit multicast hierarchy for providing an
efficient key distribution hierarchy, it cannot
handle key change when the group membership
changes. Furthermore, implementing a CBT for a
multicast group using a satellite links is not
efficient.

2.3 Diffie-Hellman key distribution
for groups

In [STW96] a mechanism for securely
establishing a shared key between members of a
group was presented. This scheme is based on an
extension of the Diffie-Hellman key exchange
scheme. This scheme is in fact an M round
protocol (where M denotes the number of
members in the group). This is a limitation for
such a scheme to be used for groups with a high
cardinal. Which is almost always the case for
multicast. Furthermore, the Diffie-Hellman
scheme is computation consuming (because it is
based on exponentiation of big numbers).

2.4 Iolus

Iolus provides a scalable mechanism for key
distribution for multicast [Mitt97]. It is based on
a hierarchy of Group Security Agents (GSA)
which includes the Group Security Controller
(GSC) and the Group Security Intermediaries
(GSI). The GSC is the root of the tree hierarchy
and the GSIs are trusted servers that act as
proxies. A joining member sends a request to the
nearest GSA and receives its data from this GSA.
The security key to decrypt the data is provided
by the GSA and is local to the members
connected to the GSA. Whenever, the subgroup
of members connected to a GSA changes, only
the key shared in this subgroup is changed. The
advantage of this mechanism is that the size of
the message to be sent when the membership
changes is proportional to the small subgroup
and not to the whole group like with other key
distribution mechanisms.

Even if Iolus is the best scheme available today,
it still have several limitations:

• For a large multicast group, with N GSA the
size of the key update message is on average
equal to O(M/N), which can still be very
high.

• To be efficient this scheme requires a high
number of trusted authorities which makes
the system more vulnerable since it is
enough to succeed an attack over any one of
the GSA to break the system.

• For a multicast group over a satellite one
cannot efficiently implement a hierarchy of
GSA they all have to be upstream the
satellite link which puts the bottleneck on
the satellite link.

3. Centralized key-distribution
based on group partitioning

In this section, we present a key distribution
scheme that requires a logarithmic number of
messages to update the encryption key when a
member joins or leaves the group (these
messages can be grouped into a single IP packet).
We will first give an overview of this scheme,
then present the join, leave, re-key and group-
increase algorithms. Finally, we will show the
limitations of this scheme.

3.1 Key distribution scheme
overview

The principle of this scheme is to use a set of
keys KS. Each group member Mi is provided a
subset of keys KSi ⊂ KS such that any group
member different from Mi have at least one key
that Mi does not have. More formally this
condition can be expressed as:

∀ ≠ ∩ − ≠ ∅j i KS KS KSj i; () Eq. 1

This means that if a message is separately
encrypted using a subset of the keys in the set
KS-KSi (this results in several encrypted
messages) then it can be read by all the members
of the group except Mi. The reason is that each
member different from Mi will find a key that Mi

does not have. Thus he will find a message that
he can decrypt with this key that Mi cannot
decrypt.

This problem is equivalent to finding two
functions f and g such that:

3

f M KS

g K M K f M

g KS f M M M

i i

i i

i i

()

() { | ()}

(()) { }

=
= ∈

− = −
Eq. 2

The image by f of a member is the set of keys
that this member have. The image of a key by g
is the set of members that have this key. The
image of a set by a function fct is the union of the
images of the members of the set (i.e., fct(A) =
∪x∈A{fct(x)}).

If the size of KS is significantly smaller than the
group size, it would be much efficient to exclude
a group member Mi by sending the new group
key in a message encrypted using the keys in the
set KS-KSi. This new group key can thus be
retrieved by all the members of the group except
the member Mi leaving the group.

In the following we will also assume that each
group member shares a unique secret key with
the group controller GC. This key may be
established using public key cryptographic
functions or through a trusted third party. This
key is noted KMi.

3.2 Group members coding

The objective here is to find the mapping f
defined in the preceding section. We assume that
the keys in the set KS are numbered from 1 to n.
A code C is associated to each group member. C
is in fact a vector (c1, c2, …, cn), where cl

indicates if the key Kl is provided to the group
member. In other words, c K KSl l i= ⇔ ∈1 or,

c K f Ml l i= ⇔ ∈1 () .

Theorem 1: A set of n keys can be used to satisfy

equation (Eq. 1) for a group of size C
n

n
2 .

Proof: See [Noub98]

Even if this scheme is optimal, the coding of
group members is not straightforward and adding
new members to the group may complicate the
coding. Thus, we introduce another coding which
supports less members for a given number of
keys but which is very easy to implement and
can be extended to new users without modifying
the codes of the old members. Furthermore, the
number of keys stays logarithmic in the number
of members of the group.

Let us assume that the group members are
associated to values from 0 to |M|-1. These
values have binary length equal to log(|M|),
which is noted as n. A value is denoted (v1, v2,
…, vlog(|M|)). KS is constituted of 2*log(|M|) keys
{K1, …, Kn, K’1, … , K’n}. For every group
member which binary value is (v1, v2, … , vn), if vi

is equal to 0 then the member is provided with
key Ki (and is not provided with Ki’) and if vi is
equal to 1 then the member is provided with key
K’i (and is not provided with Ki). Thus the code
of a group member is

C v ,v ,...,v ,v ,v , ,vn n= (...)1 2 1 2 , where

vi denotes the binary complement of vi . We call
this coding the binary-invert-binary coding.

 Theorem 2: The binary-invert-binary
coding of group members satisfies equation (Eq.
1). This coding requires 2*n keys for a group of
size 2n.

Proof: See [Noub98].

Example 1: For a set of keys of size 8, the
group size can be as big as 24 =16. The keys can be
associated to the group members as shown in Table 1.

For example, KS-KS2 = {K1, K3, K4, K’ 2}, and
g(K1) = {M1, M3, M5, M7, M9, M11, M13, M15},
g(K3) = {M4, M5, M6, M7, M12, M13, M14, M15},
g(K4) = {M8, M9, M10, M11, M12, M13, M14, M15},
g(K’ 2) = {M0, M1, M4, M5, M8, M11, M12, M13}.
Thus, g(KS-KS2) = M-{M2}. Any member of the
group has at least K1, K3, K4 or K’ 2.

G r o u p M e m b e r s C o d e s
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

K1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
K K2 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
S K3 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

K4 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
K’1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
K’2 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
K’3 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0
K’4 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

Table 1. Binary-invert-binary vector codes for a group of size 16 using 8 keys.

4

3.3 Member Join/Leave key update

The problem of changing the encryption key
when a user joins or leaves the group is
facilitated by encrypting the new group key using
a combination of the old key and KS keys.

Algorithm 1 Join(Mi);

/* broadcasted to the group */
GC_send(EKg_old(Kg_new));

/* message for Mi */
GC_send(EKMi(KSi), EKMi(Kg_new));

The function EK(msg) denotes encrypting msg
using the encryption key K. Kg_new denotes the
new group key and Kg_new denotes the old group
key. The first line of Algorithm 1 sends the new
group key (Kg_new) to the members that were in
the group before the join. This is done by using
the old group key. Since only the members in the
old group have this key, only them can get the
new group key. For the joining member Mi the
new group key is encrypted using Mi secret key -
KMi. The keys in KSi (that are supplied to Mi for
the forthcoming operations) are also encrypted
using KMi and are sent to Mi.

Algorithm 2 Leave(Mi);

GC_send(∀Km∈KS-KSi; EKm(EKg_old(Kg_new)));

/* broadcasted to the group */

When a group member leaves (Mi) the new group
key is first encrypted using the old group key.
This is to avoid that a member that has
previously left the group (but that still have the
keys from KS) gets the new group key. Then, it is
further encrypted using the keys in the set KS-
KSi. Thus, all the group members except the
leaving one (Mi) can get it.

When a member leaves the group, its code may
be reallocated to the next joining member. This is
because when a member leaves the group, he
looses the group key, which is necessary for
having the new group keys. The joining member
reusing an old member code is provided with the
newest group key by the group controller as
described in Algorithm 1.

3.4 Re-keying

The group encryption key may need to be
changed periodically. This can be done by the
group controller by encrypting it using the old
group key.

3.5 Group size increase

The binary-invert-binary encryption scheme
scales very well to group increase. The number
of keys in KS does not need to be specified when
starting the multicast session but can be
increased according to the number of joining
members. In practice, one would start with a KS
that can support a reasonable number of member
and will be increased if necessary.

KS has to be increased if the number of members
in the group goes from 2n to 2n + 1 (or more up to
2n+1), while the size of KS is 2*n. Thus, an
increase operation is executed every time the
group size doubles. This is done by adding a new
bit for coding the value of the group members,
this results in adding two bits for members codes
and two new keys Kn+1 and K’ n+1. This implies
that the previous group members constitute
g(Kn+1).

Algorithm 3 Group-Increase(Mi);

/* broadcasted to the group */
GC_send(EKg_old(Kn+1));

/* execute a join for Mi */

Join(Mi);

Example 2: When the group size increases from 8 to 9
members, a new couple of keys are added to KS: (K4,
K’ 4). K4 is supplied to all the previous group members
{ M0, M1, M2, M3, M4, M5, M6, M7}. K4 is given to the
previous group members (to optimize this algorithm
one may use the old group key as K4, this would allow
to reduce the number of transmitted packets.). Then,
the group controller executes the join algorithm for
member M9.

Group Members Codes
0 1 2 3 4 5 6 7 8

K1 1 0 1 0 1 0 1 0 1
K K’ 1 0 1 0 1 0 1 0 1 0
S K2 1 1 0 0 1 1 0 0 1

K’ 2 0 0 1 1 0 0 1 1 0
K3 1 1 1 1 0 0 0 0 1
K’ 3 0 0 0 0 1 1 1 1 0
K4 1 1 1 1 1 1 1 1 0
K’ 4 0 0 0 0 0 0 0 0 1

Table 2. Group size increase.

3.6 Limitations of this scheme

The presented scheme is very efficient to handle
joining/leaving members and adapts very well to
group size change, but it is vulnerable to an
attack where several members coordinate their
actions. This attacks is as follows:

5

1. member Mi joins the group and gets the
group key and the keys in KSi,

2. member Mj joins the group and gets the
group key and the keys in KSj,

3. member Mi leaves the group,
4. member Mj leaves the group, and sends the

latest group key to Mi,

5. member Mi receives the message (∀Km∈KS-
KSj; EKm(EKg_old(Kg_new))) broadcasted by the
group controller (as described in Algorithm
2).

6. since Mj has Kg_old (from Mj) and has at least
one key Km∈KS-KSj, he can recover the new
group key Kg_new without being a member of
the group.

As a conclusion, two members can coordinate
their actions to join and leave the group officially
while remaining able to have access to the group
key. In the next, we will show how to overcome
this limitation.

4. Centralized hierarchical
group key distribution

4.1 Key distribution scheme
overview

The main problem of the preceding scheme is
that a member who leaves the group keeps the
old keys in the KS and there is no efficient way
to change these keys without him finding them
when he can be helped by other members of the
group. The new hierarchical scheme is based on
a tree-hierarchy of keys such that: when a
member Mi leaves the group it is possible to
change all the keys he had without Mi being able
to get the new ones [Noub98]. The advantage of
the hierarchy of keys is that this change of key
requires only 2*log(|M|)-1 elementary messages.
A similar version of this algorithm was
independently discovered in [MTU98].

K

K0 K1

K00

K000 K001 K010 K011 K100 K101 K110 K111

K01 K10 K11

M0 M1 M2 M3 M4 M5 M6 M7

Figure 2. Hierarchy of keys. The leaf keys are the
secret keys of the members. K is the group key and
every group member have all the keys in the path from
the root to its node (which constitutes log(|M|-1)+1
keys).

The set KSi of keys given to the group member
Mi is defined as follows:
KS K j l Ki m ml j

= ≤ ≤ ∪{ | } { }... 0 where l =

log|M|-1, ml…m0 is the binary representation of i
(e.g., |M|=8, l = 2, and for member M2 the set
KS2={K010, K01, K0, K}). The key K on the root
node is the group key. The keys (Kml… m0) located
on the leaves are the unique keys shared between
the group controller and the group member.

4.2 Member join key update

When a member wants to join the group, the
group controller sends him the set KSi of keys.
This set is constituted of all the keys located on
the nodes connecting the tree-root to the member
leave. The group member already have the
unique key KMi = Kml…m0 shared with the group
controller. The old group key is noted K and the
new one is noted K’ . In this section we assume
that the tree has enough leaves to accept the
joining member. In section 4.5, we will show
how the tree can be extended to add one more
hierarchy level to double the number of its
leaves.

6

K

K0 K1

K00

K000 K001K010 K011 K100 K101

K01 K10

M 0 M 1 M 2 M 3 M 4 M 5

KS5={ K101, K10, K1, K’ }

K’

Figure 3. When a new member M5 joins the group: 1)
the group key K is changed into a new key K’ and
broadcasted to the group members. This message is
protected by encrypting it using the old group key K.
Then the set KS5-{K101 = KM5} is sent to M5 after
encrypting it using the key KM5 shared only by M5 and
GC.

Algorithm 4 Join(Mi);

GC_send(EK(K’));
/* broadcasted to the group */

GC_send(EKMi(KSi-{KMi}));
/* message for Mi ; KMi is not sent */
/* because Mi already have it */

4.3 Member leave key update

When a group member Mi leaves the group, the
whole set of keys in KSi have to be cancelled and
changed to new ones. The principle of the
algorithm is to change the keys starting by tree
leaves (lower nodes) and then going higher in the
tree hierarchy (Kml…mj starting by j=1 and
increasing until l).

The key Ki = Kml…m0, is cancelled. The key
Kml…m1is used only by the neighbor of Mi

(M
ml m... 0

). Thus it can be securely transmitted to

M
ml m... 0

 using the key K
ml m... 0

. By induction

we can assume that to change the key Kml mj... we

have already changed the key Km ml j... +1
. Since,

all the members who need to know the new key
Km mjl ... already have Km ml j... +1

 or K
m ml j... +1

(which is not owned by Mi), then transmitting the
new key can be done securely using these two
lower level keys. Only the members who have to
know this key can decode these messages
because no one except them have these keys.

K

K0 K1

K00

K000 K001K010 K011 K100 K101K110 K111

K01 K10 K11

M 0 M 1 M 2 M 3 M 4 M 5 M 6 M 7

K’ 10

K’ 1

K’

Figure 4. When member M4 leaves, all the keys in KS4

have to be changed (or cancelled: K100).

Algorithm 5 Leave(Mi);

/* The GC changes the keys in KSi and */
/* broadcast them to the group members */

/* select a new key */
Kml… m1 = K’ ml… m1;

/* send it to Mi neighbour */

GC_broadcast(E KK m mml m l... ...()
0 1

);

for j = 2 to l do

/* select a new key */
Kml… mj = K’ ml… mj

 /* broadcast to half sub-tree */

GC_broadcast(E KK m m mjml j l... ...()
()

+1
);

/* broadcast to the other half sub-tree */

GC_broadcast(E K
K m m mj

ml j l... ...
()

()
+1

);

end-for;

K = K’ ; /* select a new group key */
/* broadcast to 1st half-tree */
GC_broadcast(EK0(K));
/* broadcast to 2nd half-tree */
GC_broadcast(EK1(K)) ;

This algorithm broadcasts two messages for each
layer of the tree except for the lowest layer where
only one message is broadcasted (since Mi left
the group). The total number of messages is
equal to 2*(l+1)-1 = 2*log(|M|)-1.

4.4 Re-keying

To periodically change the group key the old
group key can be used to protect the transmission
of the new one.

7

Algorithm 6 Re-key();

GC_send(EKg_old(Kg_new));
/* broadcasted to the group */

4.5 Group size increase

The proposed key distribution algorithm will
start with a reasonable tree size. However, the
number of joining member may exceed the
number of tree-leaves. When this happens the
key distribution has to accommodate this change
efficiently. We provide a mechanism for
doubling the size of the tree. This action is done
when the current tree is full and the group
controller received a request from a new member
to join the group.

Increasing the size of the tree is done by adding a
new layer on top of the current tree. This allows
to have another sub-tree of size equal to the
previous one. The group members identifiers will
be coded over l+1 bits. All to previous keys are
renamed from Kml… mj to K0ml… mj (the keys
indices are prefixed by a 0). The new joining
members will be located on the right sub-tree,
will have identifiers starting with 1 (M1ml… m0),
and keys starting with one (K1ml… mj). The old
group key K is renamed K0 and a new group key
K is generated.

K0

K00 K01

K000

K0000 K0001K0010K0011K0100K0101K0110K0111

K001
K010 K011

M 0 M 1 M 2 M 3 M 4 M 5 M 6 M 7

K

Figure 5. The group size can be doubled by adding
one layer in the tree. The keys are renamed to
correspond to the new numbering. This is done by
prefixing all the previous group keys by a 0. The zero
indicates that they are used in the left sub-tree. A new
group key K is introduced.

The group size increase is executed only when
the actual group members cardinal is equal to the
maximum number of leaves in the tree. When a
member leaves the group its leaf may be
reallocated to the next member joining the group.

5. Conclusion

In this paper, we have introduced a novel key
distribution mechanism for multicast
communication. The advantage of the proposed
mechanism is that it can handle groups of large
size and dynamic membership. When the
membership of a group changes the exchanged
messages to change the group key is in O(log
|M|) where |M| denotes the size of the group. The
proposed algorithm can be implemented in a
centralized group controller which allows it to be
efficiently used for multicast over satellite.

6. References

[Ball96] T. Ballardie, “Scalable Multicast
Key Distribution”, RFC1949, May
1996.

[HM97] H. Harney and C. Muckenhirn,
“Group Key Management Protocol
(GKMP) Architecture”, RFC 2094,
1997.

[HC98] D. Harkins and D. Carrel, “The
Internet Key Exchange (IKE)”,
draft-ietf-ipsec-isakmp-oakley-
06.txt, February 1998.

[KA97arch] Stephen Kent, Randall Atkinson,
“Security Architecture for the
Internet Protocol”, draft-ietf-ipsec-
arch-sec-02.txt, November 1997.

[KA97esp] Stephen Kent, Randall Atkinson, “IP
Encapsulating Security Payload”,
draft-ietf-ipsec-new-esp-00.txt,
March 1997.

[KA97ah] Stephen Kent, Randall Atkinson, “IP
Authentication Header”, draft-ietf-
ipsec-new-auth-00.txt, March 1997.

[Mitt97] Suvo Mittra, “Iolus: A Framework
for Scalable Secure Multicasting”, In
Proceedings of the ACM
SIGCOMM’ 97, p277-288.

[MSST98] Douglas Maughan, Mark Schertler,
Mark Schneider, Jeff Turner,
“Internet Security Association and
Key Management Protocol
(ISAKMP)”, version 9, draft-ietf-
ipsec-oakley-02.txt.

[MTU98] H. Maruyama, T. Tokuyama, N.
Uramoto, “A Key Update Method
for Secure Multiparty
Communication”, Proceedings of the

8

IEEE Globecom Internet Mini-
Conference, Sydney, Australia,
November 1998.

[Noub98] G. Noubir, “ Optimizing Multicast
Security over Satellite Links” ,
European Space Agency Project,
Work package 20 report, version 0.1,
April 1998.

[Orma96] H. Orman, “ The Oakley Key
Determination Protocol” , version 2,
draft-ietf-ipsec-oakley-02.txt.

[STW96] M. Steiner, G. Tsudik and M.
Waidner, “ Diffie-Hellman Key
Distribution Extended to Group
Communications” , In Proceeding of
the 3rd ACM Conference on
Computer and Communications
Security, New Delhi, March 1996.

