On the Computation of Local Interchangeability
in Discrete Constraint Satisfaction Problems

Berthe Y. Choueiry
Knowledge Systems Laboratory
Stanford University
Stanford, CA, 94305-9020
choueiry@ksl.stanford.edu

Abstract

In [4], Freuder defines several types of interchange-
ability to capture the equivalence among the values of
a variable in a discrete constraint satisfaction prob-
lem (CSP), and provides a procedure for computing
one type of local interchangeability. In this paper, we
first extend this procedure for computing a weak form
of local interchangeability. Second, we show that the
modified procedure can be used to generate a conjunc-
tive decomposition of the CSP by localizing, in the
CSP, independent subproblems. Third, for the case of
constraints of mutual exclusion, we show that locally
interchangeable values can be computed in a straight-
forward manner, and that the only possible type of
local interchangeability is the one that induces locally
independent subproblems. Finally, we give hints on
how to exploit these results in practice, establish a
lattice that relates some types of interchangeability,
and identify directions for future research.

1 Introduction

Interchangeability among the values of a variable in
a Constraint Satisfaction Problem (CSP) captures the
idea of ‘equivalence’ among these values and was first
formalized by Freuder [4]. Choueiry and Faltings [2]
show that interchangeability sets are abstractions of
the CSP with the following advantages: (1) The re-
duction of the computational complexity of a problem,
and the improvement of the performance of the search
technique used to solve it. (2) The identification of
elementary components for interaction with the users.

This paper studies the computation of local inter-
changeability, and is organized as follows. In Sec-
tion 2, we first review the definitions of a CSP and
interchangeability; we discuss the advantages drawn
from computing interchangeable sets; then we restate
the procedure introduced in [4] for computing a strong
type of local interchangeability. In the rest of the
paper we describe our contributions. In Section 3.1,
we extend the above mentioned procedure; we show
that this extension enables the computation of a weak

Copyright (©1998, American Association for Artificial
Intelligence (www.aaai.org). All rights reserved.

Guevara Noubir
Data Communications Group
Centre Suisse d’Electronique et de
Microtechnique (CSEM), Rue Jaquet-Droz 1
CH-2007 Neuchatel, Switzerland
guevara.noubir@csemne.ch

form of interchangeability (Section 3.2) as well as the
identification of locally independent subproblems (Sec-
tion 3.3); then we describe how these interchangeable
sets are organized in a hierarchy (Section 3.4). Fur-
ther, we sketch how to use their properties in practice
(Section 4), and show that, for the case of constraints
of mutual exclusion, local interchangeability can be
easily computed, and is equivalent to identifying lo-
cally independent subproblems (Section 5). Finally,
we introduce a lattice that situates various contribu-
tions reported in the literature (Section 6), and draw
directions for future research (Section 7).

We intentionally restrict ourselves here to present-
ing the concepts, hinting on their usefulness, and illus-
trating them on simple problems. Although we have
already identified several properties useful for problem
solving, we do not discuss them here for lack of space.

2 Definitions

A CSP is defined by P = (V,D,C), where V =
{V1,V2,...,V,} is the set of variables, D =
{Dv,,Dv,,...,Dy,} the set of domains (i.e., sets of
values) associated with the variables, and C is the set
of constraints that apply to the variables. A con-
straint Cy; y;, applicable to two variables V; and V},
restricts the combination of values that can be as-
signed simultaneously to V; and Vj;, and thus defines
a relation Ry, vy, C Dy, x Dy;, which is the set of tu-
ples allowed by Cv; v;- When the relation is exactly
the Cartesian product of the variable domains (i.e.,
Ry, v, = Dy, x Dy;), the corresponding constraint
is said to be wniversal. To solve a CSP is to assign
one value to each variable such that all constraints are
simultaneously satisfied. A CSP is commonly repre-
sented by a constraint graph in which the variables are
represented by nodes, the domains by node labels, and
the constraints by edges that link the relevant nodes.
Universal constraints are omitted from the constraint
graph. In this document, we restrict our study to dis-
crete binary CSPs: each domain Dy, is a finite set
of discrete values, and each constraint applies to two
variables. We define the neighborhood of a set of vari-
ables S, denoted Neigh(S), to be the set of variables

adjacent to S in the constraint graph.

2.1 Interchangeability

Freuder introduces several types of value interchange-
ability for a CSP variable. Below, we recall those rel-
evant to our study, while illustrating each of them on
the list coloring problem of Fig. 1.

Figure 1: An ezample of a list coloring problem.

Definition 2.1 Full interchangeability: A value b for
a CSP variable V; is fully interchangeable (FI) with
a value ¢ for V; if and only if every solution to the
CSP that assigns b to V; remains a solution when c is
substituted for b in V; and vice versa.

Two FI values b and ¢ can be switched for variable V; in
any solution regardless of the constraints that apply to
Vi. In Fig. 1, d, e, and f are fully interchangeable for
V4. Indeed, we inevitably have V5 = d, which implies
that V4 cannot be assigned d in any consistent global
solution. Consequently, the values d, e, and f can be
freely permuted for Vj in any global solution. No effi-
cient general algorithm for computing FI has to date
been reported: in fact, determining FI may require
computing all solutions. Neighborhood interchange-
ability (NI) only considers local interactions, and can
thus be efficiently computed:

Definition 2.2 Neighborhood interchangeability: A
value b for a CSP variable V; is neighborhood inter-
changeable (NI) with a value ¢ for V; if and only if for
every constraint C' on V;:

{z| (b,z)satisfies C} = {z| (c,) satisfies C}

In Fig. 1, e and f are NI for V4. NI and FT are special
cases of k-interchangeability, which introduces gradu-
ally levels of full interchangeability in all subproblems
of size k, moving from NI for ¥ = 2 (local), towards
FI for k = n (global). k-interchangeability (includ-
ing FI and NI) is concerned with changing values of
one variable, while keeping those of all other variables
unchanged. Another type of interchangeability intro-
duced in [4], partial interchangeability, allows a subset
of the variables (A4 C V) to be affected when switching
the values of V;, while the rest of the ‘world’ (V-V;—A)
remains the same. Informally, partial interchangeabil-
ity is about extending a boundary (which is the set
of variables S affected by the switching operation) by
weakening the requirement on what may be affected.

Definition 2.3 Partial Interchangeability: Two val-
ues are partially interchangeable (PI) with respect to
a subset A of variables if and only if any solution in-
volving one implies a solution involving the other, with
possibly different values for variables in A.

In Fig. 1, a and b are PI for V; with respect to the set
A = {V3}. There is no known efficient algorithm for
computing the Pl-sets for a CSP variable. In addition
to the difficulty of computing PI, one also needs to
specify the set A, which is not a straightforward task.

In this paper, we extend the polynomial algorithm
for computing NI to efficiently compute a localized ver-
sion of PI, which we call NPI and define in Section 3.2.
Notice that FI corresponds to PI with 4 = (; and
similarly, NI corresponds to NPI with A = (. Fig. 2
illustrates the relations between these types of inter-
changeability (from local to full, and from strong to
weak). Informally, a variable V; affects the problem

Fl extending the boundary Pl ov
\/\/_\> i
Tr enforcing consistency *__)Boundary
NI — ——— ————= NP| OCspPvaiadle
global

strong weak
local

Figure 2: Interchangeability. Partial (~): from strong to
weak. Full (=): from local to global.

‘through’ the constraints that link V; to other variables
in the problem, thus through V;’s neighborhood. Two
values z and y that are NI for V; ‘affect’ Neigh({V;}) in
exactly the same fashion. They are bound to carry the
same effect on the whole problem, and are inevitably
FI for V;. More formally, Freuder shows that NI is a
sufficient but not a necessary condition for FI. (Indeed,
in the example of Fig. 1, d and e for V4 are FI but not
NI) It is easy to show that the same relation holds
between NPI and PI.

We introduce the relation =¢ that links values and
y, variables V; and V; in § C V, and the constraints
C of the CSP to indicate that the variable-value pairs
(Vs, z) and (V},y) are compatible with exactly the same

variable-value pairs in Neigh(S).
(=, Vi,8) =c (y,V5,5) 1
If and y are NI for V;, we have (z,V;,{V;}) =¢
(y, Vi, {Vi}); if they are PI, we have (z, V;, {V;}UA) =¢
(y,Vi,{Vi} U A). This relation is symmetric and tran-
sitive, because it is in essence a relation of equivalence.

2.2 Advantages of interchangeable values

We identify three main ways to use interchangeable
values in practice:

1. Strongly interchangeable values can be replaced by
one ‘meta-value’.

2. An asymmetric type of interchangeability, called
substitutability (see Definition 5.4), can be used to
accommodate unquantifiable constraints or subjec-
tive preferences.

3. Partial interchangeability localizes the effect of mod-
ifications to some variables and identifies compact

families of partial solutions: qualitatively equivalent
solutions can be generated by modifying the values
of the indicated variables only.

Classical enumerative methods fail to organize the so-
lution space in such a compact manner: they present
solutions in a jumble without showing similarities and
differences between alternative solutions. In particu-
lar, they fail to identify the boundaries within which
the effect of a change remains local. In practice, these
characteristics can be used as follows, beyond and in-
cluding search:

In interactive problem solving. Interchangeable
sets can be used to help the human decision-maker
view alternative choices in a concise way [2]. More
specifically, meta-values can be used to avoid
displaying too much information to the user;
substitutability allows the compliance to users’
preferences; and finally, partial interchangeabilities
delimit the extent of certain modifications, so that
the users can modify a solution locally to cope with
change in a dynamic environment.

In search. Interchangeability sets can be used (1) to
monitor the search process to remain as local as pos-
sible, by compacting the solution space representa-
tion and by grouping solution families, and (2) to
enhance the performance of both backtracking and
consistency checking by removing redundant values,
as shown in [1; 7].

In explanation. Interchangeability identifies groups
of objects (sets of variables and sets of values) to
become the basic components for a concept genera-
tion process aimed at providing explanation. In real-
world applications, it is reasonable to suspect that
the set of objects discovered to be interchangeable
share common characteristics [4]. In [2], a concept
generation procedure uses background knowledge, in
the form of concept hierarchies, to generate dynami-
cally concise descriptions of the interchangeable sets.

2.3 The discrimination tree

Below, we recall the procedure, introduced in [4], for
computing the NI-sets for a variable by building its
discrimination tree (DT). The complexity of this pro-
cedure is O(nd?), where n is the size of V, and d the
size of the largest domain. It is important, in this
procedure, that variables and values be ordered in a
canonical way.

Algorithm 1 DT for V; (Dy,,Neigh({Vi}))

Create the root of the discrimination tree
Repeat for each value v € Dy;:
Repeat for each variable V; € Neigh({Vi}):
Repeat for each w € Dy, consistent with v for V;:
Move to if present, construct and move to if not,
a child node in the tree corresponding to ‘V; = w’.
Add ‘V;, {v}’ to annotation of the node (or root),
Go back to the root of the discrimination tree.

The collection of the annotations in the discrimination tree
of a variable V; yields the following set:

DT(V;) = {dui, dai, - - ., dyi} 2
where 1 < k < |Dy;| is the number of annotations in
the tree, and dy;,ds;, . . . ,dy; determine a partition of

Dy,. The Nl-sets of V; are expressed as follows:
NI(V;) = {dk: € DT(V;) such that |dg;| > 1} (3)
Although this was not explicitly stated in [4] or in
other papers on this topic, there may be in general
any number of NI-sets per variable. In Fig. 3, we show
the graph and constraints of a simple CSP. The anno-

Discrimination tree for V1

V2=3 V2=6

V2=6 v2=7

v2=7 V3=3

V3=3 V3=4
V2<V3 y3-4

Figure 3: Left: CSP. Right: DT for V;.

tations in the discrimination tree for V; are: DT(V;) =
{{1,2},{3,4}}. In this case, NI(V;) = DT(V;). As for
V2 and V3, we have DT(V,) = {{3},{6,7}}, NI(V2) =
{{6,7}}, DT(V3) = {{3}, {4}, {9}} and NI(V3) = 0.

3 Weakening local interchangeability

First, we extend the DT associated with a variable to
be a joint discrimination tree (JDT) associated with a
set of variables. We identify the interchangeability sets
determined by the JDT, and discuss a special case in
which the discovered sets induce locally independent
subproblems. Then we show that the annotations of
the JDT determine partitions of the variable domains
that are organized in a hierarchy.

3.1 Joint discrimination tree (JDT)

We extend Algorithm 1, and apply it to a set S of vari-
ables in order to identify how these variables, when
considered together and regardless of the constraints
that apply among them, interact through their neigh-
borhood with the rest of the problem. The general-
ization to a set of variables is straightforward and is
obtained by replacing the second argument of Algo-
rithm 1, Neigh({V;}), by Neigh(S) and repeating this
algorithm for each of the variables in § while using the
same tree structure. Given a set S of size s, the time
complexity of the algorithm is O(s(n — s)d?) and the
space complexity for storing the tree is O((n — s)d),
where n is the size of V, and d the size of the largest
domain. The annotations of the joint discrimination
tree (JDT) of a set S = {V1,Va,..., Vi } CV yield:

IDT(S) ={ {(Vi,d11), (Va,d12),. .., (Vk,d1x)}, (4)
{(V1,d21), (Vo,d22), ..., (Vi,dar)}, .- .,
{(‘/17dm1): (V27dm2)1 R (Vkvdm/ﬂ)} }
It is important to highlight the following:

"When S = {Vi}, a comparison of Expressions (2)
and (4) yields: IDT({V;}) = {{(V4,dk:)} | dr: € DT(V)}.

e In order to comply with Expression (4), the anno-
tations in this tree that do not contain a variable-
domain pair for every variable in S are completed
with all pairs of a missing variable and an empty
domain for this variable.

e In Expression (4), m denotes the number of annota-
tions in the tree (1 < m < 3'=F |Dy,|).

o VV; € S, the sets d;; for 1 < i < m determine a
partition of Dy,.

e Since all variable-value pairs in any annotation in
the JDT for S are compatible with exactly the same
value-variables pairs in Neigh(S), we have VV}, € S,
V1<i<m,and Vz,y € dj:

(x:Vkas) =c (y,Vk,S) (5)
and, using the same notation, YV, V) € S, Vz,y:

I <i<m,x € dip,y € din = (2, V4, 8) =c (4, V4, S)

(6)

Fig. 4 shows an example of a CSP along with the JDT
of § = {V1,V2}. We have:

v vizv2 V2 IDTof{ V1, V2}
7,{10

vazo

vi<v3 V3=10e [V1 {2 3}
v2,{3,4,5}

Figure 4: Left: CSP. Right: JDT for S = {V1,Va2}.

JDT({Vla‘/?}) = {{(V1,10),(V2,(Z))}, (7)
{(Vlv {27 3})7 (VQ, {37 4, 5})}}

Fig. 5 shows, to the left, the JDT for S = {V;,V3}
of the CSP of Fig. 1, and, to the right, the JDT for
S = {V2,V3} of the CSP of Fig. 3. We have:

IDT({V1, Va}) = {{(V1,{a,b}), (Vs,{a,b})}, (8)
{(vi,{d}), (Vs,0)}, {("1,0), (Vs,{cH}}
JDT({‘/Z: ‘/3}) = {{(VZa {65 7})5 (V3’ {3, 4})}5 (9)
{(V2a {3})1 (VE% 0)}: {(V2: @)7 (V37 {9})}}
Discrimination tree for S= {V , V } DT forS={v2,v3}
V,=d '
v:;e V= e V,= e V1=2
Vo= f Vo= f vi=3

V= f
m Vi=4 &V2,{6 7}
vV, . {a b} v3,{3 4}

Figure 5: Left: JDT for § = {Vi,V3} of CSP of Fig. 1.
Right: JDT for S = {V2,V3} of CSP of Fig. 3.

3.2 Neighborhood partial interchang. (NPI)

For any element of the set JDT(S) in Expression (4),
such as {(Vi,dm1), (Va,dm2), ..., (Vk,dmr)}, for any
Vi € {Vi,Va,..., V& }, if dp; for V; is the empty set,
there seems to be no obvious way profitably to use
this element of the JDT(S) in practice. The same is true
when all d,,,; are singletons (i.e., V1 < i < k, |dpmi| = 1).

In all other cases, any =,y € d,,; are partially in-
terchangeable (PI) for V; by construction of the JDT

and, according to Definition 2.3, A =S — {V;} in this
case. Since these d,,;; sets are computed locally, i.e.
considering only Neigh(S), they are only subsets of
the ‘complete’ PI-sets, and the elements of each d,;
are said to be meighborhood partially interchangeable
(NPI) for V;. Thus the definition?:

NPI(S) = {{(V1,dm1), Va2, dm2), .-, (Vk,dmr)} € IDT(S)
such that (V1<i<k,dm #0) A

(AL <i <k |dmi| > 1) } (10)

The extension of Algorithm 1 to a set of variables
yields powerful results: For a given S, it efficiently
and simultaneously determines the NPI-sets for all the
variables in S. Obviously, if one is interested in the
NPI-sets of a subset of S, this procedure needs to iter-
ate only over the variables of the subset.

Using Expression (8), we have, for the example of
Fig. 4, NPI({V1,V2}) = {{(V1,{2,3}), (V2,{3,4,5})}}.
For the following two expressions, we have respec-
tively: NPI({V1,V3}) = {{(V1,{a,b}),(V3,{a,b})}}
and NPI({V2, V3}) = {{(V2,{6,7}), (V3,{3,4})}}-

3.3 Subproblem identification

Sometimes a discrimination tree exhibits a branch
worth singling out from the other branches in the
tree. In Fig. 6, we show in a constraint graph of a
CSP, the set § = {V1,V5,...,Vi}, and Neigh(S) =
{Va1,Va2,-.-,Viu}; we also sketch the JDT for S.
Consider the path in this figure whose leaf node is

s Discrimination tree for S
N,

N

I | Path length = Ma)(L

{Vvi,d) (v,.d,),
(Vi di}

= Variable-value pair

Figure 6: Left: Constraint graph. Right: Discrimination
tree with a path of maximal length.

annotated with {(V1,d1), (Va,d2), ..., (Vk,dr)}. When
the length of this path (from the root to the leaf) is
equal to the sum of the sizes of all the variable domains

in Neigh(S) (i.e., >\=" |Dy;|, denoted Mazy), this
indicates that VV; € S, any value in d; is consistent
with all the values of the variables in Neigh(S). As
long as we deliberately assign to V; values exclusively
chosen from d;, no consistency checks with the vari-
ables in Neigh(S) need be carried out. This appears
as if all the constraints between S and Neigh(S) have
been replaced by universal constraints. We can thus
generate a disjunctive decomposition® of the CSP into

*When S = {V;}, a comparison of Expressions (2)
and (10) yields: NPI({V;}) = {{(Vs,dri)} | dri € NI(V;)}.

3Note that, according to the terminology introduced
in [5], this decomposition is consistent, simplifying, com-
plete, and non-redundant.

‘Remaining |
/ CSP variables

the two CSPs P; and P, shown in Fig. 7. VV; € S, Dy,
is replaced by d; in Py, and by d; = Dy, — d; in Pa.
Naturally, the constraints among the variables in S,
and also between S and Neigh(S), need to be updated
accordingly, which is a trivial task. Further, we can
generate a conjunctive decomposition of P; into two
subproblems: P;; containing the variables in S (and
their new domains and updated constraints) and Pio
containing the variables in (V — S). The advantage of
this conjunctive decomposition is obvious. A solution
to P1 can be obtained by simply ‘concatenating’ any
solution to P;1 and any solution to P12, both of which
are smaller than P;, and the complexity of solving P;
is reduced to that of solving the bigger subproblem.
Hence, we considerably reduce the complexity of solv-
ing P;, and as a result P. Because we use local analysis
(i.e., the JDT for S) to determine that Py; is an in-
dependent subproblem of Py, we choose to call Py; a
neighborhood independent subproblem(NIS). Moreover,
at most one path of the JDT for S can be of maximal
length.

Theorem 3.1 The locally independent subproblem for
a given set S is unique.

Proof: Any path in the tree that is of maximal length
must contain nodes for all variable-value pairs in the
neighborhood of S. If two such paths exist, they nec-
essarily consist of exactly the same nodes, which is
impossible according to the construction rule of Algo-
rithm 1. O

The set NIS(S) is defined to be the element
of the set JDT(S) that annotates a path in
the tree of length Mazr. In the example of
Fig. 4, NIS({V1,V2}) = 0. In the example of
Fig. 3, NIS({Va, V}) = {(V%,{6,7}), (V&,{3,4})}, and
NIS({V1,V3}) = {(V1,{1,2}), (V5,{9})}. Note how the
JDT reveals nontrivial independent subproblems that
would, otherwise, have remained unnoticed.

3.4 Hierarchical structure of domain
partitions

As stated in Section 3.1 and Expression (4), VVj € S,
the sets d;;, for 1 < i < m determine a partition of
Dy,. If we were to extend the set S for which the
discrimination tree is built to a set &' (S C &'), the
sets d;;, for variable Vj, can only increase in size. In
fact, for S ¢ &' C V and for V};, € S, any element of
the partition of Dy, determined by JDT(S') is either
an element or a union of elements of the partition of

Dy, determined by JDT(S). The sign @ below denotes
exclusive OR (i.e., XOR). More formally:

Property 3.2 VV,, € S we have:

3s1, 82 € IDT(S) | (Vi, dir) € s1; (Vk,djx) € s2
(3st, sh € IDT(S') | (Vk, dix) € 81, (Vk,djx) € 85)
e S

(3s" € IDT(S) | (Vi, dix 2 dix U djr) € §')

Indeed, the set Neigh(S') contains no more nodes from
the set Neigh({V}}) than does the set Neigh(S), plus
some nodes that are not connected to V. This means
that JDT(S') cannot discriminate more among the val-
ues in Dy, than does JDT(S). This fact yields a hier-
archical representation of the partitions of Dy, of in-
creasingly coarser granularity as JDT(S') is gradually
expanded to encompass more variables including V.
One such hierarchy is illustrated in Fig. 8.

S={V, \V V)

‘deU d3kUd4k Ud5k Udsk Saz{vk ’Vi ’VJ }
deUd3k d4kUd5k SZ={Vk , Vil
S={V}
Figure 8: A hierarchy of partitions of the domain of vari-
able Vi, l)v,c =dix Udor U...Uds.

Moreover, when S is enlarged to S’, the respective
domain partitions of two or more variables are either
maintained or reduced by union. Informally, this ap-
pears as if the lines in Expression (4) were either ‘con-
served’ or ‘unified,” as far as the ‘old’ variables are
concerned. Consider two variables Vi,V € S§. Con-
sider two sets of the partition determined by JDT(S)
on Dy, , respectively on Dy, . Let these sets be d; and
d;jr, respectively d;, and djp,, as in:

JDT(S) = {7 {'"7(Vk7dik)7(Vhadih)7"'}a (11)
v Aoy (Vi djin)s (Vs djn), -5 -2}
Property 3.3 VVi, Vi, € S we have:

3s1, s2 € IDT(S) |
(Vk,dix), (Va, din) € s15 (Vk, djr), (Vh,djn) € s2
(s, sh € IDT(S") |
(Vi, dir), Vi, dir) € 815 (Va, djr), Vi, djn) € s5)

&b
(3s' € IDT(S") |
(Va, dir 2 dire Udjr), (Vi, din 2 din U djn) €)

This property can be extended to any number of vari-
ables in a straightforward manner.

4 Use of JDT-sets in practical
applications

The practical benefit drawn from building the joint dis-

crimination tree of a set of variables is two-fold: iden-

tification of independent subproblems and of partial
interchangeability sets.

1. The advantage of isolating subproblems is obviously
a reduction of the overall computational complex-
ity of the problem, when these subproblems can be
successfully solved.

In case the independent subproblem is found to be
insoluble, the combination of variables and variable
domains can be remembered as a compact no-good
set. The identified unsolvable subproblem can serve
as a component in the ‘factor out failure’ decompo-
sition scheme proposed in [6] or to improve the per-
formance of backtracking during traditional search.

2. The benefit of computing partially interchangeable
sets of values for a set of variables S C V becomes
apparent when one tries to explore alternative so-
lutions to the CSP that may require updating the
values of the variables in S while keeping the values
of the variables outside S unchanged. The idea of lo-
calizing the effect of a modification is very important
in several practical applications such as scheduling
and resource allocation, where one tries to keep the
stability of a global solution while locally adjusting a
partial solution to accommodate unforeseen events.
Thus, partial interchangeability sets can serve as a
basis for reactive strategies, such as rescheduling.

Starting from the interchangeability sets of a variable
Vi with & = {V;}, one can compute the JDT for an
increasingly larger ‘environment’ that encompasses V;.
Alternatively, starting from a large environment, one
can gradually refine it by restricting the computations
to a subset of S. We are investigating strategies for
guiding both of these processes. We have already stud-
ied some properties of these sets to be exploited while
building such strategies. These results are not reported
here for lack of space. Below, we give hints on how such
strategies may proceed:

Enlarging S. We should be careful to enlarge S to
include variables that share a common neighborhood
this would allow us to increase the size of the NPI-set
and to identify independent subproblems.

Refining S. Properties 3.2 and 3.3 can be used as
the basis of consistency checking techniques more
efficient than the traditional ones. Such strategies
would operate at coarse levels of detail by using the
output of a JDT computed over a relatively large
set S to remove ‘coarse’ inconsistent combinations
of values between the variables in S and the rest of
the problem, then gradually refining S to check and
filter finer combinations of values among variables.

5 Constraints of mutual exclusion

In general, as in the example of Fig. 3, it is necessary
for determining local interchangeability to compute a
discrimination tree. In this section, we study the con-
straints of mutual exclusion, as in coloring problems,
which are widely used in practical applications (e.g.,
resource allocation [2]). These constraints are natu-
rally highly disjunctive, and propagation algorithms

perform poorly in this case unless values are assigned
to variables (i.e., search is carried out). Indeed, when
the sizes of variable domains are strictly greater than 1,
arc-consistency fails to rule out any value. In this sec-
tion, we show that, when the constraints that link S to
Neigh(S) are constraints of mutual exclusion®, local in-
terchangeabilities can be easily determined and do not
require the computation of a discrimination tree. Let
Dyeign = UVJ Eleigh(S) Dy;.

Theorem 5.1 When S and Neigh(S) are linked by

constraints of mutual exclusion, VV; € S, Vx,y € Dy,
and x # vy, we have:

(z,Vi,8) =¢ (v, Vi, S) <= 2,y ¢ Dhaign (12)

Proof: Suppose that y € Dyeign, then IV; € Neigh(S)
such that y € Dy;. Since x # y, and Cy, y; is a con-
straint of mutual exclusion, then V; = x is compatible
with V; = y. Since z,y are NI for V;, this implies that
Vi = y is compatible with V; = y, which is impossi-
ble because Cv; v, is a constraint of mutual exclusion.
Thus, y ¢ Dyeign- Similarly, ¢ Dyeign-

Further, Vz,y € Dy;, 2,y ¢ Dyeign means that both
z and y for V; are compatible with all the elements in
Dyesgn; thus they are NI for V;. O

The results listed below can be easily proven us-
ing this theorem; the proofs are omitted because of
the space limit. The following theorem indicates how
NIS(S) is obtained without a discrimination tree.
Theorem 5.2 When S and Neigh(S) are linked by
constraints of mutual exclusion, we have:

NIS(S) = {(Vi,d:), Vi € §,di = Dy, — Drasgn} (13)

For the example of Fig. 1, NIS({V4}) = {(Va,{e, f})}
and NIS({Vi,V3}) = {(Vi,{a,b}),(Vs,{a,b})}. The
following theorem states that the only kind of local
interchangeability that can show up in this situation is
the one that induces a locally independent subproblem.
Theorem 5.3 When S and Neigh(S) are linked by
constraints of mutual exclusion, we have:

{N1S(8)} if 3 (V;,d;) € NIS(S) such
NPI(S) = that |d;| > 1 (14)

otherwise

Freuder also introduced neighborhood substitutability

(NSUB), which is ‘one-way’ neighborhood interchange-
ability® [4]:
Definition 5.4 Neighborhood substitutability: For
two values b and ¢, for a CSP variable V', b is neigh-
borhood substitutable (NSUB) for ¢ if and only if for
every constraint C' on V:

{i| (b,4) satisfies C} D {i| (c,1) satisfies C}

4Note that the constraints in C need not all be con-
straints of mutual exclusion.

®Naturally, the concept local substitutability can be ex-
tended to apply to a set of variables, as we did for the
concept of neighborhood interchangeability.

The following theorem states that, in the case of con-
straints of mutual exclusion, NSUB values necessarily
induce a locally independent subproblem:

Theorem 5.5 When V; and Neigh({V;}) are linked by
constraints of mutual exclusion, Vz,y € Dy, , we have:

zis NSUB for y <= z € d; | NIS({Vi}) = {(Vi,d:)} (15)

6 Related work

In spite of its importance for practical applications and
the challenge its poses for the development of theoret-
ically new search mechanisms, interchangeability has
received relatively little attention in contrast, for in-
stance, to backtracking and consistency filtering. Be-
low we review some contributions on this topic, draw
the relations among them, and summarize these rela-
tions in the lattice of Fig. 9.

full

CDI
(@)

~=(SUB)

approx-CDI
%bproblem
v

partial
NSUB

Figure 9: A lattice of value interchangeability for a vari-
able. Weak interchangeability (i.e., substitutability, par-
tial, and subproblem [4]) and full interchangeability.

C

6.1 On the conceptual side

We use the example of Fig. 10 to compare three types of
interchangeability with respect to ‘partial interchange-
ability’ (see Fig. 9). The Nl-sets are computed by iter-

Weakenlng

Considered constraint ~—
mterchang - Neglected constraint ~ -
; i Variablesin § .

Flgure 10. Constraints for the computatwn of: Left: NI
for A. Center: NPI for {4, B}. Right: Nl¢, . for A.

ating over the neighborhood of a given variable, e.g.
A in Fig. 10. This amounts to considering all the
constraints that applies to A, namely: Ca,B, Ca,c,
and Cy4,p. NPI extends the boundaries within which
change is permitted to comprise S = {4, B}: it con-
siders the constraints that apply to A or B, but not to
A and B (i.e., CA,C, CA’D, CB,C; and CB,D)- NPI
for A is weaker than NI for A: an NI-set for A is
always a subset of some NPI-set for A € S. In [7],
Haselbock introduced a form of local interchangeabil-
ity that is obtained from NI by considering, for A, only
one constraint that apply to A, e.g. Ca,c. We choose
to call it ‘NI for A according to C4 ¢,” and denote it
NIc, . (A). This is equivalent to extending the bound-
ary to S = Neigh({A}) — {C}, and to iterating, in the

JDT, only over the values of A. ‘NI according to C4, x’
is thus weaker than NPI computed for any set S such
that A € S and X ¢ S: an NPI-set for S is always
a subset of an element of NIg, , (A). Thus, NPT sits
between NI and NIy from three standpoints: concep-
tually, with regard to the computational cost, and also
with respect to the size of the sets it defines (see Fig. 8).

In [9], Weigel et al. looked for interchangeability
in subproblems induced from the original CSP by
reducing the domains of a selected set of variables,
which they called Context Dependent Interchangeabil-
ity (CDI), as shown at the left of Fig. 11. Further, they
proposed to approximate CDI-sets by a local form of
CDI, denoted approx-CDI in Fig. 9, obtained by com-
puting the NI-sets in the subproblems. The success of
this strategy for weakening local interchangeability de-
pends crucially on the selection of the induced subprob-
lems. These NI-sets cannot be compared with NPI-
sets since they are derived for distinct problems. They
are conceptually a localized form of another type of
weak interchangeability called subproblem interchange-
ability [4].

Figure 11: Left:
reduction of some variable domains. Right: Meta-
interchangeability for variables.

Subproblem interchangeability by

In [8], Weigel and Faltings exploited NI-sets while
constructing all solutions for a CSP. The iterative pro-
cess is sketched at the right of Fig. 11. First, the vari-
ables are partitioned into subproblems, then each sub-
problem is replaced by a meta-variable that consists
of all solutions to the subproblem (which are in fact
partial solutions to the original problem). Nl-sets are
computed for each meta-variable, and the process it-
erates until a unique meta-variable is obtained, which
represents all the solutions of the original CSP. This
is a localized version of meta-interchangeability [4] for
variables, not to be confused with k-interchangeability
which requires full interchangeability in all subprob-
lems of size k. As for approx-CDI, the choice of the
subproblems is critical, and remains an open issue.

Most importantly, among all approaches explored for
computing localized forms of weak interchangeability,
our technique is the only one that gives full control of
the coarseness of the interchangeability sets (through
the selection, enlargement, and refinement of S). This
appears as if one can smoothly move along the axis
labeled ‘partial’ in Fig. 9. In [4], Freuder gives an al-
gorithm for computing, for any k, k-interchangeability
for a variable (i.e., moving along the vertical axis in
Fig. 9), which naturally has a higher time complexity
than our technique (4.e., O(n*~1d*) vs. O(s(n—s)d?)).

6.2 Practical results

In [3], Choueiry et al. reported on various types of in-
terchangeability discovered automatically by a decom-
position heuristic, called VAD, for resource allocation.
They showed how these sets are used for compacting
the solution space and for supporting explanation and
interaction with users. They also assessed the NI-sets
discovered by this procedure with respect to the ex-
act ones. Their evaluation of the interchangeabilities
discovered by VAD can now, thanks to our results of
Section 5, be extended to cover the case of NPI and
NSUB-sets.

The practical usefulness of various kinds of
local interchangeability has already been estab-
lished on random problems for backtracking [1; 7],
for arc-consistency [7], and for compacting solu-
tions [8]. Freuder proved that “for any [k] there
are cases in which preprocessing to remove redun-
dant k-interchangeable values before backtracking, k-
interchangeability preprocessing, will be cost effec-
tive” [4]. Since NPI is weaker than NI and than any
level of k-interchangeability, it necessarily occurs more
frequently, and the resulting benefits should be at least
as good.

More generally, it is not clear whether one should
search for ‘symmetries’ in random problems or in struc-
tured random problems, and whether this does not
only reflect the power or shortcomings of the random
generator itself. It seems to be more adequate to as-
sess the usefulness of interchangeability in real-world
problems, such as scheduling, configuration, and de-
sign. Since interchangeability is likely to be important
in structured domains, it may greatly benefit practical
applications. This has so far been shown for the case
of resource allocation; experimentation with other ap-
plication domains must be carried out.

7 Conclusions and Future directions

Interchangeability is known significantly to enhance
search and backtracking, but has not yet been enough
exploited for updating solutions. In this paper, we in-
troduce NPI, which is weaker, and thus more frequent,
than NI or FI. NPI is also an efficiently computable
form of PI, which allows for local update of solutions
in practical applications. We show how the procedure
proposed by Freuder [4] is extended to compute the
JDT-set, and thus identifying the NPI-sets and locally
independent subproblems. We show how the JDT-sets
are organized in a hierarchy, and give hints on how they
can be exploited in practice. Further, we show that for
the case of constraints of mutual exclusion, local inter-
changeability is easy to compute, and is equivalent to
the existence of locally independent subproblems.
Our goal in this paper is to report the results sum-
marized above and to draw the relations among the
various types of interchangeability explored so far. Ef-
forts now need to be invested in exploring strategies
for selecting the sets of variables for which the JDT

is built, and heuristics for monitoring the successive
refinement or enlargement of these sets. We have al-
ready studied some properties of JDT-sets useful for
this purpose, but do not report them here for lack of
space. Another important issue is to combine the ex-
ploration of JDT-sets with the process of decomposing
the CSP and solving it. Although we have not yet
explored this, it should be possible to extend the tech-
niques explored here to non-binary constraints by iter-
ating, in the discrimination tree, over the constraints
rather than over the domains of the neighboring vari-
ables. Further, and similarly to constraints of mutual
exclusion, we believe that we must investigate the ex-
istence of constraint types for which interchangeability
sets can be easily computed. We also believe that in-
terchangeability may unveil novel strategies for domain
splitting in a CSP involving continuous domains.

Acknowledgments

This work was started when the authors were at the In-
dustrial Computing Lab. of the Swiss Federal Institute of
Technology in Lausanne. B. Y. Choueiry is supported by
a fellowship for advanced researchers from the Swiss-NSF.

References

[1] Brent W. Benson and Eugene C. Freuder. Interchange-
ability Preprocessing Can Improve Forward Checking
Search. In Proc. of the 10 ** ECAI, pages 28-30, Vi-
enna, Austria, 1992.

[2] Berthe Y. Choueiry and Boi Faltings. Using Abstrac-
tions for Resource Allocation. In IEEE 1995 Interna-
tional Conference on Robotics and Automation, pages
1027-1033, Nagoya, Japan, 1995.

[3] Berthe Y. Choueiry, Boi Faltings, and Rainer Weigel.
Abstraction by Interchangeability in Resource Alloca-
tion. In Proc. of the 14 ** IJCAI pages 1694-1701,
Montreal, Canada, 1995.

[4] Eugene C. Freuder. Eliminating Interchangeable Values
in Constraint Satisfaction Problems. In Proc. of AAAI-
91, pages 227-233, Anaheim, CA, 1991.

[5] Eugene C. Freuder and Paul D. Hubbe. A Disjunctive
Decomposition Control Schema for Constraint Satisfac-
tion. In V. Saraswat and P. Van Hentenryck, editors,
Principles and Practice of Constraint Programming,
pages 319-335. MIT Press, Cambridge, MA, 1995.

[6] Eugene C. Freuder and Paul D. Hubbe. Extracting
Constraint Satisfaction Subproblems. In Proc. of the
14 ** IJCAI, pages 548-555, Montreal, Canada, 1995.

[7] Alois Haselbéck. Exploiting Interchangeabilities in
Constraint Satisfaction Problems. In Proc. of the 13 **
IJCAI pages 282-287, Chambéry, France, 1993.

[8] Rainer Weigel and Boi Faltings. Structuring Techniques
for Constraint Satisfaction Problems. In Proc. of the
15 " IJCAI pages —, Nagoya, Japan, 1997.

[9] Rainer Weigel, Boi Faltings, and Berthe Y. Choueiry.
Context in Discrete Constraint Satisfaction Problems.

In 12th European Conference on Artificial Intelligence,
ECAI’96, pages 205-209, Budapest, Hungary, 1996.

