
Minimum Energy Accumulative Routing in
Wireless Networks

Jiangzhuo Chen, Lujun Jia, Xin Liu, Guevara Noubir, Ravi Sundaram
College of Computer and Information Science

Northeastern University
Boston, MA, 02115

{chenj, lujunjia, liux, noubir, koods}@ccs.neu.edu

Abstract— In this paper, we propose to address the
energy efficient routing problem in multi-hop wireless
networks with accumulative relay. In the accumulative relay
model, partially overheard signals of previous transmis-
sions for the same packet are used to decode it using
a maximal ratio combiner technique [1]. Therefore, ad-
ditional energy saving can be achieved over traditional
energy efficient routing. The idea of accumulative relay
originates from the study of relay channel in information
theory with a main focus on network capacity. It has been
independently applied to minimum-energy broadcasting
in [2], [3].

We formulate the minimum energy accumulative routing
problem (MEAR) and study it. We obtain hardness of
approximation results counterbalanced with good heuristic
solutions which we validate using simulations. Without en-
ergy accumulation, the classic shortest path (SP) algorithm
finds the minimum energy path for a source-destination
pair. However, we show that with energy accumulation, the
SP can be arbitrarily bad. We turn our attention to heuris-
tics and show that any optimal solution of MEAR can be
converted to a canonical form - wavepath. Armed with this
insight, we develop a polynomial time heuristic to efficiently
search over the space of all wavepaths. Simulation results
show that our heuristic can provide more than 30% energy
saving over minimum energy routing without accumulative
relay. We also discuss the implementation issues of such a
scheme.

Keywords: ad hoc and sensor networks, optimization,
simulation, graph theory.

I. INTRODUCTION

A wireless ad hoc network or sensor network consists
of a collection of geographically dispersed nodes that
usually communicate using radio frequency links. In
many cases the nodes are operated by batteries with
limited, non-replenishable energy. These nodes are sup-
posed to be operational for a long period of time in
an unattended manner. This means that the network’s
operational lifetime is determined by the lifetime of the
battery. Therefore, energy efficiency is a critical factor
in the design of such networks in order to prolong the
lifetime of the network.

In this paper, we consider using an interesting prop-
erty of wireless networks, which is partial overhearing,

to save transmission energy in multi-hop communica-
tions. One can assume that, within a certain range,
the neighboring nodes can receive and correctly de-
code the received packet. Neighboring nodes within a
larger range can only detect and acquire the timing
synchronization of the packet while not being able to
correctly decode the whole packet. The threshold for
detection is usually set to be a few decibels higher than
the noise floor in commercial devices. Thus it allows
nodes to partially overhear packets within a range of 5
to 10 times the normal transmission range. Note that
several commercial chips already offer multiple data
rates depending on the received energy. For example
RF Monolithics1 transceivers can receive (with BER
< 10−3) at −106dBm for 2.4Kbps and −97dBm for
115Kbps. Most IEEE802.11 cards operate within a large
sensitivity range depending on data rates (e.g., Cisco
350 cards operate within [-94dBm, -71dBm] for rates
within [1, 54Mbps]). Therefore, if the packet header
uses a strong modulation/coding scheme it allows far
away nodes to collect packets with some of the bits
in the packet payload in error. Using a maximal ratio
combiner [1], multiple partially overheard copies of the
same packet would enable the receiver to fully decode
the packet. This scheme forms the basis of energy
saving in our new model. We refer to this mode of
communication as the Accumulative Relay (AR) model.

An efficient use of the AR requires limited interference
from concurrent sessions. We assume that the network
operates in the wideband power limited regime with
no co-channel interference. This regime is realistic for
some wireless networks, especially sensor networks and
ultra-wideband communication. Sensor networks have
extreme limitations in energy and sufficient large fre-
quency bandwidth. Furthermore, in many sensor network
applications, the traffic load is low and the nodes are in
the sleep or idle mode most of the time. This is because
the nodes only need to respond to infrequent events or

1TR100 Hybird Transceiver http://www.rfm.com.



queries. Such low load also justify the no co-channel
interference assumption.

Related Work: Communication is typically the most
expensive activity of a wireless node in terms of energy
consumption [4], [5]. Various techniques have been pro-
posed to reduce the energy expenditure in the communi-
cation procedure. Among them energy efficient routing is
an important branch which received significant attention
during the past years. Energy efficient routing considers
the problem of identifying energy efficient paths in
wireless networks based on various metrics [6]–[10].
Rodolplu et al. [8] minimize the end to end aggregate
energy consumption. Chang et al. [7] aim at maximizing
the network operational lifetime. Banerjee et al. [9] add
link error rate to the metric besides transmission energy
consumption and try to minimize the energy cost for
a reliable communication. More research results in the
field can be found in [11]–[15]. All these schemes are
studied under what we call the traditional multi-hop
model (TM).

In the TM model, sending one unit of information from
node A to node B requires a transmission power at least
equal to the receiving threshold divided by the channel
gain from A to B. This places a lower bound on the
total energy consumption, under the TM model, given
the amount of information needed to be transmitted and
the network topology. The essential difference between
the AR and TM model is that nodes in AR model do not
discard unsuccessfully received broadcasting packets as
they do in the TM model. The partially overheard packet,
referred to as leakage in the paper, contributes to the
final reception of the packet at the intended receiver in
the AR model. This leads to further energy saving over
the optimal energy schemes in the TM model.

Our work originates from the relay channel which
was introduced and studied from an information theoretic
perspective by the information theory community [16],
[17]. The focus of the relay channel is to transmit infor-
mation from the source to the destination as efficiently
as possible with the cooperation from the relays [17].
Previous research on the relay channel mainly focused
on theoretical capacity issues [16], [18]–[22]. We are
interested in developing constructive strategies and effi-
cient algorithms for a practical use of the relay channel
concept. Maric et al. [3] and Agarwal et al. [2] propose to
use the idea of energy accumulation to reduce the energy
cost of broadcast in wireless networks. We investigate
the multi-hop unicast scenarios in this paper.

Setup and Contributions: In this paper, we introduce
the problem of minimum energy unicast routing in a
wireless network using the AR model. We prove that if
the energy spent by each node in the relaying process
is upper bounded by some fixed value, then identifying

the minimum energy routing schedule is an NP-complete
problem. We introduce the notion of wavepath (a canon-
ical form of accumulative relaying) and show that any
minimum energy relay routing schedule can be trans-
formed into a wavepath that has the same energy cost.
Therefore we can focus on finding a minimum energy
wavepath. The hardness of determining the minimum
energy wavepath lies in identifying the participating
nodes in the schedule, and not in finding the order, as
it is the case in the problem of broadcast with energy
accumulation [3]. We develop a heuristic to find an
energy efficient wavepath. We simulate our heuristic and
show that it provides significant energy saving compared
to the traditional shortest path algorithms which gives the
optimal energy paths in TM networks (i.e., above 30%).
In order to better characterize the theoretical difficulty
and value to the accumulative approach, we show that
for a general channel propagation model, the cost of the
optimal wavepath can be asymptotically smaller than
that of the energy efficient path found by the shortest
path algorithms. Therefore an optimal relaying strategy
can provide arbitrarily better performance than classical
shortest path.

The rest of the paper is organized as follows: we
introduce the network model in Section II; we formu-
late the Minimum Energy Accumulative Routing prob-
lem and propose a heuristic with bounded performance
guarantee in Section III; the simulation results which
show significant energy saving over traditional routing
techniques is provided in Section IV; at last we discuss
implementation issues in Section V.

II. NETWORK MODEL

We consider a wireless network with N nodes using
omni-directional antennas. Each node can dynamically
tune its transmission power from zero to the maxi-
mum power level pmax. The network is static and the
traffic within the network is unicast. The bandwidth
is sufficiently large compared to the traffic load. We
study the aggregate transmission energy consumption to
successfully transmit a packet from the source to its
destination under the AR model.

The wireless link between two nodes i and j is
modeled using the channel gain gi,j . In the general graph
model the channel gain can take arbitrary values. We
also consider the commonly used geometric propagation
model with gi,j = 1

Cdα
i,j

[23] where di,j denotes the
distance between node vj and node vi, α denotes the
power attenuation (path loss) exponent taking values
between 2 and 4 depending on the environment, and
C is a constant and depends on the antenna gains and
operation frequency. Without loss of generality, C is
normalized to be 1. Let pi denote the transmission power



at vi, and pr
j denotes the received signal power at vj . We

have pr
j = pigi,j . Under both TM and AR models, for

a packet to be correctly decoded the pr
j must exceed a

threshold H (assuming constant noise level and no co-
channel interference). A packet received at a power level
less than the threshold cannot be correctly decoded. We
refer to such packets as leakage from a transmission.

A. Power Consumption in the AR Model and the
TM Model

Let a sequence of nodes [v1, v2, · · · , vw] be the path
from the source v1 to the destination vw. Under TM, each
node on the path needs to transmit at a power level pi at
least H/gi,j for the transmission to be correctly received
by the next hop and forwarded toward the destination.
The total transmission energy consumption of the path
under the TM model is at least:∑

i

pi =
∑

i

H/gi,i+1 (1)

Now let us examine the transmission energy consump-
tion of the path under the AR model. Note a node is
allowed to transmit the packet only after it correctly
decodes the packet, except for the source.

For a multi-hop unicast communication under the
AR model, the same packet is transmitted by each
node on the path sequentially. All the nodes except
the source and the first hop can get multiple leakages
from previous transmissions, and thus accumulate energy
from them. Let li+1 denote the total energy accumulated
from the leakages on node vi+1; we have li+1 =∑

vj∈{v1,··· ,vi−1} pjgj,i+1. Hence, for the transmission
from vi to vi+1 to be correctly decoded, the received
signal power plus the leakages already accumulated at
vi+1 needs to exceed H. In other words, vi needs to send
the packet at power level of (H− li+1)/gi,i+1. Thus the
total energy consumption for the path under AR model
is: ∑

i

pi =
∑

i

(H − li+1)/gi,i+1 (2)

It is easy to see that each item in the Equation (2) is
less than that of Equation (1), since the leakage energy
is non-negative. Therefore, the total energy consumption
of a given path in AR is less than that of TM.

Due to the limited computational power and memory
space of wireless nodes, the number of leakages a node
can accumulate is usually restricted. Also in a real
wireless network, nodes cannot detect a signal with
arbitrary small power level. Thus, in our subsequent
sections, we will also consider a restricted model of
accumulative routing, k-Relay, where a wireless node
can only accumulate energy from the last k transmissions
of the same packet. It is easy to see that AR routing is

actually a generalization of TM routing. Since in the TM
model, each node decodes the packet only based on the
latest transmission, which is exactly 1-Relay in the AR
model.

B. Motivations for AR Routing

s t

r

Fig. 1. For triangle �srt, ds,r = dr,t = 1 and ∠srt = 90◦.
Clearly, s → r → t in the TM model consumes the same
amount of energy as s → t. While with AR routing, 25%
energy saving can be achieved, since s’s transmission to r
has a leakage at t.

s t

r 1

r2

Fig. 2. Node r1 has ∠sr1t > 90◦ and node r2 has 60◦ <
∠sr2t < 90◦. To achieve energy saving, only r1 can act
as an intermediate node between source s and destination
t in TM routing; while in AR routing, r2 can also act as
an intermediate node.

We now discuss the minimum energy routing prob-
lem under two different models: TM and AR. Assume
the power attenuation exponent α equals to 2 in the
following examples. The first motivation for using AR
routing is that it provides a new means of energy
saving. In the TM model, the traditional shortest path
algorithm can find the minimum energy path for the
given source and destination, which places the lower
bound for the transmission energy consumption. With
AR routing, however, the energy consumption can be
less than this lower bound. In Figure 1, under the TM
model, the path s→ r → t consumes the same amount
of energy, 2H , as s → t, since ∠srt = 90◦. With
AR routing, s’s transmission at power level H yields a
successful packet decoding at r, since gs,r = 1/ds,r = 1.
At the same time, this transmission also yields a leakage



of H/2 on t, since ds,t = 1/(
√

2)2 = 1/2. Thus,
node r only needs to transmit (to t) at power level
(H −H/2)/d2

r,t = H/2. The total energy consumption
for transmitting a packet from s to t is only 3/2H in AR
routing. This leads to a 25% energy saving over routing
under TM model.

Another advantage of routing under the AR model is
that more nodes could act as intermediate nodes between
the source and the destination to help forwarding the
packet. Figure 2 shows the difference of the possible
relay region between AR and TM routing.

III. MINIMUM ENERGY ACCUMULATIVE ROUTING

In this section, we give the mathematical formulation
of the minimum energy accumulative routing problem.
We study the problem in the general graph model first,
where link gains can take arbitrary values. We prove
that with a cap on the transmission power the problem
is NP-complete and show that the shortest path heuristic
can be arbitrarily bad compared with the optimal solu-
tion. We also prove that the optimal solution satisfies
the wavepath property. We propose a polynomial time
heuristic RPAR. Last, we derive a lower bound of energy
consumption in the k-Relay scenario.

A. Problem Formulation

Given source s and destination t, a transmission
schedule S = [(v1, p1), · · · , (vw, pw)], where vi ∈ V
and pi ≥ 0 is the transmission power of nodes vi, is
feasible for (s, t) if:

1) The source is the first transmitter and the destina-
tion is the ultimate receiver, i.e., v1 = s, vw = t.

2) Every node in the schedule except v1 has to first
correctly decode the packet before being able to
transmit it. For the general AR routing where there
is no restriction on the relay level,

∀i > 1,
i−1∑
j=1

pjgj,i ≥ H;

for the k-Relay case,

∀i > 1,
i−1∑

j=i−k

pjgj,i ≥ H,

where gj,i is the channel gain from vj to vi.
So a feasible transmission schedule is an ordered list

of node ID, transmission power pairs. Starting from
the source, each node needs to transmit with enough
power such that the next node collects, from previous
transmissions, a total amount of energy at least the
receiving threshold.

Definition 1: The MINIMUM ENERGY ACCUMULA-
TIVE ROUTING problem MEAR(V, s, t) looks for a fea-
sible transmission schedule S = [(v1, p1), · · · , (vw, pw)]
for (s, t), such that the total transmission energy E(S) �∑w

i=1 pi is minimized.

B. Complexity of The Problem

In the following, we show that the general graph
version of the MEAR problem is NP-complete when
there is a cap on the amount of energy one node can
spend for one packet. We prove the NP-completeness
of MEAR by a reduction from the SET COVER (SC)
problem. It is well known that the SC problem is NP-
complete, and is not approximable within (1 − ε) ln V
for any ε > 0, where V is the size of the set, unless
NP⊂ DTIME(V loglogV ) [24]. Thus, for a general graph
with arbitrary link gains and a limited energy budget,
there does not exist an approximation algorithm for
MEAR with an approximation ratio less than O(ln N),
where N is the number of nodes.

Theorem 1: The MEAR(V, s, t) problem is NP-
complete for a general graph with arbitrary link gains
and a cap on the transmission energy a node can spend
on one packet.

Proof: The decision version of MEAR(V, s, t), D-
MEAR, can be described as follows. Given (V, s, t),
is there a feasible transmission schedule S =
[(v1, p1), · · · , (vw, pw)] for (s, t), such that the total
transmission energy E(S) �

∑w
i=1 pi ≤ P ? Denote

such an instance D-MEAR(V, s, t, P ).
First notice D-MEAR ∈ NP, since given a transmission

schedule, it can be verified in polynomial time if the
schedule is feasible for (s, t) and if the total energy
consumption is at most P .

We show the NP-hardness part by reducing SC to D-
MEAR. The SC problem is defined as follows. Given
set S = {v1, · · · , vn}, and a collection of subsets of S,
C = {C1, · · · , Cm}. A set cover of S is a subcollection
C′ ⊆ C, such that every element of S belongs to at least
one member of C′. Is there a set cover C′ with |C′| ≤ B?
Denote such an instance SC(S, C, B).

From SC(S, C,B), construct D-MEAR(V, s, t, P )
where

V = {s, u1, · · · , um, C1, · · · , Cm, v1, · · · , vn, t}
P = B(B + 2) + n + 1.

Call {v1, · · · , vn} the S nodes, {C1, · · · , Cm} the C
nodes, {u1, · · · , um} the U nodes. Let f(u) denote the
subscript of node u ∈ U

⋃ C, eg., f(ui) = i, f(Cj) = j.



Let H = 1 and

gj,i =




1 j = s, i ∈ U
1/(B + 1) j ∈ U, i ∈ C, f(j) = f(i)
1 j ∈ C, i ∈ S, i ∈ j
1/n j ∈ S, i = t
0 otherwise.

The construction of D-MEAR(V, s, t, P ) is illustrated
by Figure 3. We put an edge between nodes if and
only if the gain between them is positive. Assume the
transmission energy cap for each node is 1. This is an
important assumption for the proof. It forces all the S
nodes to transmit so that t is able to successfully receive
the packet. Now we only need to show

v1

gain=1/n

umu1

vn

t

C1 Cm

gain=1

gain=1/(B+1)

gain=1

s

Fig. 3. D-MEAR instance reduced from SC.

SC(S, C, B)=Yes ⇐⇒ D-MEAR(V, s, t, P )=Yes.

If: Suppose we have a feasible transmission schedule
for (s, t) which consumes a total amount of energy of at
most P = B(B +2)+n+1. Since s must transmit with
power 1; and each S node must transmit with power 1,
the total energy consumption used by U nodes and C
nodes is at most B(B + 2) in this schedule. Suppose k
nodes in C transmit. Since all S nodes transmit and they
can only receive the packet from these k C nodes, there
must exist a set cover of S with size at most k. Now we
know that at least k U nodes must transmit with power
B +1 (to these k C nodes), consuming at least k(B +1)
energy. So we have

k(B + 1) ≤ B(B + 2)

which means k ≤ B since k is an integer. Therefore, the
k nodes in C that transmit correspond to a set cover of
S, with size at most B.

Only if: Suppose C′ is a set cover with |C′| = B.
The following transmission schedule is feasible for (s, t).

First, source s transmits with power 1, which enables all
the U nodes to receive the packet successfully. Suppose
U ′ ⊆ U corresponds to C′ (i.e., the set of the subscripts
of the nodes in U ′ is the same as that of the subscripts
of the nodes in C′). Next, nodes in U ′ transmit with
power B + 1, which enables nodes in C′ to receive
the packet successfully. Then, the nodes in C ′ transmit
with power 1. Since C′ covers all the elements of S,
all S nodes receive the packet successfully. Finally all
S nodes transmit with power 1, each contributing 1

n
unit of energy to t’s reception, enabling t to decode the
packet successfully. Thus, the transmission schedule S =[
(s, 1), [(u,B+1)]u∈U ′ , [(C, 1)]C∈C′ , [(vi, 1)]ni=1, (t, 0)

]
is a feasible transmission schedule for (s, t); and the total
energy cost is B(B + 2) + n + 1.

C. Performance Analysis of Shortest Path Heuristic

One natural heuristic for MEAR is to define the edge
weight of (j, i) as H/gj,i and apply any shortest path
algorithm to find a path from s to t (without considering
energy accumulation), then calculate the transmission
powers with energy accumulation taken into account.
Theorem 2 shows that this shortest path heuristic can
perform very badly in the general graph model.

Theorem 2: In a general graph model, let SPH de-
note the solution from the shortest path heuristic for an
MEAR problem, and OPT be the optimal solution. In
the worst case, the energy cost E(OPT ) ∈ o(E(SPH)).
Proof: Consider V = {1, · · · , n, n + 1}, s = 1, t =
n + 1,H = 1. The gain between any two nodes (j, i) is
gj,i = 1

|i−j|+ε , where ε ∈ o(1) is an arbitrarily small
positive number. Therefore the weight on edge (j, i)
equals |i−j|+ε. We show that E(OPT ) ∈ o(E(SPH))
for problem MEAR(V, s, t) in this case.

First note that the shortest path found without accu-
mulation is s → t directly. Thus, there is no leakage
accumulation in SPH , resulting in the same energy
expenditure as traditional SP . The total energy cost of
SPH is n + ε.

E(SPH) = n + ε

We first consider the following equation system on
ei, i = 1, · · · , n.

i∑
j=1

ej

i− j + 1
= 1, i = 1, · · · , n (3)

It can be shown that the solution is:

ei =
∫ 1

0

[
t
i

]
dt, i = 1, · · · , n

where
[

t
i

]
= t(t+1)(t+2)···(t+i−1)

i! ,
[

t
0

]
= 1 (see [25] for

details). It is easy to verify that ei ∈ [0, 1], ∀i and ei is
a non-increasing sequence.



There are only o(n) of the ei’s that are Θ(1). Suppose
the opposite, i.e., there exist constants c1, c2 s.t. c1n of
ei’s satisfy ei > c2. Then they must be e1, · · · , ec1n

since ei is non-increasing. Look at the (c1n)th equation
in Equations 3,

1 =
c1n∑
j=1

ej

c1n− j + 1
>

c1n∑
j=1

c2

c1n− j + 1

∈ Θ(ln n)

which is a contradiction. Therefore, among ei’s, o(n)
of them are Θ(1) and the other O(n) of them are
o(1) (notice ei ∈ [0, 1], ∀i), so

∑n
i=1 ei ∈ o(n).

Now consider schedule S = [(i, pi)]n+1
i=1 where pi =

ei + ε, i = 1, · · · , n and pn+1 = 0. Since

i∑
j=1

pj

i− j + 1 + ε
=

i∑
j=1

ej + ε

i− j + 1 + ε

≥
i∑

j=1

ej

i− j + 1
= 1, i = 1, · · · , n

S is a valid feasible schedule for (s, t), E(OPT ) ≤
E(S). Notice that

E(S) =
n+1∑
i=1

pi = nε +
n∑

i=1

ei ∈ o(n).

Theorem 2 follows.

D. The Structure of Optimal Transmission Schedules

In [3], the minimum-energy accumulative broadcast
problem is divided into two subproblems. The subprob-
lem of identifying the ordering in which the nodes
transmit is found to be NP-complete and thus the main
difficulty of the whole problem. Our MEAR problem
can also be divided into two subproblems. The first
is to determine which nodes should participate in the
transmission schedule. The second is to specify the
order in which the nodes transmit and their transmission
powers. It turns out that once the first subproblem is
solved, it is easy to determine the transmission order
and the transmission power of each node sequentially.
So the difficulty lies in the first subproblem.

Definition 2: A feasible schedule S = [(vi, pi)]wi=1 for
problem MEAR(V, s, t) is a wavepath iff

1) no node transmits more than once, i.e., ∀i �=
j, vi �= vj , and

2) each node verifies the wavepath property, i.e.,

∀i,
i−1∑
j=1

pjgj,i = H

After each transmission, exactly one more node becomes
capable of decoding the packet correctly; and each

transmission uses the exact amount of power to make
one more node able to decode the packet correctly.

Theorem 3: A MEAR(V, s, t) problem always has an
optimal schedule that is a wavepath.
Proof: Suppose the optimal schedule for
MEAR(V, s, t) is S = [(vi, pi)]wi=1. It is easy
to see pw = 0. If vi = vj , i < j, then
obviously the schedule S′ = [(v1, p1), · · · , (vi, pi +
pj), · · · , (vj−1, pj−1), (vj+1, pj+1), · · · , (vw, pw)]
is also a feasible transmission schedule and
E(S′) = E(S).

Now we prove the wavepath property part by showing
that if m > 0 nodes in S do not verify the wavepath
property, then it can be transformed into a schedule S′

with E(S′) = E(S) and at most m− 1 nodes in S′ do
not verify the wavepath property. Suppose vi is the last
node in S which does not verify the wavepath property,
i.e.,

i−1∑
j=1

pjgj,i > H

and vi+1, · · · , vw all verify the wavepath property. We
can write the transmission power of vi, · · · , vw−1 in
schedule S as functions of pi−1:

pi =
1

gi,i+1

(
H −

i−2∑
j=1

pjgj,i+1 − pi−1gi−1,i+1

)

≡ Aipi−1 + Bi

pi+1 =
1

gi+1,i+2

(
H −

i−2∑
j=1

pjgj,i+2 −

pi−1gi−1,i+2 − pigi,i+2

)

=
1

gi+1,i+2

(
H −

i−2∑
j=1

pjgj,i+2 −

pi−1gi−1,i+2 − (Aipi−1 + Bi)gi,i+2

)

≡ Ai+1pi−1 + Bi+1

· · ·
pw−1 =

1
gw−1,w

(
H −

i−2∑
j=1

pjgj,w − pi−1gi−1,w

− pigi,w − · · · − pw−2gw−2,w

)

=
1

gw−1,w

(
H −

i−2∑
j=1

pjgj,w − pi−1gi−1,w

− (Aipi−1 + Bi)gi,w − · · ·

− (Aw−2pi−1 + Bw−2)gw−2,w

)



≡ Aw−1pi−1 + Bw−1

Now define intervals Ii−1, Ii, · · · , Iw−1, I0 as follows.

Ii−1 =

{
π ∈ R

∣∣∣ i−2∑
j=1

pjgj,i + πgi−1,i > H

}

Ii =

{
π ∈ R

∣∣∣H − i−2∑
j=1

pjgj,i+1

− πgi−1,i+1 > 0

}

Ii+1 =

{
π ∈ R

∣∣∣H − i−2∑
j=1

pjgj,i+2 − πgi−1,i+2

− (Aiπ + Bi)gi,i+2 > 0

}
· · ·

Iw−1 =

{
π ∈ R

∣∣∣H − i−2∑
j=1

pjgj,w − πgi−1,w

− (Aiπ + Bi)gi,w − · · · −

(Aw−2π + Bw−2)gw−2,w > 0

}

I0 = (0,∞)

Note that I0 is the set of values which if taken by pi−1

let vi−1 stay in S; Ii−1 is the set of values which if
taken by pi−1 let vi−1 not verify the wavepath property;
each Ic, i ≤ c ≤ w−1 is the set of values which if taken
by pi−1 let vc continue to verify the wavepath property.
These are all well-defined, open, infinite intervals be-
cause the constraints are all linear. Define interval I as
the intersection of them: I =

(⋂w−1
j=i−1 Ij

)⋂
I0. Since

at least pi−1 is in I , I is also an open infinite interval.
Now write E(S) as a linear function of pi−1:

E(S) =
i−2∑
j=1

pj + pi−1 +
w−1∑
j=i

(Ajpi−1 + Bj) + 0

≡ Api−1 + B

We show that A = 0. Suppose instead A > 0. There
exists π ∈ I such that π < pi−1 and the schedule
S′ = [(v1, p1), · · · , (vi−2, pi−2), (vi−1, π), (vi, Aiπ +
Bi), · · · , (vw−1, Aw−1π + Bw−1), (vw, 0)] is a feasible
transmission schedule and E(S′) < E(S). This con-
tradicts that S is an optimal schedule. The argument is
similar for the case A < 0.

Now we show how to transform S, which has m > 0
nodes in the schedule violating the wavepath property,
to S′, which has the same energy consumption as S
and only m − 1 nodes violate the wavepath property.
Denote the left boundary of interval I by �(I). Note
that �(I) < pi−1 <∞. There are three cases.

1) �(I) = �(Ij1) = · · · = �(Ijx
), i ≤ j1 < · · · <

jx ≤ w − 1. Transform S into S′ by setting
pi−1 = �(I) and changing pj , i ≤ j ≤ w − 1
according to the formulae pj = Ajpi−1 + Bj , and
removing those (vj , pj) pairs which have pj = 0
(i.e., (vj1 , pj1), · · · , (vjx

, pjx
)). It is easy to verify

that S′ is a feasible transmission schedule and
E(S′) = E(S). Now note that if there are still
m nodes that do not verify the wavepath property,
then the last such node must continue to be vi. Use
the arguments above again (i.e., write pj , j ≥ i
and E(S′) as linear functions of pi−1, define the
intervals, and A = 0). If �(I) still falls in this case,
repeat the arguments again. Finally �(I) must fall
in the other cases since in each repetition, some
(vj , pj) pairs are removed; and some intervals do
not have a left boundary (eg. Ii).

2) �(I) = �(Ii−1). Transform S into S′ by setting
pi−1 = �(I) = �(Ii−1) and changing pj , i ≤ j ≤
w−1 according to the formulae pj = Ajpi−1+Bj .
It is easy to verify that S′ is a feasible transmission
schedule and E(S′) = E(S). Note in S′ vi verifies
the wavepath. So at most m−1 nodes do not verify
the wavepath property.

3) �(I) = �(I0) = 0. Transform S into S′ by setting
pi−1 = 0, removing (vi−1, pi−1), and changing
pj , i ≤ j ≤ w− 1 according to the formulae pj =
Ajpi−1+Bj . It is easy to verify that S′ is a feasible
transmission schedule and E(S′) = E(S). At most
m − 1 nodes in S′ do not verify the wavepath
property.

Thus any optimal schedule of MEAR(V, s, t) can be
iteratively transformed to a schedule where every node
verifies the wavepath property.

Theorem 4: Given the MEAR(V, s, t) problem, and
the set of participating nodes U ⊂ V, s, t /∈ U in an
optimal transmission schedule S = [(vi, pi)]wi=1 which
is a wavepath, i.e., {vi}w−1

i=2 = U (S itself is not given),
there is a polynomial time algorithm to find S.
Proof: We provide an algorithm ORDER as in Algo-
rithm 1 which output the integral optimal transmission
schedule S when U is given. It is easy to verify that
ORDER runs in O(w2) time and based on Theorem 3, it
is correct.

Note that in Theorem 4, node participation is prede-
termined, i.e., all nodes in U must be in S and only the
nodes in U plus s, t can be in S.

E. A Heuristic RPAR for MEAR(V, s, t)

In this section, we present our Relay PAth Routing
heuristic, RPAR, for identifying the energy efficient
accumulative relay route of the MEAR(V, s, t) problem.
Through simulations it is shown that RPAR can achieve



input : a set of participating nodes U , source s,
destination t

output: a wavepath schedule from s to t using all
nodes in U

i← 1, v1 ← s, vw ← t, U ′ ← U ;
while U ′ �= ∅ do

find v ∈ U ′ with the minimum
1

gi,v

(
H −∑i−1

j=1 pjgj,v

)
;

pi ← 1
gi,v

(
H −∑i−1

j=1 pjgj,v

)
, i← i + 1;

vi ← v, U ′ ← U ′ \ {v}
end
pw−1 ← 1

gw−1,w

(
H −∑w−2

j=1 pjgj,w

)
,

pw ← 0
output {(vi, pi)}wi=1

Algorithm 1: ORDER(U, s, t)

more than 30% improvement over SP, the traditional
shortest path algorithm. Also the performance of RPAR
is very close to the optimal, both in the average case and
in the worst case as shown in Section IV-A.

RPAR grows a tree T rooted at s by connecting a
node to T in each iteration, starting with {s}, until t
is added to T . Define a dynamic cost function c(u, v)
as the energy consumption of a successful transmission
from u to v. Define function e(v) on node v as the total
energy usage of a transmission schedule from s to v if the
unique path from s to v in T is followed. In the descrip-
tion of Algorithm 2, π(v) denotes the parent of node v in
T , V (T ) denotes the vertex set of T , E(T ) denotes the
edge set of T , and p(v) denotes the unique path from s
to v in T , i.e. p(v) = [(v1, v2), (v2, v3), · · · , (vw−1, vw)]
where v1 = s, vw = v and ∀i < w, (vi, vi+1) ∈ E(T ).

The output is an energy efficient transmission schedule
from s to t. It is clear from the description of Algo-
rithm 2 that a node u can transmit to its next hop v
with energy smaller than H/gu,v (except for source s),
which forms the basis of better energy efficiency in a
AR network than a TM network.

The execution of RPAR(V, s, t) assigns a unique par-
ent for each node that is added to T . It follows that T
is a tree. So for given source s and destination t, RPAR
yields a loop free path. It can be shown that RPAR has
time complexity O(V 3). (For each iteration to add one
node to T , it needs O(V 2) computation time.)

F. Analysis of Energy Efficiency of k-Relay

In this section, we derive a lower bound on the energy
efficiency of k-Relay routing. By the same derivation,
we show the existence of an algorithm that achieves the
bounded approximation ratio. Note that this bound is
only interesting when k is small.

input : node set V , source s ∈ V , destination t ∈
V

output: a transmission schedule from s to t

V (T )← {s}, E(T )← ∅; U ← V \ V (T );
∀v ∈ U, π(v)← s;
e(s)← 0; ∀v ∈ U, e(v)← H/gs,v;
while t /∈ V (T ) do

select u ∈ U s.t. ∀v ∈ U, e(u) ≤ e(v);
V (T )← V (T ) ∪ {u};
E(T )← E(T ) ∪ {(π(u), u)};
c(π(u), u)← e(u)− e(π(u));
foreach v ∈ U do

if e(v) > e(u) +(
H −∑(x,w)∈p(u) c(x,w) · gx,v

)/
gu,v

then
e(v)← e(u) +(
H−∑(x,w)∈p(u) c(x,w) · gx,v

)/
gu,v;

π(v)← u

end
end

end
output {(vi, pi)}wi=1 where v1 = s, vw = t,
∀i > 1, vi−1 = π(vi), pi−1 = c(vi−1, vi), pw = 0

Algorithm 2: RPAR(V, s, t)
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Fig. 4. For source destination pair 1 and 8, let the optimal
3-Relay path be [1, 2, · · · , 8]. The directed edges represent
the edges (A(i), i) if leakage of node A(i) at node i is at
least 1

3
H . For example, A(2) = 1, A(6) = 3. The sequence

1, 2, 3, 6, 8 forms a directed path from 1 to 8 in the TM
model.

Theorem 5: Given a set of nodes V , source s ∈ V
and destination t ∈ V , the energy of the optimal k-
Relay path is at least 1

k of the output given by the SP
algorithm.
Proof:

Let S = [(v1 = s, p1), · · · , (vl = t, p�)] be the
optimal k-Relay transmission schedule for (s, t), and let
E(S) =

∑i=�−1
i=1 pi be the total energy consumption of

S (p� = 0). By the definition of k-Relay, node i can
accumulate energy from transmissions of nodes i−k, i−
k + 1, · · · , i − 1, which sum to H . Thus, for any node



i > 1, at least one node among i−k, i−k+1, · · · , i−1
has a leakage of at least 1

kH on i. Let A(i) denote
this node. We now show that S∗ = [(vi, p

∗
i )]

w
i=1, where

v1 = s, vw = t, p∗i = kpi and ∀i > 1, vi−1 = A(i), is a
feasible transmission schedule for 1-Relay routing.

First, S∗ is well-defined, since for any node i > 1,
A(i) exists and A(i) < i. The schedule S∗ can be found
by determining t, A(t), A(A(t)), A(A(A(t))), · · · . Now
by definition of A(i), the transmission power p∗i−1 of
every node i−1 is enough for the next node i to correctly
decode the packet. Therefore, S∗ is feasible for 1-Relay
routing.

Since E(S) is at least 1
k fraction of the total energy

consumption of S∗, which is at least the shortest path
energy (minimum among all 1-Relay paths), Theorem 5
follows.

Theorem 5 places a lower bound on the energy effi-
ciency of k-Relay routing, i.e., the shortest path heuristic
provides an approximation of factor k. When k = n
(accumulation allowed from any previous transmitting
node), the upper bound of the performance of this
heuristic is n. In Section III-C, we have shown that
the shortest path heuristic can perform arbitrarily badly
(with a super-constant approximation), which provides
a lower bound of the heuristic performance. However,
when k is small, eg. k = 2, the heuristic can provide
2-approximation guarantee.

IV. SIMULATION RESULTS

In this section, we evaluate the performance of RPAR
by first comparing it to the optimal solution OPTRelay
in small size networks and then to SP in larger net-
works through simulations. We consider the aggregate
transmission energy consumption of the paths (defined
in Section II) as the performance metric. Nodes are
randomly distributed in a stationary network with size
1000m × 1000m. In all the simulations, the power
attenuation exponent α is set to 2.

A. Comparison Between RPAR, SP and OPTRelay

We first demonstrate the performance of the heuris-
tic RPAR in approximating the optimal solutions, and
compare it with that of SP. For networks with n =
2, 3, · · · , 26 nodes, we measure the average case approx-
imation ratios and the worst case approximation ratios
of RPAR and SP. The approximation ratio is defined
as the total transmission energy of the schedule output
by RPAR divided by that of an optimal schedule, and
the same for SP. The optimal schedule is found by
brute force search. For each n-node network, we study
the approximation ratio for all the source-destination
pairs in the network, and plot the average and the
worst case approximation ratios in Figure 5. It shows
that RPAR heuristic is very close to the OPTRelay. Its

approximation ratio is no more than than 1.1 in the worse
cases, and even less in average case which is around
1.01. On the contrary, the SP algorithm, deviates from
the optimal significantly, in the worst case as well as in
the average case.

Recall that Theorem 5 establishes that both RPAR
and SP are k factor approximation algorithms for the
minimum energy accumulative k-Relay routing. The
simulation shows that the actual performance of RPAR
is much better than that of SP. It is interesting to see
that the approximation ratio of either RPAR or SP
does not exceed 2, even for unlimited k, indicating
that the performance upper bounds can be significantly
improved. In the following discussions, we compare the
performance of RPAR with that of SP for larger networks
in various settings. We repeat each simulation 50 times
and compute the average as our simulation result.
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Fig. 5. Average and worst case performance of RPAR and SP
on small networks.

B. Impact of Nodes Density

In this set of simulations, we investigate the effect
of node density on the performance of RPAR. A set of
50, 100, 150, 200, 250, 300, 350 or 400 nodes are
randomly distributed in a 1000m × 1000m plane. For
each run of the simulation, 20 source-destination pairs
are randomly selected, and we measure the total energy
consumption of the schedules output by RPAR over that
of SP . The results are illustrated in Figure 6. When
the network density increases the ratio decreases which
implies the energy saving of RPAR over SP increases.
For a randomly selected pair, the expectation of the
Euclidean distance between them remains the same when
the density increases. However the path generated by
RPAR (as well as by SP) will have more hops when
the density increases. Thus, on one hand, the energy
consumption of both schedules from RPAR and SP will
decrease when the the density increases. On the other
hand, the energy consumption of the RPAR schedule
decreases even faster since more nodes generate leakages



to other nodes in the network and moreover, the distance
between each hop decreases which enable the nodes
to benefit more from the leakages. This explains the
observed trend in Figure 6.
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C. Impact of the Number of Relay Levels
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Fig. 7. Energy saving of RPAR over SP under different
relay levels. Larger relay level leads to more energy
saving, but the improvement becomes less when k
increases.

In this simulation, we study the performance of k-
Relay AR for different relay levels. We consider a
random network of 200 nodes. For each relay level
k = 1, 2, · · · , 9, we plot the average energy consump-
tion ratio of the schedules output by RPAR to that of
SP for 20 random source destination pairs. The results
are presented in Figure 7. Note that 1-Relay scheme
is actually the traditional routing without accumulative
relay. Thus, the ratio of 1-Relay RPAR over SP is simply
1. When the relay level k increases, the energy ratio of
RPAR over SP decreases, but rate of decreasing slows
down. Figure 7 shows that larger relay levels provides
more energy saving, however, most energy saving of
RPAR is achieved under small relay levels. This is
an encouraging result, since the limited computational

power and buffer size of wireless nodes as well as the
complexity of coding schemes puts a limitation on the
relay level in practical systems.

V. IMPLEMENTATION ISSUES

For the proposed scheme to be successfully imple-
mented two main issues need to be addressed. First,
the nodes should be able to compute the wavepath.
Second, they should be able to implement the accumu-
lative relaying. The first part can be implemented in a
centralized manner, where one or multiple nodes gather
the information about the network topoplogy and then
run the RPAR algorithm. The distributed implementation
of the RPAR algorithm requires further investigation
specially when we consider mobility [26]. In this section,
we assume that the wavepath was already established
and we focus on the implementation of the accumulative
relaying.

Reliable Reception

Partial Reception

A B

C

Fig. 8. Packet relaying.

To be able to correctly implement the accumulative
relaying, each node should be capable of the following
tasks.

1) Reliably identify each received packet by us-
ing a strong modulation/coding of the packet
header even if the payload cannot be decoded.
The goal here is to distinguish between the packets
and to group them if they are copies of the same
original packet. This issue can be dealt with
by including in the header enough information
for unique identification of the packet, and then
encoding the packet header using a forward error
correction code. The packet header should contain
the following information:

• MAC SRC ADDR: source address at the link
layer (address of the relay node sending this
packet);

• MAC DST ADDR: destination address at the
link layer (address of the relay node who is the
immediate destination of this transmission);

• NET SRC ADDR: network address of the
node that generated the packet;

• SN: a sequence number generated by the
network source node, to uniquely identify a
packet and all its relayed copies.

In Figure 8, node C can match the two copies from
A and B by looking at the NET SRC ADDR and



SN fields. Node C should also be able to decode
the header of the packet sent by A even if it is not
capable of decoding its payload. One approach to
realize it is to use a forward error correction code.
Using a good error correction code can provide
the coding gain necessary to reach nodes within
twice the range of the data part of the packet. If
the power attenuation factor is taken to be equal
to 2, then it is enough to use a code with a
gain of 20log10(2) = 6dB. The simplest code
that can be used is a repetition code, however
LDPC and turbo codes provide better gain for the
same redundancy level [27], [28] but require more
computation for decoding. The tradeoff between
transmission energy and energy cost of decoding
has to be considered to determine the best coding
strategy.

2) Be able to store the partially received packet.
At the MAC layer, the node should store
all received packets corresponding to the same
NET SRC ADDR and SN, until receiving a copy
of such a packet with the MAC DST ADDR cor-
responding to the MAC address. Then the node
can attempt to decode such packet and send an
acknowledgment if successful. All the old copies
of a packet will be discarded from the MAC
memory when the packet is successfully decoded.

3) Be able to combine the various copies and
correctly decode the packet. The data part of
each packet is encoded with an error correction
code that achieves a very low bit error rate for
the considered power threshold. This implicitly
implies that the rate of such code is below the
Shannon capacity limit for the power threshold and
noise level. When combining multiple copies of
each packet, one can ask if such copies need to
be encoded specially. In the case of the wideband
regime it was shown in [3] that a simple repetition
code provides optimal performance in terms of en-
ergy saving. This means that there is no advantage
in using a complex re-coding scheme when for-
warding a packet. This result is basically due to the
fact that the capacity of the channel is proportional
to the signal power for large bandwidth. Therefore
the receiver can combine the stored copies of each
packet by combining the different copies of each
bit by, for example, computing an average of the
real valued estimates.

4) Be able to prevent interference at all tar-
geted neighboring nodes. Our target scenario is
a low-load network where energy is the critical
constraint. This is typically the case for sensor
networks with duty cycles below 1%. If the net-

work load is not low, and if an IEEE802.11-
like MAC protocol is used, then the RTS/CTS
collision avoidance mechanism should be modified
to prevent interference at overhearing nodes. This
can be done by using a forward error correction
code for the RTS/CTS packets to cover all the area
where overhearing nodes might be located.

5) Online power control and retransmissions. At
each transmission, the sending node estimates the
required power level for the receiver using the
RTS/CTS handshake. The CTS packet includes
the required power level and takes into account
the previously accumulated energy. If the packet
cannot be successfully decoded, the retransmission
is done at a power level freshly estimated through
the RTS/CTS exchange.

VI. CONCLUSIONS

In this paper, we investigated a novel approach to
energy saving for unicast communication under the
model where nodes can partially overhear packets. This
is feasible even with today’s RF chips that allow mul-
tirate/coding/modulation communication. In search for
simple and optimal relaying strategies, we introduced
the notion of wavepath and showed that any minimum
energy schedule can be transformed into a wavepath.
We developed a heuristic to build an energy efficient
wavepath and showed through simulation that significant
energy saving can be achieved. We have also shown that
under a general propagation model the classical shortest
path approach can be arbitrarily bad in comparison with
an optimal approach (and our heuristic).
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