
HIERARCHY-BASED ACCESS CONTROL IN DISTRIBUTED ENVIRONMENTS

Jean-Camille Birget4, Xukai Zou†, Guevara Noubir⊕ and Byrav Ramamurthy†

4Dept. of Computer Science, Rutgers University, Camden, USA
†Dept.of Computer Science and Engineering, University of Nebraska-Lincoln, USA

⊕College of Computer Science, Northeastern University, USA
E-mail: birget@camden.rutgers.edu, {xkzou, byrav}@cse.unl.edu, noubir@ccs.neu.edu

Abstract. Access control is a fundamental concern in any sys-
tem that manages resources, e.g., operating systems, file systems,
databases and communications systems. The problem we address
is how to specify, enforce, and implement access control in dis-
tributed environments. This problem occurs in many applications
such as management of distributed project resources, e-newspaper
and payTV subscription services.

Starting from an access relation between users and resources,
we derive a user hierarchy, a resource hierarchy, and a unified hi-
erarchy. The unified hierarchy is then used to specify the access
relation in a way that is compact and that allows efficient queries.
It is also used in cryptographic schemes that enforce the access re-
lation. We introduce three specific cryptography based hierarchical
schemes, which can effectively enforce and implement access con-
trol and are designed for distributed environments because they do
not need the presence of a central authority (except perhaps for set-
up).

Keywords: Distributed access control, access hierarchies, informa-
tion and communication security.

Note: This work was conducted when G. Noubir and J.-C. Birget
were visiting the University of Nebraska-Lincoln. J.-C. Birget and
B. Ramamurthy were supported in part by NSF grants.

1. INTRODUCTION

The domain we consider in this paper is that of distributed appli-
cations in environments such as distributed operating systems, dis-
tributed database systems, and communication networks where dif-
ferent users access different resources with different access rights.
This problem is called distributed access control. Typical examples
include access to rooms (e.g., class and lab) in a building, man-
agement of project resources, e-newspaper and payTV subscription
services.

For example, in the context of management of project resource,
users include directors, group leaders, project managers, technical
managers, engineers, consultants, administrative staff, customers
and accounting staff. Resources include financial data, internal
technical documents, public project documents, laboratories, etc.
Different users have different access rights to different resources,
which need to be concisely specified and correctly enforced.

Access control deals with the specification and enforcement of
users’ access permissions (and access restrictions) relative to the
resources of a system. This is a fundamental concern in any sys-
tem that manages resources, e.g., operating systems, file systems,
databases and communications systems. Traditionally, access con-
trol is specified by an access relation (or “access matrix”) that lists

explicitly which users can access which resources.

In this paper we uncover a user hierarchy and a resource hier-
archy, that are implicit in any access relation. Intuitively the hier-
archies arise from the fact that some users have more access rights
than others, and some resources carry more access constraints than
others (a formal definition will be given later). We show that these
hierarchies can give useful information.

Another contribution of this paper is an algorithm that merges
these implicit user and resource hierarchies into a single hierarchy.
This unified hierarchy contains the user and resource hierarchy as
sub-hierarchies; moreover, a user is above a resource in the unified
hierarchy if and only if this user has access to this resource. Thus
the unified hierarchy contains all the information of the access rela-
tion, while also displaying the useful hierarchy information. In ad-
dition, the unified hierarchy merges ‘equivalent’ users, and merges
‘equivalent’ resources (rigorous definitions will be given); thus the
unified hierarchy will usually be a compact description of the access
rights.

Having a unified hierarchy can simplify access control. The
literature contains secure access control protocols [1, 3, 6, 8, 10]
that assume (without justification) that we have such a pre-existing
unified hierarchy (see Subsection 3.4). We show how various secure
access control schemes make use of hierarchy information in order
to enforce access permissions and restrictions.

For a centralized system, access control is usually implemented
by a centrally stored access table [2, 5, 7, 11, 12]. However, appli-
cations in distributed environments call for distributed access con-
trol (e.g., networks, Internet, distributed databases, web services,
distributed operating systems, satellite-TV, etc.). In Section 3 we
give access control schemes that are specifically designed for dis-
tributed applications.

In this paper we do not consider the dynamics of access control
(when users and resources are added and removed and when access
rights change). Our results are applicable when systems change
only slowly. Dynamical distributed access control is a very difficult
problem that does not have easy solutions. We have been studying
the problem by beginning with restricted domains and have pro-
posed some dynamic hierarchical access control schemes for spe-
cific applications fields such as tree-hierarchies and secure group
communications [13].

To illustrate the hierarchies we will use the following simple
example, inspired from a college environment. The users, the re-
sources, and the access relation (user-dominant adjacency lists) are
given as follows (see box). We will derive a unified hierarchy for
these relations in Section 2.

In the next section we define the user and resource hierarchies
as well as the unified hierarchy and prove the existence and unique-
ness of the unified hierarchy. In Section 3, we discuss the speci-

fication of an access relation (in particular, using the unified hier-
archy) and introduce three cryptography based schemes which en-
force the access relation; these schemes use the unified hierarchy
and are specifically designed for distributed applications.

prof1 → c1, c1A, c3, lab1, lab2, pr1, pr2
prof2 → c2, c3, lab1, lab2, pr1, pr2
grStu1 → c1A, c3, lab1, lab2, pr2
grStu2 → c1A, c3, lab1, lab2, pr2
ugrStu1 → c3, lab1, lab2, pr2
ugrStu2 → c3, lab1, lab2, pr2
. . .

ugrStu100 → c3, lab1, lab2, pr2
secr → c3, pr1, pr2
sysMgr → all resources
sysHelp → all resources except c1 and c2

2. IMPLICIT HIERARCHIES IN AN ACCESS RELATION

A hierarchy is formalized by a directed acyclic graph
(DAG), which defines a partial order (“hierarchical order”) among
vertices. A vertex vi is below a vertex vj in the hierarchical order
(vi ≤ vj) if and only if there exists a directed path in the graph
from vj to vi.

Let U = {u1, u2, . . . } be the set of users in the system, and
let R = {r1, r2, . . . } be the set of resources in the system. The
access relation A of the system determines which resources each
user can legally access and use:

A = {(u, r) ∈ U ×R : the user u can access the resource r}.

For a user u ∈ U , let R(u) ⊆ R denote the set of resources that
u can access; for a resource r ∈ R, let U(r) ⊆ U denote the set of
users that can access r. So, (u, r) ∈ A is equivalent to r ∈ R(u),
and also equivalent to u ∈ U(r). In the following, we assume that
the complete access relation is known, and hence all the sets R(u)
and U(r) are known.

The user and resource hierarchies are defined as follows:

Definition 1. Let ui, uj ∈ U, ri, rj ∈ R.

ui ≤U uj if and only if R(ui) ⊆ R(uj) (i.e., ui is below uj

in the user hierarchy if and only if the resources that ui can access
form a subset of the resources that uj can access).

ri ≤R rj if and only if U(rj) ⊆ U(ri) (i.e., ri is below rj in
the resource hierarchy if and only if every user that can access rj

can also access ri).

ui ≡U uj if and only if R(ui) = R(uj); so, two users are
equivalent (regarding access control) if and only if they have exactly
the same access rights.

ri ≡R rj if and only if U(ri) = U(rj); so two resources are
equivalent (regarding access control) if and only if they are acces-
sible by exactly the same users.

Note that the subset order is reversed for resources, compared
to users.

The ‘order’ relations defined so far are in general not antisym-
metric (i.e., x ≤ y and x ≥ y does not imply x = y; see e.g.,
[4]). To obtain partial orders we merge equivalent (≡U) users
into single groups, and we merge equivalent resources into single
groups. Note that the result is the same, whether we first merge
equivalent users, and then equivalent resources, or vice-versa. From

now on, when we say “user” (or “resource”), we will mean a group
of equivalent users (respectively, resources). The set of users U , the
set of resources R, and the access relation A will refer to groups
from now on.

Example: For our example from the Introduction, the Figures 1 and
2 represent the user and the resource hierarchies with several merg-
ers between users and resources, obtained from the access relation.

prof1

sysMgr

prof2

secr

ugrStu100
...

ugrStu1

grStu2

grStu1

sysHelp

Figure 1: User hierarchy

c2c1

c1A

c3
pr2

lab2
lab1

pr1

Figure 2: Resource hierarchy

Now (after merging equivalent users, and merging equivalent
resources), the users form a partial order (p.o.), called the user hi-
erarchy, and denoted by (U,≤U); similarly, the resources form a
p.o., called the resource hierarchy, and denoted by (R,≤R).

We will now combine the user hierarchy and the resource hier-
archy into a unified hierarchy, defined as follows:

Definition 2. Let (U,≤U) and (R,≤R) be p.o.’s (user hierarchy,
resource hierarchy respectively), obtained from an access relation
A. The unified hierarchy is a p.o. (V,�) satisfying the following
conditions:

(1) The user hierarchy is a sub-p.o. of the unified hierarchy; this
means: (U,≤U) is embedded into the p.o. (V,�) by a one-to-one
map fU : U → V , such that for all ui, uj ∈ U : ui ≤U uj if and
only if fU (ui) � fU (uj).

(2) Similarly, the resource hierarchy is a sub-p.o. of the unified
hierarchy; this means: (R,≤R) is embedded into the p.o. (V,�)
by a one-to-one map fR : R → V , such that for all ri, rj ∈ R:
ri ≤R rj if and only if fR(ri) � fR(rj).

(3) A user u ∈ U has access to a resource r ∈ R if and only if
u is above r in the unified hierarchy; thus, u has access to r if and
only if fR(r) � fU (u).

(4) The p.o. (V,�) is the smallest p.o. (regarding the size of V),
satisfying (1), (2), (3).

The following theorem shows that a unified hierarchy, as just
defined, exists and is not larger than the combined size of the two
original user and resource hierarchies.

We will use the notation x � y to mean y � x.

Theorem 1. For any user hierarchy (U,≤U) (a p.o.) and any re-
source hierarchy (R,≤R) (a p.o.) there exists a unified hierarchy
(V,�) (a p.o. as defined above), and this p.o. is unique up to ‘iso-
morphism’ (i.e., up to renaming the elements of V). For the size |V |
of V we have: |V | ≤ |U | + |R|.

Moreover, (V,�) can be constructed from (U,≤U) and (R,≤R

) in polynomial time.

Proof. We use the classical notation 2R for the set of all subsets of
R. We will construct the unified hierarchy (V,�) as a sub-p.o. of
the p.o. (2R,⊆). (Analogously, we could have based the construc-
tion on 2U , which would have been quite similar.)

(1) We embed the user hierarchy (U,≤U) into (2R,⊆) by the map
fU : ui ∈ U → fU (ui) = R(ui) ∈ 2R.
(So, fU (ui) consists of the resources that ui can access.) Then fU

is one-to-one (since we merged equivalent users), and ui ≤U uj if
and only if fU (ui) ⊆ fU (uj) (by the very definition of ≤U).

(2) We embed the resource hierarchy (R,≤R) into the p.o. (2R,⊆)
by the map fR : ri ∈ R → fR(ri) = {rj ∈ R : rj ≤R ri}.
Then fR is one-to-one (because ≤R is a p.o.), and ri ≤R rj if and
only if fR(ri) ⊆ fR(rj) (again because ≤R is a p.o.).

(3) The third condition of the definition then holds: ui can access rj

if and only if rj ∈ R(ui) if and only if (∀rk ≤R rj) rk ∈ R(ui)
if and only if fR(rj) ⊆ fU (ui).

Let V = {fU (u) : u ∈ U} ∪ {fR(r) : r ∈ R} ⊆ 2R. Then the
p.o. (V,⊆) satisfies conditions (1), (2), (3) of the definition (with⊆
playing the role of �).

Also, clearly |V | ≤ |U | + |R|.

It is easy to implement the construction of (V,�) in polynomial
time; note that we need not consider all of 2R in the construction.

Minimality of |V | and uniqueness of the minimal unified hier-
archy will follow from the following lemma.

Lemma: For any minimal unified hierarchy (V,�) obtained from
(U,≤U) and (R,≤R), with embedding maps fU and fR we have:

fU (ui) = fR(rj) if and only if R(ui) = {rk : rk ≤R rj}.

Proof of the Lemma: By the definition of the unified hierarchy,
fU (ui) = fR(rj) if and only if ui can access rj (and hence the
descendants of rj), and no other resources (if ui could access an-
other rk, then fR(rj) = fU (ui) � fR(rk) hence rj ≥R rk). This
proves the Lemma.

Minimality of our construction then follows: Indeed, from the
definition, V must contain U and R (via one-to-one maps). To
make |V | smaller than |U |+|R|, the embedding maps must identify
some ui’s with some rj’s. But the Lemma tells us a necessary and
sufficient condition for this to happen. In our construction based
on 2R, all these possible identifications do happen, hence |V | is
minimal.

Now we can also prove that our construction has minimum size:
Let V ′ be any minimum-size unified hierarchy containing copies of
U and R (via embedding maps f ′

U , f ′

R), according to Def. 2. For

|V ′| to be smaller than |U |+|R|, the embedding maps must identify
some u ∈ U with some r ∈ R: f ′

U (u) = f ′

R(r)(∈ V ′).
Since f ′

U (u) = f ′

R(r) we conclude that u can access r (by (3) of
Def. 2), and hence {rj ∈ R : rj ≤R r} ⊆ R(u).
On the other hand, if u can access some resource rj then (again by
point (3) of Def. 2), f ′

R(rj) � f ′

U (u)(= f ′

R(r)). Hence (by point
(2) of Def. 2), rj ≤R r. Therefore,

R(u) ⊆ {rj ∈ R : rj ≤R r}.
The two set-inclusions imply:

If f ′

U (u) = f ′

R(r) then R(u) = {rj ∈ R : rj ≤R r}.
Then it follows from the Lemma above, that u and r are also iden-
tified in our construction of V above. So, our construction of V

makes every identification that any minimum-size unified hierarchy
V ′ will do, so our construction is of minimum-size too.

Uniqueness also follows: different minimal unified hierarchies
can only differ in the way ui’s are identified with rj’s. But the
Lemma tells us that this can only be done in one way.

This proves the Theorem. 2

The definition of the unified hierarchy does not tell us explicitly
what it means for a resource to be above a user u � r). From the
construction one can derive the following (and the proof is straight-
forward):

Proposition In the unified hierarchy the following are equivalent
(where u is a user and r is a resource):
u � r;
every resource accessible by u is ≤R r;
every user of r is ≥U u;
for every user ui of r and every resource rj accessible by u we
have: ui can access rj ;
the Cartesian product U(r)×R(u) is a subset of A.

Example: For the example of the Introduction, Figure 3 represents
the unified hierarchy. Note that some users have been merged with
resources.

c2 sysHelp

pr1
secr

prof2prof1
c1

grStu1

lab2

ugrStu100
...ugrStu1

lab1

grStu2

sysMgr

pr2c3

c1A

Figure 3: Unified hierarchy

3. IMPLEMENTATION OF ACCESS CONTROL

In this section we use the hierarchies that we introduced in order to
develop secure access control schemes. Hierarchies can be used for
both the specification and the enforcement of access control. In our
enforcement schemes, a user ui has to prove to a resource rj that ui

has the right to access rj , and this should be possible if and only if
rj � ui with respect to the unified hierarchy. We will present three

basic means to enforce access control: certificates, unconditionally
secure keying schemes, and computationally secure keying schemes
(based on one-way functions).

3.1. Specification of access control
An access control relation can be given explicitly, by an access ma-
trix, which can be useful for theoretical reasonings but is wasteful
for space. A more compact description of the access control rela-
tion can be given by adjacency lists: user-dominant adjacency lists
or resource-dominant adjacency lists.

The unified hierarchy can also be used to describe the access re-
lation. In this case, the hierarchy is given as a graph in which every
vertex is labeled by the set of equivalent users or resources (or some
of both) that are represented by this vertex. Because of the merger
of equivalent users or resources, and the merger of some users with
some resources, the unified hierarchy is a representation which is as
compact as (and usually more compact than) the adjacency list rep-
resentation. Moreover, the unified hierarchy has the advantage that
certain queries are more efficient: Given a user ui or a resource rj

it is easy to find the adjacency list of ui or rj (namely, pick all the
resources that are � ui, respectively, all the users that are � rj).
In the user-dominant adjacency list representation, it is tedious to
find a resource’s adjacency list; on the other hand, if both user-
and resource-dominant adjacency lists are explicitly given, storage
is wasted. In the rare cases when no mergers occur, the unified hi-
erarchy loses its compactness advantage (however, one still has to
consider the concepts and go through some of the construction of
the unified hierarchy, in order to find out that no users are merged
with resources). In any case, the unified hierarchy keeps an advan-
tage regarding queries. Thus, the unified hierarchy could serve as
a representation of the access relation, which is both compact and
efficient for queries.

Various mixed representations of the access relation are also
possible: we might be given partial information about adjacency
lists, about the user and resource hierarchies, or information about
equivalence of some users or some resources. This may arise in
specifications, and one could be asked to reconstruct the entire uni-
fied hierarchy from these data.

In a distributed environment, partial information about the ac-
cess relation or the unified hierarchy will be distributed among the
users and the resources; no central authority is needed (except may
be at the set-up of the system or for occasional maintenance and
updates).

In the next three subsections we give schemes for enforcing an
access relation.

3.2. Certificate-based schemes
In these schemes a trusted certificate authority (CA) distributes cer-
tificates to users. When a user accesses a resource the protocol is
as follows: the user provides an access request along with a certifi-
cate. The resource then verifies the user’s access right based on this
certificate (without consulting the CA).

It is natural to assume that users know which resources they can
access. A user ui may have a certificate of the following form for
each resource rj that ui can access:

[ui’s ID, (ui, rj), cert.-valid-time, CA-sig.].
Here, ui’s ID identifies the user, (ui, rj) indicates the access right,
and the CA’s digital signature certifies to the resource that the infor-
mation in the certificate is correct. We refer to books on cryptogra-
phy for more information on certificates and digital signatures (e.g.,

[9]).

Alternatively, instead of having a different certificate for each
resource that ui can access, ui might have just one certificate that
lists all of R(ui) (i.e., all the resources accessible to ui). This ap-
proach may be simpler when the number of resources is small; but
it gives more information to a resource than this resource needs to
know.

In any case, no information about the access relation or the hi-
erarchies needs to be stored in the resources.

A disadvantage of this scheme comes from a general problem
with certificates: it is hard to keep certificates up to date when the
system changes (the revocation problem – see [9]).

3.3. Unconditionally secure keying schemes

In this approach every vertex v in the unified hierarchy has a key
kv . Moreover, depending on the unified hierarchy order �, each
user at v knows a set of keys Uv ⊆ {kw : w � v} (i.e., the user
knows some keys of lower-ranking resources), and each resource at
vertex v knows a set of keys Rv ⊆ {kw : v � w} (i.e., some keys
of higher-ranking users); the sets Uv and Rv should be chosen in
such a way that

vi � vj if and only if Uvj
∩Rvi

6= ∅.

Moreover, the sets Uv and Rv should be such that one cannot guess
any key contained in any of these sets. In particular, we assume that
the keys kv are long enough so that they cannot be guessed.

When a user uj (at vertex vj) requests a resource ri (at vertex
vi) he presents his set Uvj

to the resource; the resource then checks
whether Uvj

∩ Rvi
6= ∅, which holds if and only if vi � vj , i.e., if

and only if uj has the right to access ri. (In this protocol, a resource
can get information about the keying material held by users; this
could however be avoided by adding ‘challenge-response’ methods
into the protocol – see [9].)

We will illustrate this approach by simple special cases, namely
‘user multiple keying’, ‘resource multiple keying’, and ‘mixed key-
ing’.

User multiple keying:

In this scheme we have for every vertex v: Rv = {kv} and
Uv = {kvj

: vj � v}.

This scheme can also be implemented by directly using the ac-
cess relation: Then for every resource r and every user u we have
Rr = {kr} and Uu = {krj

: u can access rj}.

A user u requesting access to a resource r presents Uu to r. The
resource r verifies u’s access right by checking whether kr ∈ Uu.

For example (see Figure 4), Uv2
= {k2, k4, k5}, Rv2

=
{k2}, Rv4

= {k4}, Rv5
= {k5}, therefore user u2 can access

resources r2, r4, and r5.

Resource multiple keying:

This scheme is similar to User multiple keying, with the roles
of user and resources switched.

Mixed keying:

This is the general case. For example (see Figure 5), Uv1
=

{k1, k5}, and Rv2
, Rv3

, Rv4
, Rv6

contain the key k1, so the user
at vertex v1 can access the resources at v2, v3, v4, v6, and he can
also access the resource at v5 because they share k5. One can check
from the graphs that vi ≤ vj if and only if Rvi

∩ Uvj
6= ∅

}5,k4 {k 6,k5,k3
,k v3v2

v1

R-sets

} v4

2{k

U-sets

v6v5

}

,k3,k2 4 }6,k5,k,k

5{k}4{k }

1{k

}6{k
6

{k

}3{k}

4 {k}5{k}

2

v4

v3v2

v1

v5

{k

}1{k

v6

Figure 4: User multiple keying

6,k3,k } v5v4

v3v2

v1

1}4,k2,k {k {k}5,k2 v6}4{k

}5

{k }6{k}5

,k

5,k1{k

U-sets

}

3{k}2{k}

{k

,1{k,

1

3k}2k1

v5v4

v3v2

v1

v6

{k

}1{k

R-sets

Figure 5: Mixed-Keying

3.4. One-way function based keying schemes

A drawback of the unconditionally secure schemes presented above
is that the total amount of secret information that the users or the re-
sources have to store can be quite large (proportional to the number
of vertices in the unified hierarchy). One-way functions can drasti-
cally improve this. We present one way of using one-way functions,
namely a generalization of Lin’s scheme [8]. Other methods could
be generalized as well by using the the unified hierarchy (e.g., the
scheme of Akl and Taylor [1]).

A generalization of Lin’s scheme

Lin’s original scheme [8] assumed that the user hierarchy and
the resource hierarchy were the same. However, we do not need
this assumption; we will simply apply Lin’s method to the unified
hierarchy (V,�). Moreover, we will use any one-way function F :
K × I → K, where I is the space of vertex identifiers (‘IDs’), and
K is a large key space.

Every vertex v ∈ V is assigned its own independent key kv ∈
K. Only v is explicitly given kv .

For all vertices v, w such that v � w, let
rvw = F (kw, v) ⊕ kv , where ⊕ is bitwise exclusive OR. If v 6�
w, we choose rvw to be a random element of K. In any case, the
elements (rvw, v, w) (as v and w range over V) are made public.
The one-way function F is also made public.

Now, if v � w then w can compute kv , using kw (which w

knows) and rvw (which is public): kv = F (kw, v) ⊕ rvw. On
the other hand, if v 6� w, the element rvw is random and car-
ries no information (and the relations rvw = F (kw, v) ⊕ kv and
kv = F (kw, v) ⊕ rvw do not hold, with high probability). A user
associated with vertex w accesses a resource associated with ver-
tex v by presenting kv to v. (Lin used a more special one-way
function, which required some set-up work, namely F (kw, v) =
gkw+Nv mod p, where p is a large prime number, g is a primitive
element mod p, and Nv is a numerical identifier of v.)

The advantages of this scheme are that every vertex can select
its own key and a vertex does not need to remember the entire hier-
archy.

4. CONCLUSION

We showed that three hierarchies can be extracted from an access
relation: a user hierarchy, a resource hierarchy, and a unified hi-
erarchy. These hierarchies allow compact specifications of access
control, and are useful for schemes that enforce an access relation.
Cryptographic key-based hierarchical schemes can be designed to
effectively enforce and implement access control in distributed en-
vironments. Other issues such as general dynamic access control
and specification of negative access relations are challenging prob-
lems which we plan to investigate in the future.

REFERENCES

[1] S. G. Akl and P. D. Taylor. Cryptographic solution to a prob-
lem of access control in a hierarchy. ACM Transactions on
Computer Systems, 1(3):239–247, March 1983.

[2] E. Bertino, S. Jajodia, and P. Samarati. A flexible autho-
rization mechanism for relational data management systems.
ACM Transactions on Information Systems, 17(2):101–140,
April 1999.

[3] G. C. Chick and S. E. Tavares. Flexible access control with
master keys. Advances in Cryptology: CRYPTO ’89 LNCS,
435:316–322, 1990.

[4] B.A. Davey and H.A. Priestley. Introduction to Lattices and
Order. Cambridge University Press, 1990.

[5] H. M. Gladney. Access control for large collections. ACM
Transactions on Information Systems, 15(2):154–194, April
1997.

[6] S. J. Greenwald. A new policy for distributed resource man-
agement and access control. Proceedings of the UCLA Con-
ference on New Security Paradigms Workshops, pages 74–86,
1996.

[7] T. Jaeger, A. Prakash, J. Liedtke, and N. Islam. Flexible con-
trol of downloaded executable content. ACM Transactions on
Information and Systems Security, 2(2):177–228, May 1999.

[8] C. H. Lin. Dynamic key management schemes for access
control in a hierarchy. Computer Communications, 20:1381–
1385, 1997.

[9] A. Menezes, P. V. Ooschot, and S. Vanstone. Handbook of
applied cryptography. CRC Press, Inc., Boca Raton, Florida,
1996.

[10] R. S. Sandhu. Cryptographic implementation of a tree hierar-
chy for access control. Information Processing Letters, 27:95–
98, 1988.

[11] G. Thomas and G. R. Thompson et al. Heterogeneous dis-
tributed database systems for production use. ACM Comput-
ing Surveys, 22(3):237–266, September 1990.

[12] E. Wobber, M. Abadi, M. Burrows, and B. Lampson. Authen-
tication in the TAOS operating system. ACM SIGOPS, pages
256–269, December 1993.

[13] X. Zou. Secure group communications and hierarchical access
control. PhD. Thesis, University of Nebraska-Lincoln, USA,
December 2000.

