
Fingerprinting Wi-Fi Devices Using Software Defined
Radios

Tien D. Vo-Huu Triet D. Vo-Huu Guevara Noubir

College of Computer and Information Science
Northeastern University

Boston, MA 02115
{tienvh|vohuudtr|noubir}@ccs.neu.edu

ABSTRACT
Wi-Fi (IEEE 802.11), is emerging as the primary medium for wire-
less Internet access. Cellular carriers are increasingly offloading
their traffic to Wi-Fi Access Points to overcome capacity challenges,
limited RF spectrum availability, cost of deployment, and keep up
with the traffic demands driven by user generated content. The
ubiquity of Wi-Fi and its emergence as a universal wireless inter-
face makes it the perfect tracking device. The Wi-Fi offloading
trend provides ample opportunities for adversaries to collect sam-
ples (e.g., Wi-Fi probes) and track the mobility patterns and loca-
tion of users. In this work, we show that RF fingerprinting of Wi-Fi
devices is feasible using commodity software defined radio plat-
forms. We developed a framework for reproducible RF fingerprint-
ing analysis of Wi-Fi cards. We developed a set of techniques for
distinguishing Wi-Fi cards, most are unique to the IEEE802.11a/g/p
standard, including scrambling seed pattern, carrier frequency off-
set, sampling frequency offset, transient ramp-up/down periods,
and a symmetric Kullback-Liebler divergence-based separation tech-
nique. We evaluated the performance of our techniques over a set
of 93 Wi-Fi devices spanning 13 models of cards. In order to as-
sess the potential of the proposed techniques on similar devices, we
used 3 sets of 26 Wi-Fi devices of identical model. Our results, in-
dicate that it is easy to distinguish between models with a success
rate of 95%. It is also possible to uniquely identify a device with
47% success rate if the samples are collected within a 10s interval
of time.

1. INTRODUCTION
Wi-Fi is emerging as the primary medium for wireless Internet

access. Cellular carriers are increasingly offloading their traffic to
Wi-Fi Access Points (APs) to overcome capacity challenges, lim-
ited RF spectrum availability, cost of deployment, and keep up
with the traffic demands driven by user generated content. Wi-Fi
offloading is facilitated by 3GPP standards for Non-3GPP Access
Networks Discovery and Roaming [1], IETF seamless USIM-based
strong authentication and secure communication protocols such as
EAP-SIM/AKA [10, 13]. Studies forecast a sustained 50% yearly
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growth in Wi-Fi offloading for many years to come [22, 23, 25].
This trend is paved by the increasing deployments of Hotspot 2.0
(HS2) Access Points enabled by seamless handover across net-
works implementing the IEEE 802.11u amendment [15]. More-
over, manufacturers of laptops and streaming devices, such as the
Apple MacBook Pro and the Roku streaming player, are removing
Ethernet ports and entirely relying on Wi-Fi, and several new vari-
ants of Wi-Fi are being developed to suit different environments
(e.g., IEEE 802.11p for vehicular networking and IEEE 802.11af
for TV white spaces).

The ubiquity of Wi-Fi and its emergence as a universal wireless
interface makes it the perfect tracking device. The Wi-Fi offload-
ing trend provides ample opportunities for adversaries to collect
samples (e.g., Wi-Fi probes) and track the mobility patterns and
location of users. The simplest way of tracking users consists of
extracting the MAC address of probe packets periodically trans-
mitted by Wi-Fi cards. This is known to be exploited by govern-
ment agencies, marketing companies, and location analytics firms.
In shopping malls for instance, companies such as Euclid Analyt-
ics state on their website that they collect “the presence of the de-
vice, its signal strength, its manufacturer (Apple, Samsung, etc.),
and a unique identifier known as its Media Access Control (MAC)
address.” [8] to analyze traffic patterns of users over large spatio-
temporal durations of time. Another example is by startup Renew,
which installed a large number of recycling bins in London with
capability to track users. This allows Renew to identify if the per-
son walking by is the same one from yesterday, even her specific
route, walking speed [6, 27]. While information about the activ-
ities of data analytics and advertizing firms is public by the na-
ture of their business, little is known about governments and cyber-
criminals Wi-Fi surveillance programs. The threats to privacy ex-
ploiting MAC address tracking triggered Apple to include a MAC
address randomization feature in its iOS 8 release, receiving sig-
nificant praise from privacy advocates [14]. Unfortunately, MAC
address randomization is only the simplest and easiest to mitigate
tracking techniques. Recent attacks demonstrated that it is feasible
to infer Android devices routes using zero-permission sensors (i.e.,
gyroscope, accelerometers, and magnetometer) [18]. Such attack
however focuses on devices in vehicles moving along roads and
requires the installation of an App. On the other end of the spec-
trum, an adversary can potentially track a wireless device based on
its physical layer characteristics. Variations in the fabrication pro-
cess of silicon devices result in intrinsic random physical features
that can potentially uniquely identify a device in a way difficult to
compensate for or clone. The unique characteristics of the physical
layer in wireless devices have even been considered for authenti-
cation purposes leading to the area of Physically Unclonable Func-



tions (PUFs) [16, 19]. While researchers obtained mixed results
with the use of physical charateristics of devices for authentication,
the potential of fingerprinting for tracking devices is more serious.
This is because, unlike in an authentication protocol where the au-
thenticator needs a failure probability exponentially small in the
security parameter, a tracking adversary only needs a reasonable
probability to breach the privacy of users (e.g., if a given person is
at home, office, cafe, entered a street). However, fingerprinting Wi-
Fi devices is challenging. In this work, we develop a framework for
investigating Wi-Fi devices fingerprinting, at various layers of the
network stack and that enables reproducibility and analysis. Our
goal is to provide both a solid theoretical and experimental founda-
tion for understanding Wi-Fi devices fingerprinting. Our contribu-
tions can be summarized as follows:

• Our first step towards a methodical analysis of Wi-Fi fin-
gerprinting was to develop a full implementation of a Wi-Fi
stack for the popular Ettus USRP Software Defined Radio
platform. Our platform can iteratively process RF signals
and easily analyze a variety of features.

• Our platform extracts all the characteristics from the PHY,
MAC, and Link layers that can be exploited for fingerprint-
ing. For instance at the Physical layer, we extract the carrier
frequency offset, the sampling frequency offset, transmitter
turn on/off transients, scrambling seed.

• We analyzed the potential of each technique and their com-
bination on a set of 93 devices spanning 13 different models
including three sets of 26 cards each (from reputable manu-
facturers).

• We discovered new differentiating factors such as the com-
mon seed subsequences, the distributions of carrier and sam-
pling frequency offsets through the Kullback-Leibler distance,
and the envelop of frame transients.

In Section 2, we present how the key Wi-Fi features are extracted
using our SDR receiver. Section 3, describes our device fingerprint-
ing and classification techniques. Section 4, presents our testbed,
evaluation methodology, and results. Finally, we summarize the
related and conclusions.

2. FEATURE EXTRACTION
In order to characterize and fingerprint Wi-Fi devices, we de-

velop our own Wi-Fi receiver [32] using Software Defined Ra-
dio [11] running on the popular Universal Software Radio Periph-
eral (USRP [7]). Our receiver is able to decode transmissions of
rate up to 54Mbps. Unlike with commercial Wi-Fi adapters, it is
easy to extract physical characteristics of the Wi-Fi signal with our
SDR receiver. To better explain and discuss the features that we use
for fingerprinting, we first give a brief overview of the procedure of
receiving Wi-Fi signal.

2.1 Wi-Fi Receiver using SDR
Our SDR Wi-Fi receiver block diagram is shown in Figure 1.

The receiver consists of three main processing tasks: (1) baseband
signal reception, (2) OFDM demodulation, and (3) data decoding.
Except for the baseband signal reception handled in the USRP, the
other two tasks are carried out on the host computer connected to
the USRP.
OFDM demodulation. After the USRP captures the Wi-Fi signal
on its RF front end, it produces a stream of digitized complex sam-
ples. On the host computer, we look for the Wi-Fi packets in the

Table 1: Features extracted from our fingerprinting system.

Feature Extracted from
Scrambling seed Descrambler

Sampling frequency offset Channel Estimator
Carrier frequency offset OFDM Synchronizer

Frame transient OFDM Synchronizer

digital samples based on the repeated patterns in the preamble of
the Physical frame. During this phase, the carrier frequency offset
(CFO) is also estimated to correct the mismatched clock between
the receiver and transmitter. After that, the samples are transformed
into the frequency domain for OFDM demodulation. In order to de-
code QAM-modulated transmissions, we developed a pilot-based
phase tracking technique combined with a decision directed esti-
mation technique to estimate and equalize the channel on individ-
ual data subcarriers. Through this method, we obtain the sampling
frequency offset (SFO) used in fingerprinting, and also demodulate
the complex samples into a binary data sequence.

Packet decoding. A chain of three decoding blocks is applied
on the binary data sequence produced by the OFDM demodula-
tor. First, it is deinterleaved to scatter possible bit errors and allow
the convolutional decoder to correct the errors and decode the data.
Finally, the original frame is recovered by the descrambler.

2.2 Fingerprinting Overview
As our Wi-Fi receiver is SDR-based, we can easily allow the

extraction of various physical characteristics of the Wi-Fi signal.
While features such as constellation error vectors, channel state in-
formation, decoding metrics, or transmit spectrum have been used
for fingerprinting and achieved good performance in previous work
(e.g., [4, 5] and references therein), we found that in our experi-
ments, those features are more affected by the environment than by
the device imperfection. We conjecture that the production qual-
ity has been improved since then, making devices more identical.
In this work, we instead focus on 4 features listed in Table 1 for
fingerprinting.

The main idea of our fingerprinting system is as follows. We
capture the transmitted frames in the form of a digital signal, and
decode them to extract Physical and MAC information. We group
the recorded digital samples of frames based on the MAC addresses
and perform the classification/characterization for each group. The
classification is done by computing the likelihood between features
extracted from the samples and features belonging to known Wi-
Fi devices. It is worth noting that while existing machine learning
algorithms (e.g., SVM) can be used for classification, it remains
unclear how to tune parameters for achieving good accuracy. In
this work, we design our own classification algorithms specically
applied to the chosen physical features.

2.3 Extracting Scrambling Seed
According to the IEEE 802.11a/g standard, a Wi-Fi transmitter

shall generate a new random scrambling seed for every transmis-
sion of a Physical Layer frame. However, not all chipset manu-
facturers follow the standard. Recent work [2, 30] discovered that
for some chipset manufacturers, scrambling seeds are generated in
a free-wheeling mode with some specific shift distances which are
used to distinguish the device models. In general, however, re-
verse engineering the seed generating algorithm is challenging as
chipset manufacturers do not disclose their design. In our work,
we aim to design a generic classification technique that evaluates
the likelihood of scrambling seed sequences based on the unique
seed subsequences as seed signature. Our technique does not rely
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Figure 1: IEEE 802.11a/g SDR receiver block diagram with feature extraction capabilities.
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Figure 3: Prior to scrambling, the first 7 bits of SERVICE field in the Phys-
ical Layer’s DATA part are set to zero.

on the assumption that seeds are generated according to some shift
distance, therefore it has the potential of distinguishing models that
make use of their own algorithm for seed generation.

2.3.1 Recovering the Scrambling Seed
We briefly review the scrambling and descrambling processes

defined in IEEE 802.11a/g/p.

Data scrambling. The binary data is scrambled by a special con-
struction depicted in Figure 2, where a 7-bit linear feedback shift
register (LFSR) produces the scrambled bit yk at output by com-
puting the exclusive-or (modulo-2 sum) of the input bit xk and
the LFSR feedback value zk. The mathematical description of the
scrambler in Figure 2 is given by

zk = zk−4 ⊕ zk−7

yk = xk ⊕ zk
(1)

where xk, yk are the k-th input and output bits, while zk represents
the feedback of the shift register at that time. We can represent the
shift register’s content by either a binary sequence zk−1 . . . zk−7

or a single decimal value

s = z−1 · 26 + . . .+ z−6 · 2 + z−7. (2)

To prepare a packet for transmission, the transmitter prepends
the packet by a 16-bit SERVICE field and appends it by tail and
padding bits to create the DATA part of the Physical Layer frame (Fig-
ure 3). The LFSR is initialized with a new seed value s and the first
seven bits of SERVICE field are set to zero, then the whole DATA
part is scrambled.

Recovering transmitter’s seed. As seen in Equation (1), since
yk = xk ⊕ zk, we have yk ⊕ zk = xk ⊕ zk ⊕ zk = xk. Con-
sequently, an identical structure to the one described in Figure 2 is
used for the descrambling process, where xk and yk switch roles.
The unknown scrambling seed can be recovered by the receiver by
relying on the fact that the first seven bits of the SERVICE field
prior to scrambling are x0 = . . . = x6 = 0, resulting in a frame
after scrambling having the first seven bits y0, . . . , y6 of SERVICE

field as yk = xk ⊕ zk = zk = zk−4 ⊕ zk−7, specifically

y0 = z−4 ⊕ z−7 y4 = z0 ⊕ z−3 = y0 ⊕ z−3

y1 = z−3 ⊕ z−6 y5 = z1 ⊕ z−2 = y1 ⊕ z−2

y2 = z−2 ⊕ z−5 y6 = z2 ⊕ z−1 = y2 ⊕ z−1

y3 = z−1 ⊕ z−4

(3)

From the relations in Equation (3), the receiver can recover the
transmitter’s original seed s by first computing its bit values

z−1 = y6 ⊕ y2 z−4 = y3 ⊕ z−1

z−2 = y5 ⊕ y1 z−5 = y2 ⊕ z−2

z−3 = y4 ⊕ y0 z−6 = y1 ⊕ z−3

z−7 = y0 ⊕ z−4

(4)

then deriving s based on Equation (2).

2.3.2 Seed Patterns
In this subsection, we study the characteristics of seed sequences

generated by Wi-Fi devices. We first define the seed pattern P =
(s1, . . . , sk) as a sequence of seed values si corresponding to con-
secutive Physical Layer frames (regardless of frame types) sent by
a transmitter. We emphasize that the consecutiveness is a required
property in the definition of seed pattern. If a frame is lost in the
middle, we observe two separate seed patterns. Based on experi-
mental results, we identify the following classes of seed patterns
generated by commercial Wi-Fi devices.

• Fixed: The same seed value is used for all transmitted frame:
P = (s, s, . . . , s).

• Incremental: Seed value is incremented after every transmit-
ted frame: P = (s, s+ 1, . . . , s+ k). Due to lost packets, a
seed sequence may contain multiple incremental patterns.

• Repeated pattern: A group of seed values is repeated for
some number of times. After that, a new group of seed values
is selected and repeated in the same manner. The sequence
may be observed as P1, . . . , P1, P2, . . . , P2, . . ..

• Pseudo-random: Seed values are pseudo-randomly gener-
ated: P = (s1, . . . , sk) for random si and large k.

Characteristics. While seed patterns such as fixed or incremental
can be easily recognized by observing a few seed values, the re-
peated and pseudo-random patterns are less trivial to understand.
Based on experiments of multiple transmissions from different Wi-
Fi models, we found the following characteristics of non-trivial
seed sequences.

• Non-zero: Zero is never used by any device as a scrambling
seed. This is also advised by the standard to avoid sending
biased data stream.
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Figure 4: IEEE 802.11a/g/p preamble consists of 10 short symbols and 2
long symbols prepended with an extended guard interval (GI).
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(b) LinkSys: Mean = −24.3kHz

Figure 5: Estimated CFO between our SDR Wi-Fi receiver and commercial
Wi-Fi adapters: D-Link WDA-1320 and LinkSys WMP54G.

• Uniform: For a long enough transmission, seed distribution
is actually uniform. This property indicates that a good clas-
sification algorithm should not solely rely on seed distribu-
tion to distinguish them.

• Retransmission sensitive: For some Wi-Fi chipsets, a retrans-
mission can terminate the ongoing seed pattern and start a
different pattern. This implies that those chipsets take into
account the state of retransmission. In the classifier, the al-
gorithm should be able to distinguish this pattern behavior
due to retransmissions.

Later in Section 3.1, we discuss our method for classifying the
device based on these scrambling seed characteristics.

2.4 Extracting Frequency Offset
The high spectral efficiency of IEEE 802.11a/g/p systems heav-

ily relies on the subcarrier orthogonality, which allows the adjacent
subcarriers to overlap each other to increase the bandwidth effi-
ciency. However, the trade-off that OFDM systems make is that
they are very sensitive to factors impacting the carrier orthogonal-
ity. One notable factor is the carrier frequency offset (CFO) caused
by the typical slight frequency difference between the transmitter
and receiver crystal oscillators, which directly impacts the down-
conversion of the RF signal to baseband signal. The effect of CFO
is the shift of the subcarriers in the frequency domain, resulting
in the loss of orthogonality at the receiver. Another factor, which
received less attention in the community but also greatly reduces
the OFDM signal quality, is the sampling frequency offset (SFO)
due to the unsynchronized sampling rate between the two RF front
ends [21, 29]. The SFO causes the constellation symbols to rotate
in the frequency domain. In typical low-cost RF devices, downcon-
version and sampling tasks are driven by the same clock. Therefore,
CFO and SFO are both usually present in OFDM communications.
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Figure 6: SFO causes phase shift across subcarriers, making phase of the
constellation symbols (indicated in Red color) increasing (or decreasing).

In our fingerprinting system, we also exploit these factors to distin-
guish between Wi-Fi devices.

2.4.1 Carrier Frequency Offset
Due to the presence of a carrier frequency offset θ, every trans-

mitted time-domain symbol sn at discrete time n is rotated with a
phase offset nθ and seen at the receiver as rn = sne

jnθ . In other
words, the CFO makes the signals rotate in the time-domain. In
order to avoid loss of orthogonality of subcarriers, the CFO must
be compensated before the signal is transformed into the frequency
domain. We estimate the CFO based on the special structure of the
preamble, which consists of two parts: the first part comprises 10
identical short symbols, and the second part is composed of 2 iden-
tical long symbols (Figure 4). The repeated preamble symbols lead
to an efficient estimation of CFO [26] as follows.

Estimation. Let us focus on short preamble symbols each contain-
ing L = 16 samples. For every time instant n, we compute the
auto-correlation of rn at lag L asA =

∑L−1
k=0 rn+k+Lr

∗
n+k, where

∗ denotes the complex conjugate. When the frame preamble {pn}
is found in the received signal, i.e., rn = pne

jnθ , we obtain

A =

L−1∑
k=0

pn+k+Le
j(n+k+L)θ

(
pn+ke

j(n+k)θ
)∗

=

L−1∑
k=0

|pn+k|2ejLθ
(5)

where the second equality is due to the repeated property of pream-
ble symbols pn+k+L = pn+k. The CFO value θ is readily esti-
mated as θ = ∠A+m2π

L
, for some integer m. In practice, since θ

is typically smaller than the bandwidth of a subcarrier, m can be
safely chosen to be m = 0 and hence, θ = ∠A

L
. In our SDR Wi-Fi

receiver, we estimate the CFO using the following steps: (1) We
use short preamble symbols to obtain a coarse estimate θ̂, and cor-
rect the rest of the signal with θ̂; (2) Now since the long preamble
symbols are also repeated twice, we apply the same approach to
compute the fine estimate θ̃ based on the long preamble symbols,
each consisting of L = 64 samples. Finally, we derive the final
estimated CFO value θ = θ̂ + θ̃. Figure 5 shows an example of a
CFO recorded in our testbed, which fluctuates around a mean value
due to noise in the environment. It is also noted that different Wi-Fi
transmitters may create different CFO distributions at the receiver
as observed with the LinkSys and D-Link adapters in the above
example.

2.4.2 Sampling Frequency Offset
To observe the sampling frequency offset effect, we look into

the transformation between the frequency and time domains of the
signal. Let d1, . . . , dN be the data symbols on N subcarriers in an
OFDM symbol period. For IEEE 802.11a/g/p,N = 64. The sender
performs the Inverse Fourier Transform on data symbols to obtain
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Figure 7: Histogram of CFO: D-Link vs. Linksys.

the time-domain signal sn = F−1
n (dk) =

∑N
k=1 dke

j2πkn/N and
transmits sn to the receiver. To simplify the notations, we assume
the carrier frequency offset has been compensated and the channel
noise is negligible. However, due to the mismatched sampling rate
between two RF front ends, the receiver obtains the time-domain
samples as rn = sn(1+ε), where ε = (fR − fS)/fS denotes
the relative SFO between the transmitter’s sampling frequency fS
and the receiver’s sampling frequency fR [28, 29]. Applying the
Fourier Transform on rn, the receiver obtain the subcarrier sym-
bols d̂k = Fk(rn). By the time-shifting rule, we can rewrite d̂k
as

d̂k = Fk(sn(1+ε)) = Fk(sn)ej2πknε/N = dke
j2πknε/N . (6)

It can be seen that due to the sampling frequency offset ε the re-
ceiver obtains the rotated version of the original data symbols. More-
over, the phase shift 2πknε/N is proportional to the subcarrier in-
dex k and OFDM symbol index bn/Nc. Figure 6 shows an exam-
ple of a slightly increasing phase shift along the subcarrier indices
in an OFDM symbol. This leads to our pilot-aided SFO estimation
method described in the following.
Estimation. In IEEE 802.11a/g, four pilot subcarriers are inserted
equally in between the data subcarriers to assist the channel estima-
tion at the receiver. We use the pilot symbols for SFO estimation
as follows. Let pi be the known pilot symbol, and ki be the index
of the i-th pilot carrier (i = 1, 2, 3, 4). According to Equation (6),
the received pilot symbols in the m-th OFDM symbol (note that
m = bn/Nc) are p̂ki = pkie

j2πkimε.
We computeAm =

∏4
i=1 p̂ki = Aej2πKmε, whereA =

∏4
i=1 pki

and K =
∑4
i=1 ki are constants. Similarly, we obtain Am+1 =

Aej2πK(m+1)ε for the (m + 1)-th OFDM symbol. Now, the SFO
can be estimated by ε = ∠(Am+1A

∗
m), where ∗ indicates the com-

plex conjugate. In our SDR Wi-Fi receiver, to reduce the variations
due to noise, we compute the average SFO over multiple OFDM
symbols within each frame and use it for fingerprinting purpose.

2.5 Extracting Frame Transient
The last physical feature that we use for fingerprinting is the sig-

nal transient at the start and the end of each transmitted frame. The
signal transient is defined as the portion of the time-domain signal
in this duration, in which the transmitted signal envelope changes
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(a) Transient at frame start

0 50 100 150 200 250 300 350 400 450
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Figure 8: Signal transients at the start and the stop of a frame transmitted
by the Panda Ultra Wireless dongle.

from one stable energy level to another stable energy level. Fig-
ure 8a shows an example of the transient observed at the begin-
ning of a frame transmission by the Panda Ultra Wireless dongle,
in which the received signal starts to increase from the noise level
and finally reaches a stable level after a few preamble samples. The
transient at the end of this frame is shown in Figure 8b, where the
signal energy drops to the noise level a few samples after the last
sample of the frame.

While the IEEE 802.11 standard only requires a maximum pe-
riod of 2µs for the signal transient (both at the frame’s start and
stop periods), no specific behavior of the transient is defined. As a
result, the concrete signal shape in such periods is device specific
primarily characterized by the hardware manufacturing process and
its imperfections (which can be unique across devices of the same
model). We exploit these signal transients to identify the devices.

We obtain the signal transient feature for each frame as follows.
First, we identify each frame based on its special preamble (Fig-
ure 4). In our fingerprinting system, both frame identification and
carrier frequency offset estimation (cf. Section 2.4.1) are performed
at the same time. Without loss of generality, each detected frame is
assumed to start from time 0 and stop at time Lwith L denoting the
number of samples contained in the frame. By parsing the Physical
Header, we can determine L. We obtain the frame’s transient fea-
ture as the composition of the start and stop transients, which are
sequences of samples captured in the following time durations:

• Start transient: (r−T1 , . . . , rT2),

• Stop transient: (rL−T3 , . . . , rL+T4),

where T1, T2 are the number of samples on the left and right of the
first preamble sample, and T3, T4 are similarly defined with respect
to the last sample of the frame.

3. DEVICE FINGERPRINTING

3.1 Seed classification
While optimal solutions for seed sequence classification deserve

a more in-depth study, we are interested in a fast algorithm for find-
ing a suboptimal classification of Wi-Fi devices. Our main idea for
classifying Wi-Fi devices is to compute the likelihood of the scram-
bling seed sequences based on the common subsequences. We first
define the likelihood between two seed patterns as follows.



DEFINITION 1 (LIKELIHOOD OF SEED PATTERNS). Given two
seed patternsP = (s1, . . . , sk) andQ = (t1, . . . , tm), let LCS(P,
Q) be the longest common subsequence found in P and Q. The
likelihood between P and Q is defined as

L(P,Q) =

{ |LCS(P,Q)|
min(|P |,|Q|) if |LCS(P,Q)| ≥ n
0 otherwise

where | · | denotes the number of seeds contained in a sequence,
and n is the likelihood threshold.

The pattern likelihood defined above has the property that for
any patterns P and Q, if they are equal to each other or one is
a subsequence of the another, then L(P,Q) = 1, otherwise L(P,
Q) ≤ 1. WhenL(P,Q) is close to 1, P andQ are more similar. By
including min(|P |, |Q|) in the formula, we capture such scenarios,
where a frame loss may cause a pattern to become a sub-pattern of
the another. In such cases, they are considered similar according
to the definition. The threshold n is used to control the likeliness
decision region. We derive n = 3 based on experiments.
Finding seed patterns. As mentioned previously, the seed se-
quence used by a transmitter observed at the receiver may not com-
prise values belonging to consecutive frames due to various reasons
such as frame loss, frames being incorrectly decoded, or simply the
receiver missing the transmitted frame. In order to properly collect
the seed patterns, we apply the following rules for processing the
received seed values. Let si−1 be the last seed retrieved from the
packet trace. We accept si as the next seed in the same pattern, if

• MSEQi = MSEQi−1 + 1 and RETXi = false; or

• MSEQi = MSEQi and RETXi = true,

where MSEQi is the value in Sequence Number field of the i-th
MAC data frame, and RETXi is the Retry flag in Frame Control
field, indicating whether the corresponding frame is retransmitted.
If none of the above conditions holds, we consider that some frames
might be missing in between, and therefore, si will start a new pat-
tern. Based on the above rules, we can construct from the received
seeds sequence multiple sets of patterns: S = {P1, . . . , Pk}.
Algorithm. We now define the likelihood between two sets of seed
patterns as follows.

DEFINITION 2 (PATTERN SETS LIKELIHOOD). Given two sets
of seed patterns S = {P1, . . . , Pk} and R = {Q1, . . . , Qm},
their likelihood is defined as

L(S,R) = 1

k

k∑
i=1

max
j
L(Pi, Qj).

The likelihood between two pattern sets also has the property that
L(S,S) = 1 and L(S,R) ≤ 1 for any S andR. This is the basis
for our classification algorithm, in which we compute the likeli-
hood between a given set of seed patterns retrieved from a trans-
mitter and a reference set of seed patterns of known Wi-Fi devices.
The outcome will be a known Wi-Fi device, which maximizes the
likelihood. Our algorithm is given as follows.

ALGORITHM 1 (SEED CLASSIFICATION). GivenN sets of seed
patterns S1, . . . ,SN generated by known Wi-Fi devices, a Wi-Fi
transmitter with seed pattern S is classified to be in class n∗ using
the following steps:

1. For each pattern set Sn, compute L(S,Sn).

2. Return n∗ = argmaxn=1...N L(S,Sn).

3.2 Frequency Offset Classification
While carrier frequency offset (CFO) and sampling frequency

offset (SFO) are two distinct features that we use for our finger-
printing system, they are similar from the classifier’s point of view.
In this subsection, we focus on the classification techniques for the
CFO only. The same approach can be directly applied to the SFO.

First, to study the CFO characteristics, we carried out an experi-
ment to collect CFO values corresponding to every received frame
from the same transmitter. Figure 5a shows the estimated CFO val-
ues between our SDR Wi-Fi receiver and a D-Link WDA-1320 Wi-
Fi transmitter. It can be seen that the CFO fluctuates around a mean
value of −38.9kHz (roughly 12.5% of the subcarrier bandwidth).
The fluctuation is not only caused by the interference in the wire-
less medium, but also by the internal noise inside the RF front ends.
For comparison, we perform a similar measurement for a Linksys
WMP54G Wi-Fi transmitter, whose CFO values are shown in Fig-
ure 5b. Although the fluctuations of two devices look similar, their
mean CFO values are different, which implies that they can be dis-
tinguished solely based on the mean CFO. This is the main idea
of our first approach for frequency offset classification, specified in
Algorithm 2.

ALGORITHM 2 (MEAN FREQUENCY OFFSET CLASSIFICATION).
Given N sets of carrier frequency offsets ω1, . . . , ωN correspond-
ing to N known Wi-Fi devices, we identify a Wi-Fi transmitter as
the n∗ device by the following steps:

1. Compute the transmitter’s average frequency offset θ overm
received frames: θ = 1

m

∑m
i=1 θi.

2. Compute D(θ, ωn) = |θ − ωn| for each Wi-Fi device n.

3. Return n∗ = argminnD(θ, ωn).

As shown later in Section 4, this approach can achieve good re-
sults for a small set of devices. However, in our testbed evaluation
with a large set of devices, we found that many devices can have
quite close CFO values, resulting in misclassification. This mo-
tivates us to improve the accuracy by studying the distribution of
CFO values. First, we compute the probability mass function of
the CFO based on CFO values extracted from all received frames.
Figures 7a and 7b illustrates an example of CFO histograms for the
D-Link WDA-1320 and Linksys WMP54G adapters. In order to
justify the difference between two distributions, we use a symmet-
ric variant of the Kullback-Leibler (KL) divergence as the evalua-
tion metrics. Specifically, the symmetric KL divergence between
two distributions P and Q is computed by

DKL(P,Q) =
1

2

B∑
i=1

(
Pi log

Pi
Qi

+Qi log
Qi
Pi

)
(7)

whereB is the number of discrete values two distributions can take
(i.e., the number of bins in the histogram of the distribution).

We note that the KL divergence is only defined for non-zero
probability distribution, i.e., Pi > 0 andQi > 0 for all i = 1 . . . B.
This requirement, however, may not be satisfied by the CFO distri-
butions for two reasons: (1) Since we build the histogram of CFO
based on measurement results, there might exist an empty bin lead-
ing to zero probability in that bin; (2) CFO distributions of two
devices may only partially overlap or completely not overlap, re-
sulting in the existence of such bins whose probabilities are not
non-zero for both distributions. To solve these issues, we perform
the following two steps prior to the KL divergence computation:

1. Translate the distribution to the origin, i.e., compute the mean
of CFO values and subtract it from all CFO values before
computing the probability mass function.



2. Replace zero-probability with non-zero ε-probability (ε > 0
and ε� 1).

Our algorithm for identifying a transmitter based on the fre-
quency offset distribution is described in Algorithm 3.

ALGORITHM 3 (F.O. DISTRIBUTION CLASSIFICATION). Given
N sets of frequency offset distributions Q1, . . . , QN belonging to
N known Wi-Fi devices, the task of identifying a Wi-Fi transmitter
comprises the following steps:

1. Compute the transmitter’s frequency offset distribution P .

2. Translate P to the origin, replace Pi = ε for all Pi = 0, and
recompute P to obtain a proper distribution.

3. Compute DKL(P,Qn) for all n = 1 . . . N .

4. Return n∗ = argminnDKL(P,Qn).

3.3 Frame Transient Classification
Our frame transient classification is based on the observation that

while the signal emitted from the same Wi-Fi transmitter might ex-
hibit differences during the transient periods across the transmitted
frames, unique signatures can be obtained via averaging on multi-
ple frames. In our fingerprinting system, we use the amplitude of
transient samples as the transmitter’s signature.

Let (ri,1, . . . , ri,T ) denote the sequence of T = T1+T2+T3+
T4 samples containing both start and stop transients of an i-th frame
(cf. Section 2.5). The transient a = (a1, . . . , aT ) of a device is ob-
tained by taking the average of sample amplitude over m detected
frames: ak = 1

m

∑m
i=1 |ri,k| for k = 1 . . . T . As we are only

interested in the shape of the transient (i.e., the relative change of
amplitude across samples), we eliminate the effect of absolute re-
ceived power by normalizing the samples such that

∑T
k=1 ak = 1.

The similarity of two devices is now computed based on the differ-
ence between their transient signatures a and a′ as follows:

D(a,a′) =

T∑
k=1

|ak − a′k|.

Algorithm 4 summarizes our frame transient classification.

ALGORITHM 4 (FRAME TRANSIENT CLASSIFICATION). Given
N sets of transient signatures a1, . . . ,aN corresponding toN known
Wi-Fi devices, we identify a Wi-Fi transmitter as follows:

1. Compute the transmitter’s transient a overm received frames.

2. Compute D(a,an) for all n = 1 . . . N .

3. Return n∗ = argminnD(a,an).

3.4 Combined Classification
To improve the overall accuracy of our fingerprinting system,

we combine the above individual features by linearly adding the
similarity scores obtained from each feature and classify the de-
vices based on the total score. We note that while the scrambling
seed likelihood metric approaches 1 when the seed sequences are
similar, the scores produced by other features converge to 0 if de-
vices are alike. Therefore, for integration into the combined clas-
sification, we convert the scrambling seed likelihood into the seed
score (distance) by computing D(S,Rn) = 1 − L(S,Rn). The
combined metric is then derived as the sum of weighted individual
scores with the weights denoted in Table 2.

Table 2: Features and weights used in the combined method for model clas-
sification and device identification.

Feature Model classification Device identification
CFO mean value αM = 0.4 αM = 0.3
CFO distribution αD = 0.2 αD = 0.2
SFO mean value βM = 0.2 βM = 0.2
SFO distribution βD = 0 βD = 0.1
Scrambling seed γ = 0.05 γ = 0

Transient τ = 0.45 τ = 0.25

ALGORITHM 5 (COMBINED CLASSIFICATION). GivenN Wi-
Fi devices with known profiles for the feature set of scrambling
seed, mean and distribution of carrier and sampling frequency off-
set, and frame transient, we identify a Wi-Fi transmitter as follows:

1. Compute the signatures sigf of the tested Wi-Fi transmitter
(as in Algorithms 1 to 4) for each feature f .

2. Compute the score Dn =
∑
f∈Features wfDf (sigf , profilef )

for all n = 1 . . . N .

3. Return n∗ = argminnDn.

4. FINGERPRINTING TECHNIQUES PER-
FORMANCE EVALUATION

4.1 Setup and Methodology
We report on our experimental results for a total 93 Wi-Fi de-

vices of 13 different models, including 6 PCI adapters, 85 USB
adapters, and 2 smartphones. Table 3 summarizes all the devices
used in our testbed. Our general setup consists of a TP-Link N600
Access Point serving as the base station, and a desktop computer
as a wireless transmitter using 91 Wi-Fi devices, among which 6
PCI adapters are directly attached to the computer through PCI
slots, and the other 85 USB adapters are connected through USB
hubs (Figure 9). For experiments with two smartphones, we asso-
ciate them to the Access Point and use them as wireless transmit-
ters. On the other side, the Access Point is also connected via the its
Ethernet network interface to another desktop computer used as the
receiver. We use the iperf traffic generator to transmit packets, each
of 1500 bytes, between the transmitter and receiver. We carry out
the experiments in our lab environment during daily hours, where
traffic from other regular Wi-Fi users and human movement are
also present. We place no constraint on location of the testbed
nodes, and they can be dynamic (e.g., phone held in moving hand
while transmitting). Our Wi-Fi testbed experiments were carried
out on channel 11 with 20MHz bandwidth.

Figure 9: Our testbed consists of a custom made SDR Wi-Fi receiver (left),
and 93 Wi-Fi transmitters (right) including 85 Wi-Fi dongles connected to
the PC via USB hubs, 6 PCI adapters and 2 phones.

In order to capture the wireless communications for fingerprint-
ing, we run our SDR Wi-Fi sniffer on an Ettus USRP N210 with



Table 3: Wi-Fi devices in our evaluation.

Model Quantity Chipset Type
1 D-Link WDA-1320 2 Atheros AR2413 PCI
2 Linksys WMP54G 2 Ralink RT2560 PCI
3 TP-Link TL-WN751ND 2 Atheros AR9227 PCI
4 Cisco Linksys AE2500 26 Broadcom BCM43236 USB
5 Panda Ultra Wireless 26 Ralink RT5370 USB
6 TP-Link TL-WN725N 26 Realtek RTL8188CUS USB
7 Belkin F7D1102 2 Realtek RTL8188CUS USB
8 Edimax EW-7811Un 2 Realtek RTL8188CUS USB
9 TP-Link TL-WN321G v4 1 Ralink RT2070 USB

10 TP-Link TL-WN722N 1 Atheros AR9271 USB
11 TP-Link TL-WN821N v4 1 Realtek RTL8192CU USB
12 Apple iPhone 5 1 Broadcom BCM4334 Phone
13 Nokia Lumia 635 1 Snapdragon 400 Phone

Total 93

SBX v3.0 daughterboard. Our Wi-Fi sniffer captures and performs
signal processing on the overheard transmissions. During the de-
coding of Physical Layer frames, we extract the scrambling seeds,
carrier and sampling frequency offsets belonging to every frame.
Based on the MAC address in each frame, we group the extracted
features together and run the fingerprinting algorithms to identify
them. The rationale behind grouping based on MAC address is
that even though the transmitter can modify his MAC address, it
remains the same during the transmission session. We classify the
transmitter based on features collected over multiple frames of the
transmission. We note that we also use the features of frames with
incorrect checksums as they still contain valuable information for
classification purpose (as opposed to user data payload which might
be uninteresting when corrupted). Moreover, by grouping frames
of the same MAC address together, the chance of errors is lower
(otherwise we would not see the same address field), and hence the
Physical Layer features are more precise with high probability.

Our evaluation consists of extensive experiments over the span
of three weeks. Using our SDR Wi-Fi receiver, we collected digital
samples and extracted features from each of the 93 Wi-Fi transmit-
ters for at least five different periods of time per day. Each trans-
mission session is carried out in various time durations, ranging
from 1 to 100 seconds. We use data collected on the first day as
fingerprint profiles and each of the other days as tests.

4.2 Identifying Chipsets by Scrambling Seed
We first evaluate our scrambling seed classification algorithm

on all the Wi-Fi devices in our testbed. Using the device profiles
recorded on the first day, we compute the likelihood of scrambling
seed sequences between the profiles and the tests. Our first obser-
vation is that any two devices with chipsets made from the same
manufacturer have similar seed patterns during their transmissions.
This is explained by the fact that since the scrambling seed se-
quence is produced by the baseband chipset, the generated seeds
are independent of the device brand name, but they are chipset man-
ufacturer specific.

Looking further into the difference in seeds generating mecha-
nisms by different chipsets, we present both the average and the
standard deviation of the likelihood between any two models sum-
marized in Table 4. It is an interesting fact that all four chipset
manufacturers of our experimental Wi-Fi devices develop their own
seed generation completely different from each other, which fall
into four classes we defined in Section 2.3. The Realtek chipsets
always use a special value 124 as the scrambling seed, while Qual-
comm Atheros chooses to increment the seed after every trans-
mitted frame regardless of whether it is retransmitted. Although
Broadcom and Ralink generate somewhat random seeds, their strate-
gies are different.
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Figure 10: Comparison of seed generating strategies applied by different
Wi-Fi adapters. The Y-axis shows the average number of unique seeds
counted in every group of consecutive frames specified by the X-axis.

To illustrate the difference in seed generation, we conduct an-
other experiment as follows. We select 4 Wi-Fi adapters (D-Link
WDA-1320, Linksys WMP54G, Cisco Linksys AE2500, TP-Link
TL-WN725N) corresponding to 4 baseband chipset brands (Atheros,
Ralink, Broadcom, Realtek, respectively). In the trace of scram-
bling seed sequence extracted from each adapter, we count the
number of unique seeds generated by the chipset over multiple
groups of n consecutive frames, and take the average over those
groups. We repeat this step for each value of n from 1 to 1024 and
achieve an overall picture of how frequently new seeds are gener-
ated by different chipsets, shown in Figure 10. We can observe that,
seed generating strategies applied by chipset manufacturers can be
distinguished clearly by the curves separation. Even though seeds
generated by Atheros (incremental) and Ralink (random) are com-
pletely different, they are more similar in terms of seed diversity
within small periods of transmitted frames. It is also easily seen that
Realtek chipsets use only one seed value for all frames, illustrated
by the horizontal line. In contrast, though Broadcom BCM43236
generated seeds are random, they differ from the Ralink strategy.
To understand how it produces seeds, we investigate the trace and
found that Broadcom BCM43236 tends to “reuse” seeds for some
number of frames. For example, we select a range of consecutive
frames and read the corresponding seed values as follows: 76, 93,
108, 25, 108, 25, 79, 104, 79, 108, 93, 108, 93, 108, 25, 41, 79, 104,
79, 104, 85, 116, 35, 113, 124, 113, 35, 113. We can immediately
see that seed values 93, 108, 25, 79, 104 are repeated after a few
transmitted frames. This pattern is in fact quite common in the seed
sequence generated by Cisco Linksys AE2500 adapter, and that is
also illustrated by the slowly increasing average count of unique
seeds over consecutive frames, shown in Figure 10.

Moreover, Broadcom seems to apply different seed randomiz-
ing mechanisms for different chip generations. This can be seen
from the low likelihood between Apple iPhone 5 and Cisco Linksys
AE2500 in Table 4. Table 5 summarizes the scrambling seed gen-
erating mechanisms discovered during our experiments. We con-
clude that based on analyzing the scrambling seed sequence re-
ceived from the transmitter, we can reveal its chipset brand. When
this is combined with other techniques, one can narrow down the
fingerprinting and classification of a device.

4.3 Frequency Offset Fingerprint
As seen from Section 4.2, we can classify the Wi-Fi devices into

different categories with respect to their baseband chipsets. Our
goal in this subsection is to further differentiate the devices within
the same category based on the frequency offsets extracted from
every frame of the transmission.

First, we study the potential of using the average frequency off-
sets for differentiating the Wi-Fi device models. For this purpose,



Table 4: Average and standard deviation of scrambling seed likelihood (%) between different Wi-Fi adapter models.

Model 1 2 3 4 5 6 7 8 9 10 11 12 13
D-Link WDA-1320 1 61±2 0 55±2 0 0 0 0 0 0 58±.5 0 0 1±.6
Linksys WMP54G 2 0 71±3 0 0 48±4 0 0 0 49±3 0 0 2±.8 32±2
TP-Link TL-WN751ND 3 55±2 0 63±5 0 0 0 0 0 0 61±3 0 0 0
Cisco Linksys AE2500 4 0 0 0 88±1 0 0 0 0 0 0 0 0 0
Panda Ultra Wireless 5 0 48±4 0 0 80±4 0 0 0 83±4 0 0 8±3 77±4
TP-Link TL-WN725N 6 0 0 0 0 0 100 100 100 0 0 100 0 0
Belkin F7D1102 7 0 0 0 0 0 100 100 100 0 0 100 0 0
Edimax EW-7811Un 8 0 0 0 0 0 100 100 100 0 0 100 0 0
TP-Link TL-WN321G v4 9 0 49±3 0 0 83±4 0 0 0 83±5 0 0 6±2 69±5
TP-Link TL-WN722N 10 58±.5 0 61±3 0 0 0 0 0 0 58±7 0 0 0
TP-Link TL-WN821N v4 11 0 0 0 0 0 100 100 100 0 0 100 0 0
Apple iPhone 5 12 0 2±.8 0 0 8±3 0 0 0 6±2 0 0 27±5 18±7
Nokia Lumia 635 13 1±.6 32±2 0 0 77±4 0 0 0 69±5 0 0 18±7 71±10

(standard deviation is omitted when zero)

Table 5: Scrambling seed generation methods by Wi-Fi devices.

Class Model Seed type
A Belkin N150, Edimax EW-781Un fixed = 124

TP-Link TL-WN725N, TP-Link TL-WN821N
B D-Link WDA-1320, TP-Link TL-WN751ND, incremental

TP-Link TL-WN722N
C Cisco Linksys AE2500 repeated
D Apple iPhone 5 random
E Linksys WMP54G, Panda Ultra Wireless, random

TP-Link TL-WN321G, Nokia Lumia 635

we select one device per model in Table 3 and extract the carrier and
sampling frequency offsets from every received frame belonging to
the same transmitter. To see how the frequency offset changes over
a short time, we capture 1 second of the transmission for each de-
vice, and repeat this 5 times, each 1 minute after the previous one.
The average CFO and SFO are shown in Figure 11.

CFO based distinguishing. We observe that the CFO can be quite
different for devices of the same chipset. As an example, Belkin
F7D1102 and Edimax EW-7811Un (both use identical chipset Re-
altek RTL8188CUS) have CFO around 10kHz and −10kHz, re-
spectively. On the contrary, the Belkin’s CFO is very close to the
Panda Ultra’s despite that they use different chipsets. If we repeat
the experiment for 20 times and apply Algorithm 2 for all devices,
we obtain the average correct detection rate of 17% with the stan-
dard deviation of 2%.

SFO based distinguishing. The average SFO values of the exper-
imented devices, as seen from Figure 11b, are much closer to each
other. In the above experiment, we also perform the average SFO
based classification and observe that there is a drop of average cor-
rect detection rate to 9% with the standard deviation of 2%. This
can be explained by the SFO of devices being in a much smaller
vicinity, resulting in lower detection accuracy.

4.4 Transient Fingerprint
Using the set of 93 devices, we extract the start and stop tran-

sients of each frame and apply Algorithm 4 to classify the devices.
The results in Table 6 show that most device models can be recog-
nized with a high probability. There are, however, exceptions that
the TP-Link TL-WN722N Wi-Fi dongle and the Apple iPhone5 are
not correctly classified in all experiments. In fact, they are misclas-
sified to TP-Link TL-WN725N. In the next evaluation, we show
that despite individual techniques do not achieve high accuracy, the
combined classification can improve significantly the results.

4.5 Device Identification
To evaluate the classification accuracy for a large set of devices,

we perform an extensive experiment, in which we collect the scram-
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Figure 11: Average CFO and SFO of different Wi-Fi devices measured per
one-minute transmission during the span of 5 minutes.

bling seed, frame transients, CFO and SFO values from all Wi-Fi
devices in our testbed. The extracted features of tested devices are
collected from 20 experiments during three weeks. For each trans-
mitter, we apply Algorithms 1 to 5 as the classification methods for
identifying both the models and the devices themselves. We use the
weights specified in Table 2. Note that in case of device identifica-
tion, we set the scrambling seed weight to 0 since the scrambling
seed sequence is produced in the same manner by devices of the
same chipset, and as a result, negative impact can be created if the
scrambling seed is included in the scoring metric. The results are
reported in Table 7, where the outcomes are averaged out over 20
experiments.

First, we see that for the model identification task, even the worst-
performance task, the classification based on scrambling seed, can
still achieve an accuracy of 87%. The combined method can suc-
cessfully recognize the device model with a high probability of
roughly 95%. The most interesting results are the device identi-
fication capability of our fingerprinting system. By exploiting all
physical features supported in our system, we can trace the identity
of almost half (47%) of the Wi-Fi devices in the testbed.



Table 6: Model identification results for 93 devices using transient classifi-
cation method.

Model Model Identification Accuracy (%)
D-Link WDA-1320 100
Linksys WMP54G 100

TP-Link TL-WN751ND 75
Cisco Linksys AE2500 99
Panda Ultra Wireless 91

TP-Link TL-WN725N 97
Belkin F7D1102 75

Edimax EW-7811Un 88
TP-Link TL-WN321G v4 100

TP-Link TL-WN722N 0
TP-Link TL-WN821N v4 75

Apple iPhone 5 0
Nokia Lumia 635 50

Table 7: Fingerprinting results on 93 devices with different classification
methods.

Method Model identification (%) Device identification (%)
CFO mean value 55±7 17±2
CFO distribution 55±6 10±2
SFO mean value 61±4 9±2
SFO distribution 25±1 1±.1
Scrambling seed 87±1 6±1

Transient 92±1 26±3
All combined 95±1 47±3

5. RELATED WORK
Previous work considered several approaches to fingerprint and

identify radio devices, as well as techniques to prevent cloning and
spoofing. Some early work considered the characteristics of the
MAC and higher layers of devices. These characteristics where
used to detect the location and even the identity of users [20]. For
instance, in a conference event hosted on the West coast, overhear-
ing a probe request with id “MIT”, is indicative that a person from
MIT might be at the conference, as his Wi-Fi device is trying to
associate with an AP of the MIT campus. The assumption that
the MAC Sequence number cannot be manipulated by an adver-
sary was used to propose techniques to detect spoofing [12]. Other
work, investigated the use of Time of Probe request frames from
STA [9]. They measured the received time of those Probe Request
frames, and analyzed the interval between them. The goal of this
study is to identify different driver behaviors in terms of imple-
mentation of the MAC protocol. This work exploits the fact that
the standard does not specify the step-by-step behavior for sending
the MAC frames (like Probe Requests).

The general problem of uniquely identifying RF devices based
on their physical characteristics has been studied for various secu-
rity applications including authentication and prevention of worm-
hole attacks as part of the area of Physically Unclonable Functions
(PUFs) [16, 19]. Early work demonstrated that it is possible to
fingerprint and uniquely identify the CC1000 radios of 10 Cricket
Motes operating at 433MHz with an average accuracy of 70% [3].
This work focused on several features of the transient signal of the
CC1000 radio. It opened the door for various applications of fin-
gerprinting both in terms of adversarial use such as the potential
of invading privacy, and defensive use such as preventing spoof-
ing and wormhole attacks in wireless sensor networks. More re-
cent work investigated the fingerprinting of USRP transceivers us-
ing preamble-based identification [24]. This work experimented
with seven different USRPs and used a machine learning algorithm
(kNN). The paper claims that for each USRP receiver, it is possi-
ble to identify the transmitter based on the recorded samples. It
is, however, difficult to justify the accuracy of this technique in
practice, because during the evaluation the nodes were static. This

means that each pair of USRPs has a unique channel with different
multipath and RSSI and the system might be mostly identifying the
channel. It is unclear how such techniques would perform if the
nodes are relocated, or if the environment is changed.

Prior work on fingerprinting Wi-Fi devices investigated the second-
order cyclic features of OFDM signals [17]. This work looked at
the spectral cross-correlation of the signal based on the assump-
tion that signals of most of communication systems today have pe-
riodicity, such as modulated sinusoidal carrier, and cyclic prefix.
However, the devices locations were static and it is unclear if this
technique too fingerprinted the channel or the devices and how it
would perform when the devices are relocated. Moreover, their ex-
periments were performed for a relatively small set of 6 devices.

The closest and best performing related work on fingerprinting
Wi-Fi devices considered a combination of frequency offset, tran-
sients, and constellation errors for IEEE802.11b cards. A perfor-
mance accuracy of 99% was reported for a matching of two record-
ings. While they experimented with a relatively large number of
devices (138), all the devices were located in the stable, static and
RF-insulated Orbit Lab environment (almost no noise, stable tem-
perature) [4]. It is unclear if this impressive performance is due to
the stability of laboratory environment between the two runs (e.g.,
absence of noise boosted the performance of error vector magni-
tude or stable laboratory temperature led to a stable CFO), or to
other unknown factors. Since then no other work (see [5] and ref-
erences therein) was able to reproduce these results so far.

Our work, not only provides a framework for repeatable exper-
imentation with Wi-Fi fingerprinting on a low-cost flexible hard-
ware/software platform, it also devised new features (e.g., scram-
bling seed) and techniques (Kullback-Leibler divergence) across
the various blocks of an RF transceiver chain. We achieved high
accuracy for Wi-Fi model classification. While our results for de-
vice identification reduce to almost half, we believe that further
improvements are possible on our platform such as a more careful
analysis of the scrambling seed algorithm and the per-carrier fre-
quency domain RF front end characteristics, or using directional
antennas to scan and focus on different directions [31].

6. CONCLUSION
We developed a set of techniques for RF fingerprinting Wi-Fi de-

vices. Our techniques span several blocks of a Wi-Fi receiver. Our
results indicate that identifying Wi-Fi devices is possible (with re-
sults spanning 44%-50%), and potentially feasible with hardware
implementation of lower cost than Wi-Fi chipsets. Further, im-
provements of the proposed techniques are also possible, for exam-
ple with more careful analysis and reverse engineering of scram-
bling seed algorithms, CFO and SFO patterns. Through this work,
we hope that the research community can build on our results and
tools to better understand the potential and privacy-invasion risks
emanating from Wi-Fi devices fingerprinting.
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