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Abstract
Pursuing improvements in the healthcare 

system is mandatory for its efficiency and cost 
reduction. The fast popularization of implantable 
and wearable sensors promotes the diversity of 
healthcare applications and services, ranging 
from real-time and critical care monitoring to 
telemedicine. For smart healthcare (s-health), 
reliability plays an essential role, given the sen-
sitivity of its data and services. In this article, we 
envision an architecture based on network slic-
ing that can provide reliability for s-health appli-
cations and services. The architecture relies on 
fingerprinting healthcare applications to quickly 
customize resources and meet the level of reli-
ability required for each s-health application. A 
fingerprinting study case is presented for s-health, 
based on a dataset containing real traffic. Results 
show that application fingerprinting reaches 90 
percent accuracy, assisting in network customi-
zation. Finally, we discuss the main open issues 
and opportunities that network slicing technolo-
gy provides for s-health.

Introduction
Smart healthcare (s-health) is gaining signifi-
cant attention from academia, industry, and the 
healthcare community [1]. S-health is essen-
tial to patients and clinics/hospitals, since it 
improves treatments, enhances patients’ quali-
ty of life, and reduces costs, allowing the timely 
and ubiquitous provision of services and appli-
cations by information and communication 
technologies. Forecasts show a growing mar-
ket for s-health of 24.1 percent (Smart health-
care market 2019 global industry analysis; 
http://www.theexpresswire.com/pressrelease/
Smart-Healtcare-Market-Research-2019-Busi-
ness-Opportunity-Global-Trend-Future-Growt-
Key-Findings-and-Forecast-to-2022_10229596, 
accessed January 2020). All the advantages come 
with the cost of a significant increase in network 
traffic given the massive amount of sensed data 
and new applications. This causes high delays and 
a high level of losses, making it harder to achieve 
the high reliability required for s-health applica-
tions [2].

S-health applications and services are highly 
sensitive to network failures. For instance, in 2015, 
a network failure at Hillingdon Hospital, London, 
caused a severe loss of connectivity, which pre-
vented the access of information necessary to 
treat patients (Network failure crashed frontline 
services at London hospital; https://www.comput-

erweekly.com/news/4500247512/Network-fail-
ure-crashed-frontline-services-at-London-hospital, 
accessed January 2020). From the perspective of 
an ill patient with chronic disease, network failures 
can be disastrous for the patient and the hospital. 
Furthermore, regulatory institutions (e.g., the U.S. 
Food and Drug Administration) force the develop-
ment of reliable health devices and applications 
[3] by acts such as the Health Insurance Portabili-
ty and Accountability Act.

However, given the high level of reliability 
required by s-health, conventional network mech-
anisms (e.g., priority queues) become unsuitable 
due to traffic diversity and density [1, 4–6]. The 
variety of s-health applications (e.g., telemedicine, 
critical care monitoring, and physical activities) 
makes it even more complicated since each appli-
cation has its requirements [5]. Furthermore, from 
the network traffic perspective, it is hard to dif-
ferentiate these requirements and make efficient 
network decisions since s-health traffic is mixed 
with a vast amount of general network traffic 
(e.g., social networks, video streaming). Hence, it 
is indispensable to extract features and effective-
ly analyze the network traffic to adapt network 
resources auonomously. 

We advocate for the emerging concept of 
network slicing as a promising way to handle and 
provide reliability for s-health applications. Net-
work slicing allows the virtualization of the phys-
ical network into virtual isolated subnetworks, 
offering flexibility, fast adaptation, and low costs. 
The benefits of network slicing for s-health com-
prise the autonomous analysis of network traf-
fic and the adaptation of network resources to 
specific requirements, such as s-health reliability 
[5]. Hence, we introduce FLIPER, a Framework 
for Fingerprint s-Health Apps Traffic and Provid-
ing Network Resource Slicing. FLIPER automati-
cally fingerprints s-health applications based on 
network traffic behavior and provides network 
resources autonomously by network slicing. Dif-
ferent from our previous work [7], FLIPER aims 
at achieving reliability for s-health applications, 
where each network slice receives specific 
resources according to the application require-
ments. FLIPER fingerprints applications to assist 
in the network slicing management.

Next, we detail the FLIPER framework, high-
lighting the benefits of network slicing for s-health. 
Then we present a background on network 
traffic analysis techniques to identify the traffic 
of s-health applications. Finally, we discuss the 
opportunities and open issues of network slicing 
for s-health and conclude the article.
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A network-slIcIng-bAsed frAmework for 
smArt HeAltHcAre

This section presents FLIPER. It complements 
existing works that use resources following a 
fault-tolerant perspective [4]. Diff erent from those 
works, FLIPER employs the network slicing para-
digm to provide automation, customization, and 
on-demand resource allocation based on fi nger-
printing analysis. Therefore, we contextualize the 
framework giving an overview of the addressed 
scenario, and we discuss the benefi ts of network 
slicing for s-health applications.

oVerVIew of smArt HeAltH scenArIo
The FLIPER framework works in the context of 
a smart hospital network infrastructure com-
posed of different devices and supporting mul-
tiple types of applications, as illustrated in Fig. 1. 
The network infrastructure is heterogeneous in 
terms of hardware, software, and resource capa-
bilities, and the devices range from wearables 
(e.g., smart glasses, smart watches, and cardiac 
sensors) to video surveillance cameras, desktops, 
servers, routers, and others. Wearable devices 
collect data and transmit it through a gateway 
to the Internet and cloud. Among the devices, 
there are wearable sensors continuously mon-
itoring users’ vital data (e.g., blood pressure). 
Healthcare practitioners have access to users’ 
data through s-health applications, and they can 
employ data to clinical diagnosis or emergency 
medical response.

S-health encompasses different e-health 
(digital health) applications, consisting of any 
Internet applications focused on providing bet-
ter conditions to the clinical processes and the 
treatment of patients. Hence, s-health involves a 
higher range of applications, including extreme 
critical care monitoring, telemedicine, remote 
surgery, and others [6]. Each application has 
specific requirements [8], such as extreme 
critical care applications that monitor patient 
health and need to react immediately, requiring 
ultra-reliable communication. Remote surgery 
can be mobile in some scenarios as in ambu-
lances for disaster response. Hence, they need 
low latency and high reliability. Telemedicine 
for remote areas requires broadband connectiv-
ity. Natural disasters can involve many people 
with a massive number of wearable devices, 
requiring the overall management of density 
and scalability.

Hence, analyzing network data traffic based 
on information from the network layer (e.g., fl ow 
volume, packet size, inter-packet time) can assist 

in efficient reliability management. This analysis 
supports the creation of virtual slices according 
to the application requirements and the provision 
of network resources to better achieve reliability. 
Thus, in our conception, the framework can be 
positioned in a router serving as a gateway for 
a given network. Although such data from the 
network layer is not directly linked to the applica-
tions, it provides insights about the network traf-
fi c based on its behavior. For instance, wearable 
sensors that collect vital signs send periodic data, 
unlike other applications, such as social media 
applications, that generate traffic at a constant 
rate. Therefore, it is possible to differentiate the 
application traffi  c, which assists in network slicing 
management.

detAIlIng flIper ArcHItecture
FLIPER comprises four main modules: Pre-process-
ing, Feature Extraction, Fingerprinting, and Net-
work Slicing Configuration. Figure 2 shows the 
four modules with its components, where the 
input consists of the network data collected to 
extract the application information and to create 
network slices. The fi rst module fi lters the network 
traffi  c according to certain features of reference 
(a.k.a. ground truth information). Its main goal 
lies in associating the traffic with the devices as 
a first step. Based on the ground truth informa-
tion, FLIPER fi lters the network traffi  c per device, 
assisting the functionalities of the other modules. 
The second module selects and extracts the infor-
mation from the network layer (the values for the 
employed features) and the statistical properties 
from the traffi  c of each device. The third module 
gets the labeled data and creates data for training, 
validation, and tests, and then it applies machine 
learning (ML) algorithms to measure its perfor-
mance by metrics as accuracy and precision. 
Finally, after fingerprinting applications, the last 
module manages network slices following specifi c 
confi gurations for each s-health application. In Fig. 
2, FLIPER follows the requirements of three diff er-
ent s-health applications since it aims to achieve 
s-health requirements.

Pre-Processing Module: It handles the net-
work traffic in two components: the collection 
of ground truth information and data processing 
for each device. Together, they create subsets 
of network traffic belonging to each device (D). 
FLIPER uses the medium access control (MAC) 
address as ground truth to correctly indicate to 
which device each traffic flow belongs. Thus, 
based on the ground truth information, FLIPER 
splits the network traffi  c and labels according to 
each device. Hence, FLIPER creates a subset of 
network data for each class of devices, denoted 
by a set D = {d1, d2, …, dn}, where each d means a 
specifi c device class with its network traffi  c.

Feature Extraction Module: It receives as 
input the set of device classes D. Afterward, for 
each class di ∈ D, FLIPER selects and extracts 
the features from the network traffic, defined as 
a set F of m network features, F = {f1, f2, …, fm} 
that belongs to each class. FLIPER employs pack-
et size and fl ow volume as side-channel features 
once these two features play a relevant role in 
the traffic of s-health applications. For instance, 
s-health applications related to monitoring physi-
ological data yield small packet size (e.g., around 

FIGURE 1. Smart hospital scenario.
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50 bytes), and generate a small volume compared 
to other applications. To differentiate the classes 
of devices, after extracting the network features, 
FLIPER computes their statistical properties. These 
properties consist of measures such as average, 
variance, and others. For each set of features F, 
FLIPER calculates a set of x statistical measures, 
S = {s1, s2, …, sx}, where D � F � S. For instance, 
for the packet size feature, FLIPER computes the 
maximum (s1), minimum (s2), average (s3), and 
variance (s4). FLIPER follows this procedure for all 
employed statistical measures. Then this module 
offers to the third one the set of network features 
F and the set of statistical properties S for each 
class of device D.

Fingerprinting Module: This uses distinct types 
of ML algorithms to fingerprint different s-health 
applications, for example, the Random Forest 
based on decision tree rules. It receives as input 
the network traffic features F and statistical prop-
erties S of each class of device. As each class is 
labeled, FLIPER merges them in a final file, called 
training data. It supports unbalanced data (i.e., 
a dataset containing applications with different 
amounts of data). The fingerprinting of applica-
tions follows the holdout method, where the train-
ing data is divided into testing and validation data. 
After creating the final file, FLIPER applies the ML 
algorithms and computes performance metrics 
(e.g., accuracy, recall) to fingerprint the classes of 
applications. The final output lies in a table with 
the percentage values for the metrics to each 
identified class, including the classes of s-health 
applications.

Network Slicing Configuration Module: This 
receives as input the results of the application fin-
gerprinting and allocates network resources to 
achieve the requirements of each application. For 
creating slices, FLIPER verifies a table that con-
tains the specific requirements of the applications, 
including s-health. According to the requirements, 
it requests of the Virtual Infrastructure Manager 
(VIM) the creation of a network slice (NS), one 
NS for each fingerprinted application. VIM is a 
common component of network virtualization, 
controlling and managing the network function 
virtualization (NFV). VIM verifies the network 
resources available and requests of the Network 
Slice Management Function (NSMF) the slice cre-
ation. NSMF manages and selects the appropriate 
network slice based on the application require-

ments. The application receives the network 
resources first. When there is not enough avail-
able network resources, VIM analyzes the type of 
running slice to drop or share its resources. VIM 
and NSMF verify the availability of resources and 
decide about the creation of NSs.

FLIPER creates the slices following the appli-
cation requirements defined by Next Genera-
tion Mobile Network Alliance (NGMN) and 3rd 
Generation Partnership Project (3GPP) standard-
ization efforts for 5G networks. These efforts 
consider scenarios such as natural disasters and 
extreme critical care monitoring [8, 9]. Hence, 
in Fig. 2, each application receives a type of NS 
according to its requirements. For instance, the 
extreme critical care monitoring receives a slice 
configuration with high reliability and low laten-
cy (ultra-reliable low-latency communications, 
URLLC, type). Telemedicine for patient monitor-
ing receives a slice with broadband connectivi-
ty (enhanced mobile broadband, eMBB, slice), 
while remote surgery in an ambulance for disas-
ter response situations follows its restrict require-
ments in terms of high reliability, low latency, 
and security (URLLC type). Moreover, pre-es-
tablishing slices is crucial to achieve end-to-end 
low latency. The next subsection explains how 
network slicing benefits s-health and the types 
of slice.

Benefits of Network Slicing for S-Health
Network slicing aims at improving the quality 
of service for applications. S-health requires 
efficient networking capabilities to provide low 
latency, low loss rate, and high reliability. Thus, 
network slicing offers service customization and 
isolation on physical network infrastructure, 
enabling the logical as well as physical separa-
tion of network resources [5]. The main idea 
lies in a single physical piece of network infra-
structure able to cost-effectively deliver multiple 
logical networks (slices) over the same network 
infrastructure. The 3GPP 5G standardization 
establishes three main slice/service types (SSTs): 
eMBB, URLLC, and massive Internet of Things 
(mIoT) [9]. These types of slices encompass sev-
eral contexts, including s-health, dense urban, 
and others [8]. In the s-health context, extreme 
critical care applications belong to URLLC since 
they requires packet loss as low as 1 out of every 
10,000 packets and 1 ms latency [5].

FIGURE 2. FLIPER architecture.
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Network slicing employs software defined 
networking (SDN) and NFV to slice a network 
into logically isolated network slices [5]. Each 
slice may have certain properties, such as laten-
cy and high reliability. High reliability means 
successfully transmitting data packets without 
extrapolating the maximum latency supported 
by the application. Communication and buff er 
resources along a path are allocated according 
to the expected data arrival from the s-health 
devices to guarantee low latency. Figure 3 
shows a network slicing perspective for s-health. 
Slice 1 (NS-1) involves telemedicine applica-
tions monitoring patients in remote areas. Thus, 
its slice type is eMBB with broadband con-
nectivity. NS-2 contains network resources to 
achieve low latency and high reliability since it 
is established for extreme critical care monitor-
ing applications (URLLC). NS-3 is established 
for emergency response in natural disasters. In 
this case, massive devices from the survivors 
send messages to the hospital. This scenario 
requires a slice type of mIoT to manage the 
number of devices. These three NSs represent a 
smart hospital with diff erent use cases and types 
of traffic, each with its specific requirements. 
Due to the diversity and density of applications 
and traffic, fingerprinting assists the network 
slicing management.

Another network slicing advantage is the 
flexibility to provide virtual analytic data and 
automation. Virtual analytic data consists of 
analyzing the network traffic and its behavior, 
and automation provides the network services 
and resources necessary according to the net-
work behavior and performance. Hence, data 
analytics complement automation. To observe 
network traffi  c, techniques of data analytics can 
be applied, such as fingerprinting. However, 
once network slicing is a new paradigm, there 
is no standard indicated to do such traffi  c anal-
ysis. In this article, we advocate fingerprinting 
techniques based on ML algorithms since they 
quickly learn traffi  c features and behaviors. Fin-
gerprinting s-health traffic can assist the auto-
mation of decisions about network resources 
adaptation. With this purpose, the next sec-
tion presents a study case about fi ngerprinting 
s-health traffic and the results from the imple-
mentation of this case study.

A cAse study of s-HeAltH fIngerprIntIng
The ultimate goal of our network-slicing-based 
framework is to fulfi ll the reliability requirements 
of s-health applications through data analytics on 
network traffic features and behaviors. For data 
analytics, we present an s-health case study fol-
lowing the background of the main fi ngerprinting 
techniques.

bAckground on fIngerprIntIng s-HeAltH
Fingerprinting the legitimate traffic of an active 
s-health application allows us to provide reliabil-
ity services, such as resource allocation and fast 
fault recovery. However, this is a difficult task. 
First, researchers must deal with an increasing 
amount of traffic as well as equally increasing 
transmission rates [10]. Researchers are looking 
for lightweight algorithms with as low compu-
tational requirements as possible to cope with 
such high speed and volume. Moreover, net-
work application developers further hamper the 
task of identifying applications by any available 
technique that hides traffic and confuses net-
work operators, like data encryption and encap-
sulation. Therefore, there is a need for novel and 
unexpected ways of identifying traffic applica-
tions, even more for s-health applications given 
their sensitive data.

We have investigated the current methods 
from the literature to identify the traffic of an 
application. Typically, researchers follow four dif-
ferent approaches to analyze network traffi  c and 
classify an application: port-based approach, pay-
load-based approach, behavioral-based approach, 
and statistical-based approach. Although port-
based approach classifi cation is a fast and straight-
forward method, several studies have shown that 
it performs poorly. As the protocols are assigned 
to well-known transport layers ports by IANA, 
this approach extracts the transport layer port 
from the packet header and looks it up in the 
table containing the port-application associations. 
However, this can be inaccurate and unreliable, 
because current applications may hide traffic 
behind ports of other protocols or behind well-
known port numbers (e.g., TCP port 80), or use 
dynamic ports [11].

In contrast, the payload-based approach is a 
usual approach to identify applications by payload 
packet analysis [12]. It matches a deterministic set 
of signatures or regular expressions against pack-
et payload [10]. Packet payload is searched for 
known patterns, keywords, or regular expressions, 
which are characteristics of a given protocol 
or application. This approach has reached high 
accuracy in identification. However, analyzing 
the packet payload on such health information 
violates users’ privacy [11].

The behavioral-based approach observes the 
total traffi  c received by a host or by an endpoint 
in networks [10]. Thus, all host traffi  c is captured, 
and the host application signatures are compared 
to the captured profile, and then the traffic flow 
is classifi ed. Generated pattern traffi  c is observed 
(e.g., how many hosts are connected, with which 
transport layer protocol) to identify the applica-
tion running on the target host. However, this 
approach needs previous knowledge, such as sig-
natures from the traffi  c. 

FIGURE 3. Example of network slices for s-health.
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Considerable attention has been given in 
data mining and ML algorithms. ML algorithms 
are based on a statistical-based approach. 
Instead of analyzing payload, this approach con-
siders flow-level measurements, for example, 
packet size, inter-packet time, flow volume, and 
statistics measurements (e.g., mean and max 
packet size). However, most studies in the lit-
erature use this approach to identify common 
Internet and mobile applications [13] and iden-
tify IoT devices [14]. We have found only one 
study that addresses s-health applications [11]. 
Since s-health has a lot of requirements, such as 
critical care monitoring that carries information 
about the vital signs of patients, they need spe-
cial attention [2]. Thus, fingerprinting s-health 
applications enables the network management 
to achieve these requirements.

Implementing S-Health Fingerprinting
FLIPER follows four main modules leading its 
implementation. Our framework works in the 
context of a smart hospital environment with sev-
eral heterogeneous devices sharing data. The 
representative IoT Traffic Analysis dataset [14] 
serves as input for fingerprinting in performance 
evaluation. For the results, we employ a dataset 
containing network traffic from 20 days (Sep-
tember 22, 2016 to October 12, 2016). Its con-
tains records of real network traffic from different 
types of devices, including monitoring camer-
as, baby monitors, wearable sensors (e.g., Sleep 
Sensor and Blipcare blood pressure), laptops, 
smartphones, hubs/controllers, environment light 
sensors (e.g., LIFX light bulb), movement sensors 
(e.g., Belkin Motion), and portable speaker assis-
tance (e.g., Triby Speaker and Amazon Echo). 
Among them, there are two healthcare monitors: 
Sleep Sensor and BlipcareBP. Our goal lies in 
fingerprinting the traffic from these two devices 
among the others.

The dataset is the basis for network traffic 
features and statistical properties extraction. 
The framework employs features such as packet 
size, flow volume, and inter-packet-time, extract-
ed by Tshark and Cisco-Joy tools. The input file 
to fingerprint s-health applications is composed 
of these features and their associated capture 
time. The capture time encompasses the trace 
capture day from the dataset. We normalize the 
capture time to an interval from 1 to 20 days, 
and we extract packet sizes and inter-pack-
et time from the header of the network layer. 
A flow means the packets of the data plane 
between sender and receiver that share key IP 
header information. A flow encompasses the 
5-tuple information: same source and destina-
tion addresses, same source and destination 
ports, and the same protocol. Flow volume is 
the sum of all bytes sent from a source to a des-
tination. We ignore packets destined to DNS 
servers and packets or flow volume with size 
equal to 0. Moreover, the MAC address of each 
device serves as the label of the training data 
(Pre-Processing Module).

For packet size and inter-packet time features, 
we compute the statistical properties min, max, 
average, and variance through the Numpy library 
from Python v2.7 (Feature Extraction Module). 
Such statistical properties are added to a file 

according to each network traffic feature. After 
statistical calculation, FLIPER creates the training 
and testing data using the input files. It applies the 
Random Forest classifier [13], since it is a multi-
class classifier, making it suitable for tasks such 
as application and device fingerprinting. We use 
metrics such as accuracy, precision, and recall 
(Fingerprinting Module). These metrics assist in 
evaluating reliability. Their results support the net-
work slicing, offering insights about network traf-
fic and application requirements. High accuracy, 
precision, and recall result in efficient and correct 
creation of slices.

Figure 4 presents the average packet size per 
device identified in the dataset. Wearable sen-
sors (BlipcareBP and Sleep Sensor) have reached 
small values for average packet size. BlipcareBP 
presents a tiny amount of traffic since it shows an 
average packet size smaller than 100 bytes and 
only generated traffic for three days. Sleep Sensor 
reaches average packet size around 130 bytes. In 
contrast, Netatmo reaches more than 800 bytes 
in average packet size and the laptop 300 bytes, 
while other devices present similar behavior. This 
behavior indicates that the dataset contains unbal-
anced data (i.e., dataset presents a diverse amount 
of data), which is a typical case for s-health. It is 
harder to fingerprint the smaller traffic.

Figures 5 and 6 show the Random Forest 
performance on application fingerprinting. The 
results encompass an overall macro average of 
nine classes, where each class corresponds to one 
device (i.e., nine types of devices). We run the 
classifier 50 and 100 times for the results in Figs. 
5 and 6, respectively. In Fig. 5, Random Forest 
presents a stable macro average for accuracy, 
maintaining around 90 percent. Precision presents 
values from 73 to 90 percent, indicating a small 
amount of false positives. Recall presents values 
around 70 percent, with a lower number of false 
negatives. In the s-health context with ill patients, 
higher recall is more relevant than precision, since 
for recall it is essential to identify all ill patients, 
even if classifying a healthy patient as sick (FP 
situation). Considering the s-health devices from 
the dataset, FLIPER correctly fingerprints almost 
all traffic from the Sleep Sensor. Figure 6 shows 
the results for BlipcareBP once it has the smaller 
traffic from the dataset. Accuracy reaches values 
close to 100 percent, while precision and recall 
present values from 69 to 98 percent due to the 
small amount of traffic of BlipcareBP.

FIGURE 4. Average packet size vs. capture day.
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Open Issues and Opportunities

This section presents the main open issues and 
opportunities in the application of network slicing 
for s-health applications, and we highlight interest-
ing future directions.

Reliability
High reliability encompasses network communi-
cation without failures, data and services available 
as long as possible, and support for service oper-
ation. For instance, unreliable network quality can 
cause a high rate of packet loss and errors, which 
can lead to an erroneous diagnosis by a health 
professional [2]. However, ensuring reliability is 
complex, and it is not straightforward.

Hence, adopting network slicing for s-health 
would be beneficial. First, it enables the adaptation 
of network resources and services when a network 
failure occurs, since network slicing has automation 
and isolation characteristics. Data analytics of net-
work traffic provided by network slicing jointly with 
fingerprinting techniques extract network behav-
iors to assist in resource allocation. However, there 
is an issue related to failure detection because net-
work slicing is not prepared to detect a network or 
data failure. Some service positioned in each slice 
detecting data failures could be a solution. Then, 
when detected, a failure data packet can be sent to 
another concurrent slice. Another issue lies in pro-
viding reliability by the slice infrastructure: should it 
be implemented as embedded slice mechanisms, 
like multipath transmission and queuing priority? 
Probably both mechanisms will have to cooperate, 
such as in the use of a URLLC slice configuration 
with queuing priority.

Performance

S-health applications require performance. 
End-to-end delay is significant for health-re-
lated applications, supporting only 125 ms of 
latency. In the network slicing context, critical 
care applications only support 1 ms, and it is 
very difficult to reach such latency in traditional 
networks. Virtual slices with network resourc-
es allocation on demand provide specific ser-
vices to reach such latency. However, the slice 
deployment time and slice transition time (e.g., 
the time to change the applications for another 
slice) can be critical for some s-health applica-
tions. Such cases can be supported by special 
mechanisms. These mechanisms can include 
the creation of functions shared by multiple slic-
es and/or deploying a priori specific slices and 
keeping them in a “frozen” state, reducing the 
use of resources.

Fingerprinting the network traffic and know-
ing necessary services is essential to assist end-
to-end latency. However, two critical issues are 
the small amount of traffic and ground truth 
information definition. New approaches are 
fundamental to fingerprint an s-health applica-
tion with higher precision, even with a small 
amount of traffic. Specif ic ML techniques for 
unbalanced data can be a solution. The ground 
truth is used to correctly fingerprint the appli-
cation. Studies have applied the MAC address 
or payload inspection techniques to collect 
ground truth. Nonetheless, sometimes the MAC 
addresses of devices are unavailable, and the 
payload inspection techniques violate user pri-
vacy. Hence, advances are indispensable.

Security
Security and privacy are undoubtedly crucial for 
s-health because it uses location, personal, and 
context information of users. S-health applica-
tions are susceptible to various types of attacks 
(e.g., patient tracking, side-channel attacks, 
and denial of service). Attackers can use the 
data obtained through network data analytics 
and fingerprinting techniques (ML algorithms). 
Side-channel attacks can benefit from network 
traffic to infer information about the users. ML 
algorithms can solve challenges in the secu-
rity of network slicing, such as to control the 
network slice behavior. When the behavior 
changes, the system triggers an alert. However, 
attackers can mimic the s-health traffic behav-
ior. In this case, authentication techniques and 
fingerprinting would jointly improve security.

Another issue lies in network slicing isola-
tion. An opportunity refers to inter-slice isola-
tion. It would assist in preventing an attack on 
a slice to affect other network slices and the 
attack propagation when using shared functions 
by the “cascade effect.” Moreover, network 
slices might have different security levels and 
policies since different providers could manage 
them. The challenge is how to enforce network 
slice security when a network function or slice 
is compromised and infrastructure from differ-
ent providers is in use. Similar security mech-
anisms to different infrastructure providers are 
probably required for any provider to take pre-
ventive action.

FIGURE 5. Fingerprinting classifier performance for all 
devices.
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FIGURE 6. Fingerprinting classifier performance for 
BlipcareBP device. 
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Cost
S-health applications have cost and complexity 
restrictions. There are concerns related to the 
trade-off between complexity and application 
latency. Although network slicing creates slices 
on demand that are customized according to the 
needs of specific applications, the slice creation, 
management, and isolation can highly increase 
complexity and cost. The number of slices oper-
ating in network infrastructure is expected to be 
huge, which makes network management diffi-
cult. The management issues grow not only with 
the number of slices, but also with their complex-
ity. Fog devices and pre-created slices can assist 
in the management and configuration of slices to 
decrease latency and cost.

Conclusion
In this article, we present a network-slicing-based 
framework for smart healthcare (s-health). Such 
framework can indeed boost s-health applications 
reliability by efficiently handling the amount of 
data generated by wearable sensors as well as 
other devices, and create specific network slices 
to achieve the application requirements. Network 
slicing for s-health is attractive because it assists 
in network resource allocation according to the 
specific requirements (e.g., high reliability and low 
latency). The framework fingerprints network traf-
fic with 90 percent accuracy. In the future, we will 
test other fingerprinting approaches to improve 
the accuracy and implement the network slices.
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