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ABSTRACT
Exposing the rate information of wireless transmissions enables
highly efficient attacks that can severely degrade the performance
of a network at very low cost. In this paper, we introduce an inte-
grated solution to conceal the rate information of wireless transmis-
sions while simultaneously boosting the resiliency against interfer-
ence. The proposed solution is based on a generalization of Trellis
Coded Modulation combined with Cryptographic Interleaving. We
develop algorithms for discovering explicit codes for concealing
any modulation in BPSK, QPSK, 8-PSK, 16-QAM, 64-QAM. We
propose a 2-pass frequency correction and phase tracking mecha-
nisms that enables the proposed schemes to reach their potential.
We demonstrate that in most cases this rate hiding scheme has the
side effect of boosting resiliency by up to 7dB (simulations) and
4dB (SDR experiments).

1. INTRODUCTION
Wireless communication is the key enabling technology of the

Mobile Revolution that we are currently enjoying. Beyond en-
abling Mobile Phones, Wireless Sensor Networks, and the Internet
of Things devices, it is also key to Cyber-Physical Systems such as
SCADA Wireless Remote Terminal Units [46].
Achilles’ Heel of Wireless. The broadcast nature of the wireless
medium makes it vulnerable to two types of major attacks denial
of service, and information leakage. Designing countermeasures to
wireless DoS attacks before they become widespread is very im-
portant for both military and commercial applications. Due to a
series of recent incidents, the FCC has stepped up its education
and enforcement effort [12], rolled out a new jammer tip line (1-
855-55NOJAM), and issued several fines [13]. At the same time
jammers are becoming a commodity and are growing in sophisti-
cation and convenience of use and deployment. Beyond degrading
a critical communication infrastructure, wireless DoS can also be
the prelude to more sophisticated attacks where the adversary de-
ploys rogue infrastructure [8]. Evidence of such attacks in the real
world started emerging in the last few months [14, 42].
Weaknesses of Rate Adaptation Algorithms. We are interested
in the impact of exposing the rate information, defined by the com-
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bination of Modulation and Coding Scheme (MCS), on enabling
denial of service attacks. Recent work [33] showed that knowl-
edge of the transmission rate enables selective jamming of packets
resulting in very efficient attacks on all the Wi-Fi rate adaptation
protocols investigated. Rate Adaptation Algorithms (RAA) adjust
the physical layer transmission rate to the channel characteristics;
ideally selecting a low rate MCS for a low SNR channel and a high
rates for high SNR [5, 25, 26, 31, 34, 48, 50]. To illustrate the
criticality of hiding the communication rate, we first provide some
insights into rate adaptation attacks. The key idea in the highly
efficient RAA-attack is to force a device to use a low rate (e.g.,
1Mbps), by jamming all packets of higher rates. This allows: (1)
a reflection attack where the victim is occupying the channel for
very long time preventing other transmissions (i.e., 54 times chan-
nel occupancy for 802.11g to over 300 times for 802.11n), (2) a
saturation of the network that induces a higher collision probability
resulting in some RAA maintaining a network-wide low rate even
when the adversary stops jamming. This self-sustained interfer-
ence is called a congestion collapse. The RAA-attack is aggravated
by the fact that jamming high rate packets is easier than jamming
low rate packets and only requires interfering with few symbols.
Furthermore, the comeback to higher rates is slow. Finally, the
equiprobability of transmission among devices enables the adver-
sary to focus on a single link to degrade the whole network [7].
Previous work [33, 36, 37] demonstrated both analytically and ex-
perimentally that smart RAA-aware jamming can lead to highly
efficient attacks. The adversary only needs to jam a small carefully
selected fraction (less than 5%) of the packets to achieve orders of
magnitude more efficiency than blind jamming [33].

The fundamental reason why an adversary can selectively jam
packets is because the rate information is either explicit (e.g., SIG-
NAL field of the IEEE 802.11 PLCP header) or implicit (analysis
of I/Q constellation). Before describing our approach, we provide
some context for our work in terms of related research.
Mitigating Jamming. Jamming at the physical layer has been ex-
tensively studied (cf. [39] for a recent monograph on this subject).
Reliable communication in the presence of adversaries regained
significant interest in the last decade, as new jamming attacks as
well as the need for more complex applications and deployment
environments have emerged (cf. [10, 38] and references therein).
Specifically crafted attacks and counter-measures have been stud-
ied for packetized wireless data networks [20, 27, 28, 49], mul-
tiple access resolution [1, 2, 4], multi-hop networks [27, 44, 51],
wireless sensor networks [52], spread-spectrum without shared se-
crets [23, 30, 43].
Related Work on RAA Attacks and Mitigations. Characteriz-
ing the vulnerabilities of RAA algorithms to jamming and devel-
oping countermeasures received increasing interest over the last



few years from the first observations and mitigations through fixed
rate communication during jamming [7, 37], to randomized mitiga-
tions [35, 36], to game theoretic randomization strategies [15–19].
However, previous work assumes that either the adversary is not
able to selectively jam packets based on their rates [7, 35–37] (e.g.,
due to the slow reaction time of the jammer), or because the trans-
mitter is able to effectively hide the rate [16, 18] (without proposing
a concrete mechanism for rate-hiding). Unfortunately, over the last
couple of years several recent work demonstrated that rate-selective
reactive jammers are feasible on Ettus Software Defined Radio plat-
forms, either on the host [33], or on the FPGA [32, 49]. RAA at-
tacks are therefore fairly easy to implement on custom chips. As we
will discuss in the next section, a key unresolved challenge in pre-
venting RAA attacks is how to prevent an adversary from guessing
the rate (Modulation, Coding information) during the transmission
and therefore from selectively interfering with a packet.

A very recent work [41] proposed a modulation level encryp-
tion technique to hide the rate of communications. In essence, this
technique always transmits with the highest order modulation, but
the communicating nodes cryptographically agree on a subset of
the constellation points to be used for each symbol. For example,
BPSK modulation can be hidden in 16-QAM by only considering
eight pairs of points. For every symbol to be transmitted a pair is
cryptographically selected by the transmitter and is also known to
the receiver through a shared key. The information bit of BPSK
determines which element of the pair is sent. Since the eight pairs
cover the whole constellation points, the adversary cannot distin-
guish between a BPSK communication embedded within 16-QAM
or a true 16-QAM. While this scheme conceals the rate informa-
tion, it does so at the cost of degrading the robustness of the com-
munication. First, one can analytically show that 1-2dB are lost
because of the constrained selection of the constellation pairs. Sev-
eral additional dB are lost due to the poor performance of frequency
offset correction, and phase tracking techniques.
Approach and contributions. One plausible approach to hide the
implicit rate information, leaked by the constellation points, con-
sists of always using the highest order modulation and combining
it with a matching rate (e.g., uncoded BPSK can be hidden by us-
ing 16-QAM combined with a 1/4 rate coding scheme). As will
be discussed and demonstrated in the next sections, such approach
does not perform well, mainly because: (1) At low SNR several key
components of the communication chain perform poorly, therefore
degrading the performance of the system. These include the coding
schemes, the frequency offset, and the phase tracking. This is one
of the key reasons why most standards (both WLAN and Cellular)
still rely on BPSK as a fallback solution for low SNR regimes. (2)
Traditional codes maximize the Hamming distance between code-
words and not the multi-dimensional Euclidean distance necessi-
tated by the I/Q constellation of coded high order modulations. (3)
An adversary can still guess the rate information by trying all pos-
sible modulation schemes. Traditional encryption schemes cannot
prevent this attack since if they are applied post-coding/modulation
they would render the error correction properties of the code useless
(a single bit error would be amplified by the decryption process).

We introduce an integrated solution – Conceal and Boost Mod-
ulation (CBM) – to conceal the rate information of wireless trans-
missions while simultaneously boosting the communication resiliency
against interference. The adversary sees all communications using
the highest order modulation. The proposed solution is based on
a Generalization of Trellis Coded Modulation (GTCM) with an in-
tegrated frequency offset and phase tracking technique combined
with Cryptographic Interleaving. We developed novel algorithms
for efficiently discovering and validating new trellis codes capable

(a) 8-PSK (b) 16-QAM

Figure 1: Constellation guessing on USRP: Received symbols can be dis-
tinguished clearly after carrier synchronization and tracking.

of upgrading any modulation constellation to any higher order con-
stellation. While previous work on TCM was restricted to k

k+1
rate

uniform trellis due to many reasons including complexity of search-
ing over all possible trellis. We devise an efficient algorithm that
finds the explicit codes for concealing any modulation in BPSK,
QPSK, 8-PSK, 16-QAM, 64-QAM. In addition to the analytically
proven properties of these codes, we show through simulations that
in most cases this modulation hiding scheme has the side effect
of boosting resiliency by up to 7dB over uncoded modulation and
over 8dB in comparison with prior work [41]. However, in real ex-
periments using a testbed of USRP N210 [11], we show that with a
standard frequency offset correction and phase tracking, the perfor-
mance of the proposed schemes is severely degraded. We develop a
2-pass frequency offset correction and phase tracking mechanisms
that integrates within the GTCM decoder. This technique exploits
the capability of today’s baseband chips and SDR platforms to store
a substantial number of samples therefore using information from
the GTCM decoder to accurately track and correct the transient
phase errors. Our final system achieves an experimentally mea-
sured performance boost of up to 4dB.

2. RATE INFORMATION

2.1 Rate Information Leakage
Explicit rate information: In many communication protocols, the
rate information of a transmission is unprotected. For instance in
IEEE 802.11 networks, the rate is explicitly specified in the SIG-
NAL field of the physical layer’s frames. An adversary can easily
synchronize with the communication between two parties, analyze
the data frames and extract the rate. This attack is very practical
as demonstrated by [33]. Similarly, the rate information of a trans-
mission in LTE cellular systems is exposed in the Modulation and
Coding Scheme (MCS) field within the Downlink Control Infor-
mation (DCI), which is itself encoded using a publicly known fixed
rate 1/3 convolutional code and QPSK modulation.
Modulation guessing: Even if the rate information is not explicitly
provided within the packet header, the adversary can analyze the
received signal in complex I/Q form. After performing the carrier
synchronization, frequency and phase offset correction, the adver-
sary can trace the received constellation pattern and determine the
modulation in use. This method does not require the knowledge
of the protocol’s frame structure. We demonstrate the guessing at-
tack by implementing a modulation detector on USRP, which can in
real time identify the transmission’s modulation (Figure 1). It can
be easily extended to build a practical rate-aware jammer [33, 49]
to selectively jam the high rate packets.
Code guessing: With more sophisticated techniques, an adversary
could manage to identify not only the transmission’s modulation,
but also the codes in use. One such technique is to track the se-
quence of received symbols to guess the codes based on the fact
that different codes produce different transitions from one coded
symbol to another. Since most communication standards specify
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Figure 2: Overview of our CBM system.

a limited set of modulations and codes, guessing by matching and
trial-and-error is efficient for the adversary.

2.2 Challenges to Rate Concealing
We now provide some insights why it is hard to hide the rate

information.
Data Encryption: First, to hide the explicit rate information in the
packet’s protocol header, a straight-forward solution would be to
encrypt the header. However, doing so does not prevent the mod-
ulation guessing attack, as a transmission still exposes the modu-
lation to the complex I/Q analyzing adversary, who does not even
need to decrypt the header to learn the rate.
Using Single Modulation: Alternatively, in order to avoid mod-
ulation guessing, a naive solution could be always using only one
modulation for communications. This, however, lacks the flexibil-
ity and adaptivity to the environment, such as preventing the user
from benefiting from high data rates at high SNR.
Modulation Level Encryption: Recently, the modulation level en-
cryption technique developed by Rahbari and Krunz [41] can hide
the rate from modulation guessing by a random mapping into a
higher-order modulation based on a shared secret between two par-
ties. However, their solution sacrifices the resiliency by 1-2dB in
simulation, and several dB in real world due to imperfect frequency
offset correction.
Coding: To improve the system robustness, one can propose us-
ing binary error correction codes combined with the highest order
modulation. However without a careful design of the codes, the
transmission performance is not guaranteed even with the best bi-
nary codes (as we show later in Section 4). Moreover, simply ap-
plying coding with modulation level encryption still leaks the rate
information to code guessing attacks.

3. APPROACH
Our scheme – Conceal and Boost Modulation (CBM) – is de-

picted in Figure 2. The General Trellis Coded Modulation (GTCM)
module’s functionalities are two-fold. First, it makes the constella-
tion pattern indistinguishable to the adversary, therewith countering
the modulation guessing attacks. Second, it boosts the system re-
siliency against interference. The Cryptographic Interleaving (CI)
module conceals the rate information from explicit rate exposing
and implicit code guessing attacks.

Our idea for hiding the constellation is to always use a single
unifying modulation (the highest order) to transmit data in order to
create the same constellation observed by the adversary. To pre-
serve the bit rate and robustness supported by the original modula-
tion, the GTCM module encodes the data by a suitable code of rate
matching the bit rate ratio between the original modulation and the
target modulation. To be precise, let’s consider a system that sup-
ports a set of different modulations ordered by the number of bits
per symbol (bps) b1 ≤ . . . ≤ bN , where N denotes the highest-
order modulation of bit rate n = bN . Assume that the on-going
transmission is desired to be carried at a bit rate k = bK bps for
some modulation K. In order to conceal the constellation, we en-
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Figure 3: Performance comparison between (1) our TCM code with stan-
dard 16-QAM, and (2) best traditional binary code (from [9]) of rate 2/4
with Gray coded 16-QAM.

code the data using an adequate code of rate k/n and transmit the
encoded data using the target modulation N . Since the adversary
will always observe the same constellation N , the actual rate is
concealed from modulation guessing attacks.

To counter the code guessing attacks, we develop a cryptographic
module, which interleaves the modulated symbols before transmis-
sion. We emphasize that the interleaving process is performed at
the baseband samples level, i.e., complex symbols produced by the
GTCM module are interleaved per block of transmitted symbols.
We note that straightforward encryption of data before modulating
does not conceal the rate information, as the adversary can clearly
observe the constellation of encrypted data. We derive a specific
method to efficiently generate cryptographic interleaving functions
used for permuting the output symbols from the GTCM module in
such a way that the transmit stream does not leak the rate informa-
tion. For the receiver to be able to decode the data, the rate infor-
mation is embedded into the packet in an encrypted form such that
only the receiver, who shares the secret key with the transmitter,
can decrypt the information.

It is important to understand the implications of rate hiding. On
one hand, the highest-order modulation creates redundancy by the
constellation expansion. On the other hand, the constellation points’
pair-wise distances are closer than in the original constellation.
Without good design specifically targeting to the upgraded modula-
tion’s constellation, the system can become less resilient against in-
terference. For example, the modulation unification technique [41]
results in loss of 1-2dB of robustness compared to regular rate-
exposing systems. This is because no coding is used in their sys-
tem. However, even using good traditional binary codes cannot
guarantee the robustness of the system because they maximize the
Hamming distance between codewords and are not designed for
coded modulation. An illustration is shown in Figure 3. We take the
best code

(
17 13 05 02
10 03 17 15

)
of rate 2/4 from Table VII in [9],

and use it with Gray coded 16-QAM modulation. Comparing it
with our derived TCM code

(
01 12 16 11
01 13 16 11

)
of the same rate

and constraint, we see a gain of about 4dB is achieved with our
code (Figure 3), while the binary code almost gives no advantage
over uncoded QPSK at BER = 10−6. Therefore, with good codes
designed for the target modulation, we can gain instead of losing.

Searching for good codes for the rate-hiding systems must take
into account the constellation description defined by the highest-
order modulation. This idea is rooted in the Trellis Coded Modu-
lation (TCM) technique introduced by Ungerboeck [45], who fo-
cused on devising modulation codes of rate k/(k+ 1). In the liter-
ature, finding good TCM codes is a challenging problem, for which
only heuristic solutions have been studied such as the set partition-
ing rules established in [45]. Unfortunately, there is no polynomial
time algorithm for constructing the optimal general TCM codes.
In this work, we introduce a new heuristic approach for upgrading
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Figure 4: Our best TCM code of rate 2/4 (QPSK → 16-QAM) and con-
straint length 4. Its boosting gain over uncoded QPSK is 3.8dB.

arbitrary modulations. Our heuristic solution is not based on the
conventional set partitioning technique. Instead, we generate the
code by randomizing the mapping between the inputs, shift regis-
ters, and the outputs of the general code structure. Our results show
that this approach can find codes at least as good as the ones found
in [45]. In practice only applying codes to an existing system is
not sufficient due to imperfections caused by frequency and phase
offset. We address these issues by devising a two-pass synchro-
nization mechanism, which will be discussed in Section 6.

4. GENERAL TCM
In this section, we describe the fast search procedure for TCM

codes of arbitrary rate k/n, which are used to encode data origi-
nally modulated by a modulation K of order 2k (bit rate k) to the
highest-order modulation N of order 2n (bit rate n), without any
uniformity restriction. For convenience, we give a brief overview of
TCM codes. A TCM code is a convolutional code (k, n) defined by
a set of k shift registers storing the code’s k input bits, and a genera-
tor matrix which specifies the input-output relation (e.g., Figure 4).
Deeper shift registers have higher potential gain and decoding com-
plexity. Thus, we classify the codes by their constraint length v
defined as v =

∑k
i=1 vi, where vi is the length of the i-th shift reg-

ister. In our search procedure, we only consider the feed-forward
construction of convolutional codes, because any construction with
feedback can be transformed into a feedback-free construction that
produces equivalent codewords [29]. To represent a code, we use
the conventional generator polynomial form G(D) = {gij(D),
i = 1 . . . k, j = 1 . . . n}, where gij(D) =

∑vi
l=0 alD

l is a uni-
variate polynomial, and the indeterminate D represents the delay
of the input bit in the corresponding shift register. If al = 1, the
i-th input’s current value (for l = 0) and past values (for l > 0)
are GF (2) added (exclusive-or) to the j-th output. For example,
the convolutional code (2, 4) in Figure 4 has the generator ma-

trix/polynomialsG =

[
D +D2 D3 D +D3 1 +D +D2

0 1 0 1 +D

]
.

Unlike binary convolutional codes whose performance depends
on the Hamming distance of the binary output symbols, TCM codes’
performance is determined by the free Euclidean distance d∞, which
is the minimum Euclidean distance of any two distinct complex-
symbol sequences produced by the code and modulation N . Since
binary codes are not designed for coded modulation, they do not
take into account the constellation mapping. The best binary code
with regards to Hamming distance can have a significantly small
Euclidean distance between transmitted complex symbols and re-
sult in poor performance when combined with a specific modula-
tion. For example, Figure 3 shows that our TCM code (QPSK→16-
QAM) outperforms the best binary 2/4 convolutional code in [9]
applied to a Gray-coded 16-QAM modulation, by 3dB at BER=10−6.
In the search for good TCM codes, we use as comparison met-
rics the asymptotic coding gain ratio measured by β = d∞N /∆K,
where ∆K is the minimum Euclidean distance between constella-
tion points in the original modulation K. Good TCM codes must
have high β ratio.

4.1 Code search algorithm
We introduce a new heuristic approach for searching for good

TCM codes. For a given code specification (k, n, {vi}), the co-
efficients of the generator polynomials gij are randomly selected.
Since each combination of coefficients corresponds to a unique
code construction, we check the generated code for its free Eu-
clidean distance and if it satisfies additional critical properties such
as structure information leakage. The search is performed for a
fixed number of trials independent of the code specification, thus it
is substantially faster than a full search which evaluates all possible
codes. Yet, as shown in Section 4.3, our randomization approach
can achieve the same results as a full search. The search procedure
is illustrated in the RANDOMCODESEARCH algorithm below.

Our random search is characterized by the number of trials T
performed by the algorithm. A randomly generated code, might be
(1) catastrophic, i.e., there exists a non-zero input sequence that can
produce all-zero output sequence; or (2) non-equiprobable, i.e., the
output values are not uniformly distributed, which can help the ad-
versary deploy statistical attacks to distinguish the mapping we aim
to conceal. Therefore, the generated code is first validated against
above properties, then its free distance d∞ is computed.

RANDOMCODESEARCH(k, n, {vi},M, T )

1 d∞ = 0 // free distance of current best code
2 for i = 1 to T
3 C = generateCode(k, n, {vi})
4 if valid(C) // non-catastrophic and equiprobable check
5 d = COMPUTEDISTANCE(C,M, d∞)
6 if d > d∞

7 d∞ = d // update free distance
8 C∗ = C // store new best code
9 return (C∗, d∞)

4.2 Free distance computation algorithm
The computational bottleneck of the code search lies in the com-

putation of the Euclidean free distance, since it is performed for
every generated code. In the conventional TCM code construc-
tion method based on set partitioning rules [45], computing the
free distance only involves finding the minimum distance to the
all-zero sequence. However, our GTCM approach does not restrict
the search by the set partitioning rule, as we consider a higher-
dimension space so that better codes can be found (including non-
uniform ones). As a result, computing the free Euclidean distance
involves all pairs of output sequences. Nevertheless, we devise an
efficient algorithm – COMPUTEDISTANCE – whose running time
is on average less than 2ms, on a 3GHz CPU desktop computer, for
the modulations and depths we consider. COMPUTEDISTANCE’s
algorithm consists of traversing the trellis of the code and appropri-
ately updating the state-distances, which is defined below.

First, we introduce some convenient notations. Let I = {0, . . . ,
2k − 1} be the set of inputs, O = {0, . . . , 2n − 1} the set of
output symbols, and Λ = {0, . . . , 2v − 1} the set of possible states
corresponding to a code C. A path P of length L is defined as a
sequence of 3-tuples P = {(Si, xi, yi), i = 0 . . . L − 1}, where
Si ∈ Λ, xi ∈ I are respectively the state and input of the code at
time i, and yi ∈ O is the output symbol due to input xi at state Si.
The encoding can start from any initial state S0. Since the output
symbol is mapped to a specific constellationM, the Euclidean dis-
tance between two paths P and P̃ of length L is dependent onM
and computed by dM(P, P̃ ) =

∑L−1
i=0 dM(y, ỹ), where dM(y, ỹ)

gives the Euclidean distance between two points y and ỹ on the
target coded modulation M’s constellation. Now, we define the
state-distance D[S, S̃]

∆
= min{d(P, P̃ )} of two states S and S̃ as



the minimum Euclidean distance between all possible paths of the
same length ending at state S and S̃, respectively.

The key idea of our algorithm is that we update D[S, S̃] gradu-
ally when traversing the trellis with increasing L. When two paths
P and P̃ merge at the same state S = S̃, the free distance d∞ is
checked and updated with D[S, S̃].

COMPUTEDISTANCE(C,M, d∞best)

1 D[S, S̃] = ∞ for all (S, S̃) ∈ V 2 // state-distances
2 d∞ = ∞ // C’s free distance
3 for each S ∈ Λ, (x, x̃) ∈ I2, x 6= x̃
4 UPDATEDISTANCE(S, x, S, x̃)
5 repeat
6 for each (S, S̃) ∈ Λ2, S 6= S̃,D[S, S̃] < d∞

7 for each (x, x̃) ∈ I2

8 UPDATEDISTANCE(S, x, S̃, x̃)
9 if d∞ ≤ d∞best

10 return d∞ // not the best, return now
11 until (S, S̃) not found in line 6
12 return d∞ // we found a better code

The algorithm COMPUTEDISTANCE starts by initializing the state-
distances to the distance between any path P and P̃ starting from
any same state S (line 1–4). We make the paths diverge from
the same state (line 3), then compute the distance between them
(line 4). In the main loop (line 5–11), the state-distances are re-
peatedly updated for each new segment added (line 7) to the paths
until there exist no more state pairs (S, S̃) whose state-distance
D[S, S̃] is less than d∞ (line 11). The maintenance and update
of state-distances in both the initialization and the main loop are
performed by UPDATEDISTANCE, which keeps records of D[S, S̃]

for all S, S̃. Whenever two paths P and P̃ merge at a state S, the
corresponding state-distance D[S, S] is checked to update d∞.

UPDATEDISTANCE(S, x, S̃, x̃)

1 T = C.nextState(S, x); y = C.output(S, x)

2 T̃ = C.nextState(S̃, x̃); ỹ = C.output(S̃, x̃)

3 if S = S̃
4 d = dM(y, ỹ) // update at initialization
5 else
6 d = dM(y, ỹ) + D[S, S̃] // update loop
7
8 if d < D[T, T̃ ]

9 D[T, T̃ ] = d

10 if d < d∞ and T = T̃ // two paths merge
11 d∞ = d

Furthermore in RANDOMCODESEARCH, where each generated
code is computed for the free distance, we speed up the search by
storing the best free distance d∞best associated to the best code C∗

discovered so far in order to quickly eliminate codes of free dis-
tance shorter than d∞best (line 9 in COMPUTEDISTANCE).
Correctness. To prove the correctness of the algorithm, we show
that the state-distances D[S, S̃] keep records of the distances of all
possible “close” paths. The proof is based on the following lemma.

LEMMA 1. At any time i on the code trellis, for any pair of
paths P and P̃ , if there exists another pair of paths Q and Q̃ such
that S(P )

i = S
(Q)
i , S(P̃ )

i = S
(Q̃)
i , and D[Q, Q̃] < D[P, P̃ ], then

P and P̃ can be eliminated.

PROOF (SKETCH). By the lemma’s assumption, P merges with
Q and P̃ merges with Q̃ at time i. It is followed that at time i+ 1,
any new pair evolved from P and P̃ will find a similar new pair
evolved from Q and Q̃. Therefore, the pair (P, P̃ ) cannot have
shorter distance and can be eliminated from searching.

Proof of correctness. At initialization of COMPUTEDISTANCE,
D[S, S̃] are set to non-infinity values only for pairs of paths start-
ing from the same state (line 3). This means that D[S, S̃] properly
reflect the distances of paths at initial states. In the main loop,
the algorithm traverses every transition of the trellis and updates
the state-distances. By Lemma 1, the macro UPDATEDISTANCE
will discard paths corresponding to greater distance D[S, S̃] and
keep the ones corresponding to the shortest distance so far (line 9).
Therefore, no closest pairs are eliminated by the algorithm.

To see that the algorithm terminates, we show that there exists
a time such that D[S, S̃] ≥ d∞ for all state pairs. It is enough
to show that D[S, S̃] are increasing while d∞ is decreasing. The
former is correct because evolving paths always contain transitions
that results in positive increment in distance. The latter is due to
the update in UPDATEDISTANCE. This concludes the proof.
Computational Complexity. The time complexity g(t) of COM-
PUTEDISTANCE depends on the length L of paths where the free
distance is found. We estimate g(t) in the worst case as follows.
First, since UPDATEDISTANCE requires a constant number of oper-
ations, we judge the time complexity in terms of number of calls to
UPDATEDISTANCE. The initialization of D[S, S̃] requires 2v+2k

updates (line 3–4). At each iteration of time i in the main loop (line
5–11), the number of updates is at most 22v+2k. Therefore, the
worst-case complexity of COMPUTEDISTANCE is g(t) = 2v+2k +

22v+2kL = O(22(v+k)L). In our experimental search results, we
observe that the value of L can be bounded by L ≤ 3v for any
code. The running time of the algorithm on a 3GHz CPU desk-
top computer is less than 2ms, which is significantly faster than the
naive approach that compares all pairs of paths.

4.3 Search results
In this section, we list the GTCM codes found by our random-

ization approach (Tables 1 to 3), and discuss their performance in
comparison with traditional uniform TCM codes, as well as with a
full search approach. The lists are compiled for codes of constraint
length up to v = 10 and for each pair of original modulationK and
target coded modulation N in {BPSK, QPSK, 8-PSK, 16-QAM,
64-QAM}. We note that previous work [45] discovered codes for
only 1 bit constellation expansion. The asymptotic coding gain β is
measured in dB, and the generator matrixG is presented in the stan-
dard octal form adopted from [9, 29]. Our symbol mapping of m-
PSK constellations is p(s) = ej2πs/m, where s = 0 . . .m−1 is the
transmitted symbol, j =

√
−1. For square m-QAM constellations,

our mapping is p(s) = (x0 +sL∆m)+j(y0 +sH∆m), where ∆m

is the minimum separation in m-QAM, (x0, y0) are coordinates of
the zero symbol (s = 0) located at the bottom-left corner of the
constellation, and sL = s mod (

√
m), sH = (s − sL)/

√
m cor-

respond to low-order and high-order bits of s. We note that (1) for
some cases of short constraint length, there are no good codes with
positive boosting gain; (2) our code search algorithm is indepen-
dent of symbol mapping, thus can be used to find good generalized
TCM codes for any constellation required by the application.
Comparison with uniform codes search. As an example shown
in Table 2 for QPSK → 8-PSK, we achieve better codes than the
ones in [45] for constraint lengths v = 6, 8, 10, which confirms the
intuition that better codes can be discovered if the uniform mapping
property of the set partitioning rules is relaxed.
Comparison with full search. To verify that the codes discovered
using our randomization techniques are actually the best for each
category, we also perform a full search for some “small” tuples1

(K,N , v) and compare the results with codes found by RANDOM-

1Larger values of K,N or v make the full search intractable.



BPSK→ QPSK BPSK→ 8-PSK BPSK→ 16-QAM BPSK→ 64-QAM
v β G v β G v β G v β G

1 1.76 (3 1) 2 3.72 (5 2 4) 3 3.42 (17 4 5 10) 5 3.94 (63 10 40 47 4 2)
2 3.98 (7 2) 3 4.77 (10 2 17) 4 4.15 (33 10 27 2) 6 4.63 (117 10 40 55 104 100)
3 4.77 (13 4) 4 5.36 (31 4 2) 4 4.15 (33 10 27 2) 6 4.63 (117 10 40 55 104 100)
4 5.44 (35 4) 5 6.02 (10 2 71) 5 5.05 (67 10 55 4) 7 4.91 (227 4 60 371 44 210)
5 6.02 (64 33) 6 6.53 (107 20 12) 6 5.31 (31 100 167 2) 8 5.17 (573 12 52 745 100 362)
6 6.99 (135 56) 7 6.99 (251 102 4) 7 5.8 (212 20 327 40) 9 5.35 (1747 16 344 1277 60 10)
7 6.99 (374 147) 8 7.24 (661 102 30) 8 6.13 (725 14 757 200) 10 5.61 (2473 12 3436 3341 62 6)
8 7.40 (457 142) 9 7.63 (1715 336 400) 9 6.33 (1453 346 1137 30)
9 7.78 (1312 665) 10 7.78 (3575 1400 14) 10 6.63 (2653 16 3103 774)
10 8.45 (2175 1256)

Table 1: BPSK→ QPSK/8-PSK/16-QAM/64-QAM TCM codes.

QPSK→ 8-PSK QPSK→ 16-QAM QPSK→ 64-QAM
v β G v β G v β G

1 1.12 (3 2 1) (1 0 0) 2 2.55 (3 0 1 1) (1 2 2 1) 4 3.01 (1 0 2 3 0 1) (12 4 6 1 6 6)
2 3.01 (1 5 2) (1 0 0) 3 3.42 (5 2 0 6) (1 0 3 0) 5 3.41 (5 0 2 1 0 4) (12 4 4 15 2 10)
3 3.6 (1 4 2) (2 1 0) 4 3.8 (7 2 2 7) (2 0 5 0) 6 3.68 (1 0 2 3 0 0) (75 30 76 72 2 40)
4 4.13 (13 10 6) (3 1 0) 5 4.15 (1 2 3 0) (37 14 10 2) 7 3.94 (5 0 0 3 1 0) (66 44 20 71 26 6)
5 4.59 (1 4 0) (13 17 4) 6 4.47 (7 16 13 1) (11 16 12 1) 8 4.1 (61 54 34 46 32 34) (15 7 6 3 4 0)
6 5.01 (20 1 12) (3 4 0) 7 5.05 (17 0 4 0) (2 5 25 12) 9 4.26 (12 2 4 7 0 4) (73 62 6 110 16 24)
7 5.01 (7 2 0) (30 75 10) 8 5.05 (10 24 35 12) (25 12 3 15) 10 4.63 (220 46 140 231 102 330) (17 0 4 7 2 12)
8 5.75 (1 6 0) (134 165 42) 9 5.56 (10 24 35 12) (25 12 3 15)
9 5.75 (311 250 122) (6 1 0) 10 5.56 (116 10 27 70) (23 30 31 5)

10 6.02 (763 227 376) (7 6 0)

Table 2: QPSK→ 8-PSK/16-QAM/64-QAM TCM codes.

K N Tfull(s) Trandom(s)

BPSK QPSK 1 ≈ 0
BPSK 8-PSK 4 ≈ 0
BPSK 16-QAM 263 15
QPSK 8-PSK 57 44
QPSK 16-QAM 7101 54

Table 4: Running time comparison for searching codes of constraint length
v = 5: random search is significantly faster than full search.

CODESEARCH. As we conjectured, the full search does not find
any code better than RANDOMCODESEARCH. Yet, RANDOM-
CODESEARCH is extremely fast (cf. Table 4). The search results
indicates that good codes are distributed randomly in the search
space, thus randomized searching is a viable approach, and espe-
cially useful for large constraint length and high-order modulations.
Asymptotic coding gain. The search results show that with a large
enough constraint length there are codes such that in addition to
modulation hiding, the resiliency of the system can be boosted up.
For example, concealing BPSK in QPSK is about 8.5dB more ro-
bust than uncoded BPSK systems.

5. CRYPTOGRAPHIC INTERLEAVING
While encoding the data with the highest-order constellation can

hide the modulation, information about the trellis codes still leaks.
A powerful adversary can attempt to decode the received stream
of samples with all possible codes (which are publicly known) in
parallel. The attacker can then infer the rate from the code that has
the highest likelihood (i.e., lowest errors). It is necessary to prevent
the adversary from being able to try the decoding. Our key idea
is to randomize the transitions between the coded symbols. How-
ever, we note that naive randomization does not work. For instance,
simply applying conventional encryption algorithms on the coded
symbols (post-GTCM) will significantly reduce the system perfor-
mance, as an error occurring during the transmission can spread
out to many errors after decryption (by definition of a good encryp-
tion algorithm), which would exceed the code’s error correcting
capability. We therefore propose “Cryptographic Interleaving” as
a solution for the code concealing problem. While cryptographic
interleaving has been proposed to alleviate the impact of malicious
jamming [28], its use for concealing code information, as far as we
are aware of, is first identified in this work. Based on cryptographic
functions, we design an efficient mechanism to permute the order
of GTCM-coded baseband symbols without changing their values.

Crypto-Interleaving Process: In order to prevent an adversary
from distinguishing between sequences encoded by different codes,
we require: (1) the transmitted symbols should be indistinguishable
from a sequence produced by a random code, (2) symbols belong-
ing to different packets are permuted differently, and (3) the user
identity is not revealed. We assume a shared key between the trans-
mitter and receiver, which will be used as the seed to generate a
secret random interleaving function. For convenience, we assume
that the coded symbols produced by the GTCM Encoder can be
divided into multiple blocks, each has m symbols, and each frame
contains b blocks. A block is identified by the tuple (K, s, i), where
K is the shared secret belonging to the communication session, s is
the frame number, and i denotes the block index within the frame.

Let’s consider a pool ofN generated interleaving functions P =
{f0 . . . , fN−1}, whereN is the security parameter, and each inter-
leaving function fn : I → I , I = {0, . . . ,m−1}, n ∈ {0, . . . N−
1} is an invertible index-mapping of symbols within a block. The
permutation of symbols in a block (K, s, i) is performed in two
steps. First, an interleaving function f = fn is selected from the
pool P by n = hK(s|i) mod N , where h is a key-hashed pseudo-
random function (e.g., truncated HMAC-SHA3). Then, the symbol
sequence (y0, . . . , ym−1) is permuted to (yf−1(0), . . . , yf−1(m−1)).

Generating Crypto-Interleaving Functions: The efficiency of
the crypto-interleaving process depends on the computation of the
permutation. While a naive solution can precompute the pool of
index-mapping, it does not scale with the block size. Moreover, sig-
nificant memory is required for the precomputation. In our CBM
system, we propose an efficient method for generating the inter-
leaving functions. Our technique assumes that the number of sym-
bols per block,m, is a prime. We note that while this constraint can
be easily overcome to support various frame size, e.g., by padding,
it has the side effect of preventing length-based attacks, which ex-
ploit the observations of different frame size to infer the code in-
formation. We define the following linear interleaving functions:
fA,B(x) = Ax + B mod m, where A ∈ {1 . .m − 1}, B ∈
{0 . .m − 1}. It is easy to see that any pair (A,B) corresponds to
a bijective function IA,B(x) with respect to x; therefore, fA,B(x)
is a proper interleaving function (i.e., invertible). The interleaving
process is carried out by first generating the coefficientsA,B based
on the block identifier (K, s, i) by

A = (hK(|s|i|0) mod (m− 1)) + 1, B = hK(s|i|1) mod m.



8-PSK→ 16-QAM 8-PSK→ 64-QAM 16-QAM→ 64-QAM
v β G v β G v β G

1 3.11 (1 3 0 1) (0 0 1 0) (1 0 1 0) 3 4.15 (5 1 7 5 3 2) (2 3 3 1 2 0) (1 0 0 0 0 0) 2 3.31 (0 0 1 2 3 0) (1 3 1 1 3 2) (1 0 0 1 0 0) (1 0 0 0 0 0)
2 4.36 (3 3 2 3) (1 0 3 1) (1 0 0 0) 4 4.66 (0 14 1 0 15 4) (2 0 0 1 1 0) (1 0 0 1 0 0) 3 3.31 (1 2 1 1 3 2) (0 3 0 1 0 2) (2 0 1 2 3 2) (0 0 0 1 0 0)
3 5.33 (3 5 1 7) (0 1 3 1) (1 0 1 0) 5 5.12 (37 21 13 24 35 4) (3 1 0 1 0 0) (1 0 0 1 0 0) 4 4.18 (0 5 6 11 10 1) (1 2 0 0 3 0) (1 0 0 1 0 0) (0 0 0 1 0 0)
4 6.12 (5 6 6 4) (4 1 2 3) (1 0 1 0) 6 5.53 (71 75 36 70 53 12) (2 2 0 1 2 0) (1 0 0 1 0 0) 5 4.56 (10 3 4 17 24 14) (1 2 1 2 3 0) (0 0 0 1 0 0) (1 0 0 1 0 0)
5 6.12 (5 4 2 2) (0 3 7 3) (2 0 1 0) 7 5.73 (6 47 4 10 27 12) (3 2 0 1 2 0) (2 2 0 3 2 0) 6 4.91 (63 57 30 12 14 32) (0 2 1 1 3 0) (0 0 0 1 0 0) (1 0 0 0 0 0)
6 6.79 (16 3 6 7) (16 17 13 13) (1 0 1 0) 8 5.91 (124 157 6 270 254 172) (3 0 0 0 0 2) (1 0 0 1 0 1) 7 5.23 (10 3 4 17 24 14) (11 16 5 12 17 14) (0 0 0 1 0 0) (1 0 0 1 0 0)
7 7.37 (23 17 11 17) (2 16 15 10) (1 0 1 0) 9 6.26 (26 21 300 303 272 1) (5 3 0 1 2 0) (1 0 0 1 0 0) 8 5.53 (24 0 15 26 23 0) (31 37 15 5 27 26) (1 0 0 1 0 0) (1 0 0 0 0 0)
8 7.37 (21 20 15 16) (15 5 17 3) (1 0 2 0) 10 6.42 (471 475 236 670 653 12) (6 6 0 1 2 0) (1 0 0 1 0 0) 9 5.81 (73 177 42 123 25 55) (10 7 4 2 12 1) (1 0 0 1 0 0) (1 0 0 0 0 0)
9 7.37 (77 336 10 332) (2 1 5 1) (1 0 1 0) 10 5.81 (36 737 302 641 151 317) (4 7 2 6 6 1) (1 0 0 1 0 0) (1 0 0 0 0 0)
10 7.37 (15 35 33 5) (13 16 10 15) (16 10 0 15)

Table 3: 8-PSK→ 16-QAM/64-QAM TCM codes.

The interleaving function f is selected as f = fA,B . The symbol
sequence {y0, . . . , ym−1} is accordingly permuted to {yf−1(0),
. . . , yf−1(m−1)}.
Header Format and Encoding: Since the interleaving process-
ing on the coded symbols of the user data involves using not only
the secret key K, but also the packet number s and block index i,
the transmitter needs to embed this information along with the rate
information into the transmitted frame.

P MCS SEQ ... R
symbol block 1 symbol block 2

........

crypto.interleave
encrypted + robust

modulation

At the packet beginning, the preamble P assists with the frame de-
tection and synchronization at the receiver. The MCS field identi-
fies the modulation and coding scheme for the payload. The packet
number required for cryptographic interleaving is specified by SEQ.
The R field stores a random number generated per packet by the
transmitter. The frame header is encrypted byEK(MCS |SEQ | . . . |R)
using AES encryption E with the shared secret key K. The header
is encoded by a public robust coding scheme and along with the
preamble is modulated by a public robust modulation.

Security: Since the interleaving functions are generated using a
key-hashed pseudorandom function h with secret key K applied
on the packet number s and block index i, the coefficientsA andB
are indistinguishable [3], thus the interleaved symbol sequences are
also indistinguishable.The header is also semantically secure due to
the use of random R with AES encryption.

6. SYNCHRONIZATION MECHANISMS
As we will show in Section 7, the simulation results exhibit a

significant gain in system robustness while the rate information
is concealed from the adversary. However, when evaluating our
CBM scheme over a real radio system with a standard set of syn-
chronization mechanisms, we experience a substantial performance
loss. Chief among the mechanisms impacted by the imperfections
of the radio front end are the frequency and phase correction. At
low SNR, such imperfections impact high order modulation much
more severely than low order modulation. As in many other com-
munication systems, synchronization with transmitter is required at
the receiver in order to decode the data. Traditional synchroniza-
tion techniques for symbol timing, frequency and phase recovery
are realized by means of phase locked loop (PLL) circuits [22, 40].
However, in the context of our work, where the channel SNR can
be very low due to adversarial interference, conventional methods
perform poorly, making synchronization mechanisms bottleneck of
the system. To make our CBM system robust, we developed a set
of new efficient digital signal processing algorithms for coarse and
fine frequency and phase offset correction relying on an integrated
process of estimations based on preambles and iterative soft de-
coding. Our algorithms also exploit the fact that today’s radio re-
ceivers can have ample memory to store a whole packet, and many

standards already require multi-pass iterative soft-decoding, e.g.,
LDPC decoding in DVB-S2, IEEE 802.11n/ac. In Section 7, we
show that our techniques achieve significantly better performance
than traditional solutions. It is also worth mentioning that the im-
pact of asynchronization attacks, which focus jamming energy on
the beginning of each frame to destroy the synchronization infor-
mation, is also alleviated in our system by using a long preamble
with good correlation properties (cf., Section 6.2).

6.1 Overview of Transmitter and Receiver
We designed and implemented our transmitter and receiver on

the USRP N210 SDR [11] using GNU Radio [6]. The transmit and
receive chains of our CBM system are depicted in Figure 5.
Transmitter: The key components of the transmitter are the GTCM
Encoder and Cryptographic Interleaving blocks. On transmission
of a packet, the binary payload is encoded with an appropriate trel-
lis code and target modulation (Tables 1 to 3) by the GTCM En-
coder to produce coded complex symbols. The sequence of sym-
bols is then permuted using the Cryptographic Interleaving block
according to the shared key between the two parties. The packet
modulating process is completed by prepending the payload with
the header and preamble. Finally, it is resampled by the root-raised
cosine TX filter before transmission by the RF front end.
Receiver: As in many communication systems, our receiver first
obtains the sequence of symbols from the RF front end after they
are preprocessed with the Automatic Gain Control (AGC) and sym-
bol timing synchronizer to stabilize the attenuated input signal and
lock to the receiver sampling clock.

The key to improving the robustness of our CBM system to over-
come the RF front end imperfections consists of improving the ac-
curacy of frequency offset and phase correction. Our mechanisms
start with the Frame Synchronizer. First, we estimate the coarse fre-
quency offset based on the preamble of each received packet. The
header and payload symbols are then corrected with the estimates.
To improve the estimation accuracy, we employ a phase locked
loop (PLL) combined with a soft pre-decoding of the packet. This
integration results into a 2-pass decoding process. The feedback
from the soft pre-decoding re-encoding loop is applied to the PLL
to improve the correction. Finally, the corrected sequence passes
through the Cryptographic Deinterleaver and GTCM Decoder to
recover the original data. In the following subsections, we discuss
in details our efficient algorithms of those mechanisms.

6.2 Frame Synchronization
The Frame Synchronizer uses the preamble for both frame detec-

tion and frequency offset estimation. The principle of our synchro-
nization mechanisms is to analyze the phase-difference sequence
of the received symbols. While our technique for frequency off-
set estimation partly shares similarity with previous work [24], we
improve the estimation by averaging over multiple packets. More
importantly, we can identify the frame and estimate the phase off-
set at the same time, and fine-tune the estimation with feedback
from the soft decoding process. We consider the received symbol



Figure 5: Transmitter and Receiver block diagram

yi = xie
j(θi+φ) + wi at discrete sampling time i, after the signal

has been normalized by the AGC, and the symbol sampling period
has been synchronized with the receiver clock. The transmitted
symbol xi is distorted by the unknown frequency offset θ, phase
offset φ due to the mismatched clock between the transmitter and
receiver, and interference wi. The unknown parameters θ and φ
are considered as constants during a short period of preamble, and
zero-mean variables during the packet transmission period.
Frame Detection: Let {p1, . . . , pL} denote the complex valued
preamble, and ∆pi = pi+1p

∗
i be the phase-difference indicator

between two adjacent preamble symbols. The transmitted stream
consists of multiple frames: {xi} = {p1, . . . , pL, d1,1, . . . , d1,m,
. . . , p1, . . . , pL, ds,1, . . . , ds,m, . . .}, where ds,j denotes the s-th
frame’s j-th data symbol. To detect the start of each transmitted
frame in the received signal, we first compute the phase-difference
sequence of received symbols ∆yi = yi+1y

∗
i = xi+1x

∗
i e
jθ + zi,

where zi represents the phase-difference with interference. We then
match {∆yi} with {∆pi}, i.e., computing the cross-correlation

C =

L−1∑
i=1

∆yi∆p
∗
i =

L−1∑
i=1

xi+1x
∗
i∆p

∗
i e
jθ +

L−1∑
i=1

zi∆p
∗
i .

We select the preamble as a maximum length sequence such that∑
pix
∗
i = L only if ∀i, xi = pi. When the preamble is present in

the received signal, i.e., xi = pi, we obtainC ≈ (
∑L−1
i |∆pi|2)ejθ .

When it is not present, C becomes small due to uncorrelation be-
tween {pi} and {yi}. Our experimental evaluation suggests that the
frame be best detected, if |C| ≥ α

∑L−1
i=1 |∆pi|

2 with α = 0.8.
Frequency Offset Estimation: Once the frame is detected, the fre-
quency offset is immediately estimated from the cross-correlation:
θ̃ = ∠C ≈ θ. Under low SNR conditions, θ̃ may not closely ap-
proximate the actual θ. Instead, we compute the average θ̂ = E[θ̃]

over multiple packets, and use θ̂ for succeeding processing.
Phase Offset Estimation: Knowing the frequency offset θ̂, we es-
timate the phase offset by correcting the received preamble yi with
θ̂: ŷi = yie

−jθ̂i, and computing the cross-correlation with the ex-
pected preamble pi as: A =

∑L
i=1 ŷip

∗
i ≈

∑L
i=1 pie

j(θ−θ̂)i+φp∗i ≈∑L
i=1 |pi|

2ejφ. The phase offset φ̂ is estimated as φ̂ = ∠A ≈ φ.

6.3 Phase Tracking
While preamble based frequency and phase offset estimation can

provide accurate estimates at the frame beginning, the environment
variations make these initial estimates deviated from the actual val-
ues over time, especially when reaching the end of the frame. To
over come this issue, standard phase tracking mechanisms usually

deploy decision-aided methods, which rely on the distance between
the received symbols and the reference constellation points. BPSK
modulation has less symbol errors and therefore the phase tracking
works quite well. For higher order modulations, the density of the
constellation makes the estimation of the phase errors harder at low
SNR, as incorrect constellation points are guessed more frequently.
These errors accumulate and end up exceeding the error correction
capability of the GTCM code. This partially explains for low SNR
scenarios why many current standards still rely on low order modu-
lations instead of coded high order modulations. In pilot-aided syn-
chronization systems such as OFDM, low SNR can result in loss of
orthogonality of the carriers, preventing the receiver to recover the
signal’s phase and amplitude.

To improve the resiliency of our system, we first add a PLL logic
in the Frame Synchronizer to keep track of minor changes of the
frequency and phase. The loop bandwidth of the PLL is set to a
reasonably small value in order to be sufficient to track the small
variations, but not to be disturbed by interference.

The key technique to improve the estimation accuracy, consists
of a pre-decoding and re-encoding mechanism, in which we first
decode the phase-corrected symbols (by running them one first time
through the Cryptographic Deinterleaver and GTCM Decoder), then
re-encode the resulted binary data back to complex symbols. Now
by comparing the re-encoded symbols (which have few symbol er-
rors) and the previously received signal, we can rerun the phase
tracking mechanism overcoming synchronization mistakes of the
first pass. During the second-pass phase tracking, we carefully
skip all the symbols for which there is a discrepancy between what
was received and what was decoded. We observe that this signif-
icantly reduced the phase tracking errors. This frequency/phase
corrected sequence of symbols is then sent to the Cryptographic
Deinterleaver and GTCM Decoder for the final decoding.

7. EVALUATION
We report on the evaluation of our CBM system with both sim-

ulation results in MatLab and experimental results in our USRP
N210 SDR testbed. We use the bit error rate (BER) and normalized
signal-to-noise ratio Eb/N0 as metrics for the system robustness.

7.1 Simulation Results
First, we assess the robustness of our codes found in Section 4 by

simulation in MatLab to avoid impact of imperfect RF front ends
such as frequency offset or phase noise. We simulate the transmis-
sion of packets encoded by the best TCM codes (constraint length
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Figure 6: Simulation results: Resiliency Boost of Coded over Uncoded Modulations
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Figure 7: Performance of CBM’s Synchronization and Cryptographic Inter-
leaving mechanisms.

v = 10) for each pair of original modulation K and target modula-
tionN . The simulated noise is additive white Gaussian.

At BER = 10−6, Figure 6a shows that, in addition to hiding
the rate, our codes provide up to 7dB gain over uncoded BPSK
modulation when concealing it into any higher-order modulation.
Compared to the modulation level encryption technique proposed
in recent related work [41] whose performance degrades by about
1.2dB for hiding BPSK modulation in 64-QAM modulation, we
gain up to 8.2dB. In Figures 6b to 6d, we also achieve significant
improvements when concealing QPSK, 8-PSK, and 16-QAM to
higher-order modulations. It can be observed that when 64-QAM
modulation is used for rate concealing, we obtain at least 5dB re-
siliency over any original uncoded modulation.

7.2 Experimental Results
As noted by previous work [45], the frequency offset and phase

noise, due to channel variations and imperfect RF front ends, can
severely reduce the decodability of TCM codes. To assess our sys-
tem in realistic conditions, we implemented our solution in our
USRP N210 SDR testbed to evaluate our system performance. The
setup consists of one transmitter, one receiver, and one jammer. The
experiments were both carried through an RF cable and a combiner
adding the TX signal to the jammer signal (for a precise control of
the SNR), and over the air as a second check.
Impact of Synchronization Mechanisms: As discussed in Sec-
tion 6, the low SNR conditions prevent traditional synchronization
techniques from performing well. Figure 7a shows the performance
comparison between two systems: (1) one uses the standard syn-
chronization techniques with band-edge filter combined with phase
locked loop circuits [21, 22], (2) CBM receiver with our synchro-
nization mechanisms. We observe that the coded modulation with
standard synchronization techniques performs worse than the un-
coded modulation due to low SNR. With our 2-pass synchroniza-
tion, the accuracy of frequency and phase offset correction is much
improved, resulting in the resiliency boost of the system.
Effect of Interleaving: While the main goal of Cryptographic
Interleaving is to conceal the underlying modulations and codes
from the adversary, it has a side effect of increasing the system ro-

bustness by scattering the burst errors over the whole block. To
show the contributions of Cryptographic Interleaving in terms of
resiliency boost, we compare the performance of our CBM system
with and without interleaving. Figure 7b shows that interleaving in-
creases the performance gain by roughly 2dB. We note that without
our synchronization mechanism, the interleaving does not help.
CBM vs. Uncoded: Now we evaluate our CBM system in com-
parison with the uncoded system. We conduct the experiments for
concealing any modulation K under any higher-order modulation
N from the set of 5 different supported modulations. The results
are shown in Figures 8a to 8d. First, we observe that in the real
world environments, our system resiliency drops roughly 4 − 6dB
due to the unpleasant frequency and phase offset. Yet, comparing
to the uncoded system, we obtain up to 4dB gain in resiliency while
simultaneously concealing the rate information.

8. CONCLUSION AND DISCUSSION
We proposed a solution to the problem of hiding the rate of a

communication while simultaneously increasing its robustness to
interference. To the best of our knowledge, this is the first system
that can achieve this goal. Our approach relies on algorithms for
discovering new General TCM codes, and a cryptographic inter-
leaving scheme. These algorithms include new efficient techniques
to determine the free distance of non-uniform TCM codes. We ex-
plicitly derived 85 codes for upgrading any modulation in {BPSK,
QPSK, 8-PSK, 16-QAM, 64-QAM} into any higher order modu-
lation. These are the best codes among uniform and non-uniform
TCM codes specifically designed for coded modulation and that
conceal the underlying rate information. The GTCM codes and
Crypto-Interleaving are complemented by new frequency correc-
tion and phase tracking techniques. We demonstrate analytically,
and through simulations and experimentation, that beyond achiev-
ing rate-hiding, an order of magnitude improvement of energy ef-
ficiency is achieved in comparison with recent related work. The
proposed solution is easily deployable in software defined radios.
Our implementation source code is available at [47]. An interest-
ing avenue of future research is to explore generalizations of turbo
and LDPC codes to higher order modulations with an integrated
frequency and phase correction mechanism.
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