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ABSTRACT
Drones are increasingly associated with incidents disturbing air

traffic at airports, invading privacy, and even terrorism. Wireless

Direction of Arrival (DoA) techniques, such as the MUSIC algo-

rithm, can localize drones, but deploying a system that systemati-

cally localizes RF emissions can lead to intentional or unintentional

(e.g., if compromised) abuse. Multi-Party Computation (MPC) pro-

vides a solution for controlled computation of the elevation of RF

emissions, only revealing estimates when some conditions are met,

such as when the elevation exceeds a specified threshold. How-

ever, we show that a straightforward implementation of MUSIC,
which relies on costly computation of complex matrix operations

such as eigendecomposition, in state of the art MPC frameworks

is extremely inefficient requiring over 20 seconds to achieve the

weakest security guarantees. In this work, we develop a set of MPC

optimizations and extensions of MUSIC. We extensively evaluate

our techniques in several MPC protocols achieving a speedup of

300-500 times depending on the security model and specific tech-

nique used. For instance a Malicious Shamir execution providing

security against malicious adversaries enables 536 DoA estimations

per second, making it practical for use in real-world setups.
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• Security and privacy→ Domain-specific security and pri-
vacy architectures; Wireless security; Privacy protections.
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1 INTRODUCTION
Localization of RF emissions is an increasingly useful primitive

with many applications. Current applications include pinpointing

the location of drone intrusions or locating and tracking the source

of malicious emissions (e.g, a jammer). Especially drone intrusions

have been at the center of a multitude of security incidents in recent
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years, with a dramatic increase in airport incidents [42], and the po-

tential of terrorist attacks [1, 50]. With low cost commercial drones

causing billion dollar damages [51] and being used to smuggle il-

legal substances and equipment [29], authorities are trying to find

ways to monitor, control and even take down these targets [30].

As a first step to control drone intrusions, the US DHS/FAA has

introduced new regulations, e.g., requiring permission authoriza-

tions using mobile apps such as B4UFLY [20]. As such requests

are increasing in frequency, in some areas such authorizations are

automatically processed and approvals are conditioned on respect-

ing altitude limits. The incorporation of tracking technology into

drones is also being considered [52], and the European Union Avia-

tion Safety Agency (EASA) passed similar regulations for drones [3].

However, locating intrusion violations from non-compliant drones

remains a challenge. While agencies such as DHS, EASA, FAA,

FCC have installed regulations, there exist no mechanisms to en-

force them. In practice, localization and tracking might need to

be triggered in real time or a-posteriori based on proximity to a

sensitive location (airports) or observations of other events such

as interference or suspicious activity from a Wi-Fi MAC address.

Various techniques have been developed over the last few decades

to automatically locate RF emissions, from active radars [55], to

algorithms for multi-antenna systems such as MUSIC [48], ES-

PRIT [43], and Matrix Pencil [28]. Fundamentally, these techniques

estimate the Direction of Arrival (DoA) of RF emissions by ana-

lyzing and correlating signals received by multiple antennas with

a computer. Today, techniques are fairly accurate and reasonably

efficient for a small number of emissions [2, 14]. Recent years have

also seen the emergence of several commercial systems to locate

drones such as Fortem TrueView Radar [23] or DJI Aeroscope [18].

However, the ability of a single system to permanently eavesdrop

and analyze the wireless spectrum and track all RF emissions raises

concerns and violates fundamental privacy laws. A compromise or

intentional misuse of such systems could result in an indiscriminate

tracking of users. Consequently, there is a need for systems which

can collaboratively and in a privacy-preserving way track RF emis-

sions, but only when they are deemed of interest. Such emissions

could belong to a jammer, or a drone flying in a restricted zone or

altitude without authorization. Locating and tracking RF emissions

should only be possible when specific rules are violated and should

not allow indiscriminately tracking of users.

A conceptually straightforward way to achieve privacy preserv-

ing localization consists of evaluating a localization algorithm using

secure Multi-party Computation (MPC). Essentially, antennas send

secret shared signals to a group of parties such that no single party

has access to plain signals at any time. As a group, these parties

are trusted to not collaborate, intentionally or unintentionally (e.g.,

when a subset is compromised) on trying to compute anything but

the MPC-specified functionality. Jointly, the parties then analyze

the signals working only on the secret shared data and output a
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Table 1: Total time (s) for MPC elevation angle estimation of a single emission (3 parties) over 10ms latency network

Malic. Hon. Standard This paper Speed up
Protocol Advers. Maj. MUSIC Opt-MUSIC SELEST ×
MASCOT ✓ N 24 2.52 0.08 300
Lowgear ✓ N 24 2.52 0.08 300
Cowgear ✓ N 24 2.52 0.08 300
Semi - N 23.9 2.47 0.05 478
Hemi - N 23.9 2.47 0.05 478

Mal-Shamir ✓ Y 25.5 2.63 0.05 510
Sy-Shamir ✓ Y 43.6 4.5 0.16 272
Ps-Rep ✓ Y 25.6 2.67 0.08 320
Shamir - Y 25.4 2.62 0.05 508
Rep3 - Y 25.3 2.61 0.05 506

function of the emission source location (e.g., elevation estimate).

However, as we show in Table 1, the implementation of an existing

localization algorithm (such asMUSIC) in MPC frameworks results

in exorbitant computation and communication costs.

In this work, we develop a DoA technique amenable to efficient

optimization within several MPC frameworks, and in particular

secure against malicious parties performing the analysis. We show

that spatio-temporal cropping of RF samples results in a covari-

ance matrix (of antenna samples) that has a single non-negligible

eigenvalue. We also show that computing the pseudo-spectrum

by MUSIC becomes equivalent to projecting steering vectors on

a random combination of the covariance matrix. This technique

is significantly more efficient than the use of a 𝑄𝑅 algorithm for

eigenvalue and eigenvector computation as in MUSIC. We imple-

ment our technique within the MP-SPDZ framework [31], further

optimizing to reduce complexity by, adjusting the norm, exploiting

parallelism, avoiding divisions, square roots, comparisons. We eval-

uate our resulting algorithm (along our optimizations ofMUSIC)
in all common security models with arithmetic MPC protocols

including MASCOT [32] and Malicious Shamir [13]. We perform

extensive benchmarks in terms of computation and communication

cost for both online and offline operations. We discuss the various

trade-offs such as communication cost vs. computation, offline vs.

online computation, and trust assumptions. In particular, we show

that it is possible to process up to 775 emissions per second in the

passive adversary setting, and up to 586 emissions in the active

adversary setting with sufficient offline-computed Beaver triples.

We apply for ACMWiSec’s replicability label. Our source code

can be found here [54]. The technical highlights of this paper are:

(1) SELEST : A practical system for secure, privacy-preserving

DoA estimation on top of MPC.

(2) An implementation and thorough performance evaluation

of SELEST using arithmetic and binary circuits in two promi-

nentMPC frameworks (MP-SPDZ [31] and EMP-Toolkit [56]),

capable of elevation angle estimation with high rates and

satisfying real-time requirements.

(3) An efficient implementation of arithmetic for complex num-

bers in MP-SPDZ and EMP-Toolkit.

(4) MP-SPDZ libraries for the QR Algorithm over complex num-

bers, together with array and matrix multiplications.

2 BACKGROUND
2.1 Basic Notation
Throughout the paper, we refer to matrices using uppercase bold

letters (A) and column vectors using lowercase bold letters (v). The
expectation of a random variable 𝑋 is denoted as E [𝑋 ], 𝑧 denotes
the complex conjugate of a complex number 𝑧, E∗ denotes the con-
jugate transpose of matrix E, and the nullspace of a matrix 𝑀 is

denoted by ker(𝑀). Furthermore, with [𝑥] we denote the complete

representation of a secret shared value 𝑥 in an MPC circuit, and

with [𝑥]𝑖 we denote the share of 𝑥 held by the party 𝑖 .

2.2 Direction of Arrival Estimation

Figure 1: The DoA estimation problem.

Assume an antenna array consisting of𝑁 elements (Figure 1).We

refer to incident signals or waveforms as the set of electromagnetic

fields 𝐹𝑖 created by distinct emissions that arrive on the antenna

at an angle 𝜙𝑖 . In this setup, the measured signal (𝐼/𝑄 sample, re-

ferred to as complex sample) on an antenna element is called the

antenna response and the vector of 𝑁 antenna responses caused by

an incident signal from angle 𝜙 is called steering vector, denoted as

𝜶 (𝜙). Intuitively, there is a phase difference between the observed

signals at two antennas due to the distance between them. The

steering vector describes the phase differences within the array

depending on its topology, and can be used to estimate the direction

of arrival: the azimuth and/or elevation angles with respect to the

antenna array orientation. Estimating the DoA has been a problem

of interest in wireless communications research for many years and

can be very challenging in practical applications [15, 21, 60, 61, 64].
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MUSIC Algorithm. Multiple Signal Classification (MUSIC) [48]
and its derivations is a set of popular high-resolution techniques for

DoA estimation that uses subspace separation. In a nutshell,MUSIC
analyzes the covariance within the received complex samples of

all antennas and maps highly correlated values to signals, and low

correlated values to noise. Due to the orthogonality between the

noise and signal subspaces, the DoA is computed as the angle that

minimizes the projection of the steering vector (triggered by the

signals) on the noise subspace. The pseudospectrum output is the

magnitude of this projection with respect to the angle 𝜃 . We provide

a more detailed description and discussion of MUSIC in Section 4.

2.3 Secure Multiparty Computation
Secure multiparty computation (MPC) [40] allows a set of 𝑛 parties

(𝑃1, . . . , 𝑃𝑛) to jointly compute output 𝑌 = 𝐹 (𝑥1, . . . , 𝑥𝑛) of any
function on their respective inputs (𝑥1, . . . , 𝑥𝑛) without revealing
more than what can be inferred from the output𝑌 . Essentially, MPC

emulates an ideal world where parties would send their inputs to a

trusted third party which computes the desired functionality and

sends the final output back to the parties.

As described in Sections 3 and 4, there exist several different

techniques for different settings of secure multiparty computation,

and in the following we informally summarize the intuition behind

one idea. Function 𝐹 is converted into a circuit representation, com-

prising of (Boolean or arithmetic) gates. Instead of evaluating the

circuit on their real inputs 𝑥𝑖 , parties distribute secret shares ([𝑥𝑖 ])
to other parties and evaluate the circuit’s gates on the shares [𝑥𝑖 ],
thus hiding parties’ inputs. The circuit is evaluated one gate at a

time until output [𝑌 ] is computed and revealed to all parties. Input

privacy follows from the fact that no single party 𝑃𝑖 is able to learn

anything about the inputs of other parties.

Security Models. MPC allows participants to jointly evaluate a

function even in the presence of corrupted parties. Corrupted parties
may be assumed under the control of an adversary trying to extract

information, affect the output or completely disrupt the computa-

tion. Various formal security definitions [12] have been proposed,

informal definitions to some of themost important properties follow.

Specific MPC protocols and techniques provide security guarantees

for combinations of these properties.

Privacy: No party must learn anything from the computation

other than what can be inferred from the output.

Correctness: Each party receives a correct output.

Guaranteed output delivery: The adversary may not obstruct the

honest parties from learning the output of the computation.

Fairness: Either all, or no parties, learn the output.

Abort: The adversary is allowed to learn the output and abort

the execution, before making it known to the honest parties.

In terms of adversarial behavior, a semi-honest, passive adversary
(honest-but-curious) follows the protocol, but may use any observed

messages from other parties to recover sensitive information. On

the other hand, a malicious (active) adversary may arbitrarily devi-

ate from the allowed protocol execution in order to affect security or

correctness. A covert adversary may potentially act like a malicious

adversary with a high probability of being caught, and penalized.

Figure 2: Private drone detection workflow

Arithmetic Operations in MPC. Since its introduction [10, 26, 62]

many differentMPC protocols have been proposed. The focus of this

work is the private DoA estimation evaluation using arithmetic cir-

cuits, although we briefly discuss the evaluation in Boolean circuits

as well in Section 5. The reasoning behind this is that arithmetic

circuits are significantly more efficient in evaluating arithmetic op-

erations such as addition and multiplication than Boolean circuits.

The computation domain of arithmetic circuits is usually compu-

tation modulo a large number: either prime (denoted Z𝑝 ), or power
of two (denoted Z

2
𝑘 ).

A secret sharing scheme allows a party to split a value 𝑥 into

shares [𝑥]𝑖 , where [𝑥]𝑖 is distributed to party 𝑃𝑖 . Without loss of

generality, we briefly illustrate an additive secret sharing mech-

anism between two parties. There, 𝑥 will be shared such that

[𝑥] = [𝑥]
1
+ [𝑥]

2
. To actually share its input 𝑥 , 𝑃1 randomly sam-

ples 𝑟 , sets their share to [𝑥]
1
= 𝑥 − 𝑟, sets [𝑥]

2
= 𝑟 , and sends [𝑥]

2

to 𝑃2. Informally, value 𝑥 is hidden by 𝑟 , and by adding their shares

the parties can reconstruct 𝑥 . We denote as [𝑥] the complete set of

shares that define the value 𝑥 , in this case: [𝑥] = {[𝑥]
1
, [𝑥]

2
}.

We stretch notation and write [𝑥] + [𝑦] to describe the addition

(resp. other operations) of values 𝑥 and 𝑦 based on their shares.

More specifically, by adding their shares [𝑥]𝑖 + [𝑦]𝑖 , 𝑃𝑖 obtains a
share [𝑥 + 𝑦]𝑖 of the sum 𝑥 + 𝑦. Note that the same does not hold

for local multiplication of shares. Instead, parties need to inter-

act and exchange further information for each multiplication (see

below) which introduces a significant communication overhead

in the evaluation of an MPC circuit. Interactivity, the number of

communication rounds relates to the multiplicative depth of the cir-

cuit. The communication complexity denotes the amount of data to
be exchanged between parties during the computation. Finally, a

sharing scheme defines a reconstruction mechanism that allows

the parties to combine the shares of a value they are holding in

order to learn the output. As local computations by each party are

highly efficient, the total runtime of securely evaluating a circuit

with MPC is dominated by network latency and throughput.

MPC using preprocessed data. Many MPC protocols take advan-

tage of an input independent offline phase to generate correlated
randomness to speed up computation in the subsequent online
phase. A typical example of such randomness are Beaver triples [9]

for multiplication. The idea is that a trusted third party prepares

random products [𝑧] = [𝑥] [𝑦] during the offline phase, which are

‘corrected’ into the desired product [𝑐] = [𝑎] [𝑏] during the online
phase by revealing 𝑑 = [𝑥] − [𝑎] and 𝑒 = [𝑦] − [𝑏]. Parties are now
able to compute the product using only local operations (additions,

multiplications by constant): [𝑐] = [𝑎] [𝑏] = [𝑧]−𝑒 · [𝑎]−𝑑 · [𝑏]−𝑑 ·𝑒.
Other examples of preprocessed data include random input gad-
gets [17], and random bits [16, 19, 41].
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3 PROBLEM STATEMENT
3.1 Problem description
In a traditional DoA estimation system consisting of one computer

processing the data collected by an 𝑁 -antenna array, this computer

alone can track all emissions unconditionally. Instead, we propose

a system of 𝑁 separate receivers, each equipped with a receiving

antenna, that forward received data to a set of remote servers, see
Figure 2. The servers then privately estimate the DoA using MPC

and reveal the output under a certain condition. In this setup, a

receiver describes a deployed receiver in the area of interest with

the ability to record data and forward them to a remote server. We

assume that receivers are properly time and phase synchronized

using standard techniques [6, 7, 36]. By server, MPC party or sim-

ply party we refer to a remote server participating in the MPC

evaluation of the detection. The setting is described in Outline 1.

We note twomajor advantages of this approach. First, the compu-

tationally intensiveMPC evaluation is performed on remote servers,

which allows for the affordable deployment of large numbers of

receivers. The computation can be run on the cloud, on demand,

or in real time. Second, the data received from all antennas are

never owned by a single entity in the clear, therefore protecting

the location of regular users from systematic tracking.

3.2 Technical Challenges
In the following, we identify several technical challenges arising

from both MUSIC and MPC.

MUSIC in Practice. Received data rates in practical wireless sys-

tems easily reach the order of millions of samples per second (e.g.,

monitoring 1MHz of spectrum results in 1 million complex samples

per second), and estimating the received data covariance matrix

and performing eigendecomposition is computationally highly de-

manding, even without MPC. Furthermore, there is the need for an

extensive angle search to find the angle that maximizes the DoA es-

timation function. Moreover, to identify the noise subspace,MUSIC
requires that the number of antennas is larger than the number

of incident signals in the air, therefore the number of incident sig-

nals must be known or precisely estimated, which on its own is a

difficult problem [22, 44, 58].

Secure computation overhead. A recent flurry of research on mak-

ingMPC practical has resulted inmultiple, ready-to-use open source

frameworks to securely implement functionalities [11, 32, 34, 46,

47, 56, 63]. Today, MPC is increasingly used in a wide range of

applications, including statistics [38], data analysis or end-to-end

encryption [49], but available frameworks are still limited in terms

of general usability. For example, there is no implementation that

supports efficient complex arithmetic, a vital requirement in wire-

less system analysis (and crucial for DoA). Moreover, apart from

communication overhead depending on specific MPC operations,

mathematical operations such as comparisons, trigonometric func-

tions or computing roots are converted to large, complex circuits

which compute approximate results. Internally, these operations

require fixed point arithmetic which is significantly more expensive

and numerically sensitive than integer arithmetic. For reference,

a single 32-bit fixed-point inverse utilizes 329 multiplications to

Outline 1 Secure DoA

Inputs: Received samples xj = {𝑥𝑖,1, . . . , 𝑥𝑖,𝐾 } for 𝐾 snapshots

Output: 𝑓 (𝜃 )
Functionality:
1: Receiver 𝑗 splits xj into additive shares and forwards

[
xj
]
𝑠
to

remote server (party) 𝑠 .

2: Servers perform DoA estimation in MPC.

3: return 𝑓 (𝜃 ), e.g.: output 𝑓 (𝜃 ) = 𝜃 if 𝜃 > 𝜃𝑡ℎ𝑟 , otherwise ⊥.

approximate the result.MUSIC includes a wide range of such op-

erations: fixed-point divisions, computing norms and square roots,

comparisons, as well as trigonometric and logarithmic functions.

MPC protocols leverage multiple computationally heavy tools

and cryptographic primitives, such as commitment schemes, zero

knowledge proofs, large field operations, oblivious transfer, and

more. Table 1 shows complete online execution times of MUSIC
with 4 input samples using various state-of-the-art MPC protocols.

An additional challenge of computing over encrypted data is effi-

ciently achieving the required fractional precision. Currently, many

MPC frameworks omit a floating point implementation completely

and rely on fixed-point arithmetic. Even though MP-SPDZ [31]

provides both options, our own MP-SPDZ benchmarks have found

fixed-point arithmetic both more efficient and better supported

than floating-point arithmetic. This, in turn, introduces limits in

the arithmetic range, resolution, and accuracy. Complex samples

from received emissions aggravate these limitations: their scalars

can vary a lot in magnitude based on the received signal strength

and phase, both within, and across executions. Furthermore, the

chosen bit-precision is an important factor in the performance of

the MPC evaluation, as achieving higher range and resolution re-

quires more computation and potentially larger field size. On the

other hand, operations like norms, squaring and dividing by very

small numbers are very susceptible to causing overflows.

Working on Isolated Emissions. The computational complexity of

DoA algorithms, amplified by the computation and communication

cost of MPC, make it clear that maintaining a practical, secure local-

ization system in a modern congested RF environment is impossible

without further optimization. However, processing one emission

at a time lowers the complexity and run time of the algorithm as

the number of antennas required is minimal, and fewer samples

are sufficient to estimate the covariance matrix [45]. The problem

arising in this scenario is the precise isolation of a few emission

samples from a stream of wideband collected data.

With the rapid growth of Machine Learning and Artificial In-

telligence in wireless communication systems, multiple tools have

emerged that allow for wireless emission classification. [8] propose

a tool for incremental learning of the surrounding RF environment

by classifying known emissions and detecting newly encountered

types of signals. Their evaluation shows real-time, high accuracy

signal classification in the 2.4 GHz and 5 GHz bands. Using such

tools, we can obtain samples that belong to exactly one signal and

our working assumption onward is an isolated emission, i.e., one

incident signal on the antenna array. Yet, Table 1 shows that even

with the single emission assumption the performance improvement

is not sufficient for a real time private detection system.

241



Selest: Secure Elevation Estimation of Drones Using Multi-Party Computation WiSec ’21, June 28–July 2, 2021, Abu Dhabi, United Arab Emirates

4 TECHNIQUES
Overview of our contributions. We propose a set of techniques for

secure DoA estimation using MPC. For this, we introduce new tech-

niques for MPC arithmetic over complex numbers in MP-SPDZ, an

MPC-optimized version of the original MUSIC algorithm, and our

novel extension ofMUSIC, dubbed SELEST . This extension features
optimized angle search, outperforming MUSIC in an MPC envi-

ronment at the cost of acceptable loss of precision. All techniques

have been both implemented and evaluated in relevant arithmetic-

circuit MPC protocols of the MP-SPDZ framework [31] as well

as in Yao’s GC [62]. For comparison, we have also implemented

SELEST in EMP-toolkit [56]. We first describe the basic techniques

and optimizations (parallelism and relevant arithmetic optimiza-

tions) and their application to MUSIC. We report that while these

optimizations result in over an order of magnitude improvement of

performance relative to the standardMUSIC (Table 1), they remain

impractical for real-time DoA computation. We then present our

extension of MUSIC along with a proof of correctness.

Parallel communication. A major bottleneck in the evaluation

of a circuit its multiplicative depth. In case of multiple indepen-

dent multiplications, parties’ interactions can be grouped, so the

data for all multiplications can essentially be exchanged in one

round of communication. Our complex arithmetic implementation

supports and extensively uses this optimization offered by the MP-

SPDZ compiler [32]. From now on, we will refer to it as parallel
communication, noting the difference from parallel executions.

Secure complex arithmetic for MPC. A fixed-point representation
is essentially an extension of the integer representation, consisting
of an integer value and a scaling factor. Fixed-point arithmetic is

usually preferred in MPC, because of its efficiency compared to

floating-point arithmetic [31]. In most cases the range of the values

supported is configured by the application such that fixed-point

representation is sufficient for computation.

Operating on complex numbers (magnitude, phase, divisions)

introduces fractional values and requires fixed point scalars for

the real and imaginary parts. In our design, we define a com-

plex number 𝑧 = 𝑥 + 𝑗𝑦 as a tuple of two fixed-point scalars

(𝑥,𝑦), and reduce complex operations to operations on the scalars.

For complex multiplications, we use Knuth’s standard technique

which is considered numerically stable for practical use [27, 35]:

𝑧 = (𝑎+ 𝑗𝑏) (𝑐+𝑖𝑑) = 𝑎𝑐−𝑏𝑑+ 𝑗 [(𝑎+𝑏) (𝑐+𝑑)−𝑎𝑐−𝑏𝑑]. Note that each
complex multiplication requires only three scalar multiplications

instead of four, grouped in a single communication round.

During our development process, we contributed to the MP-

SPDZ framework by identifying a significant number of bugs, rais-

ing performance issues, and providingminor additional features. An

overview of our contributions to MP-SPDZ can be found here [53].

4.1 Arithmetic optimizations
Besides optimization specific toMUSIC (below), we also perform

the following general operations to speed up total runtime. All

complex operations are vectorized [32] whenever possible, meaning

that the same instruction is executed for consecutive memory reg-

isters to boost both compilation time and runtime (SIMD). Given

Pseudocode 2 GS orthogonalization(A)

B,R← 0
for 𝑖 = 1, . . . , 𝑛𝑐𝑜𝑙𝑠 (A) do

v← A𝑇 [𝑖]
B[𝑖] ← v − 𝑝𝑟𝑜 𝑗B (v) // comm. parallelism in projection

for 𝑖 = 1, . . . , 𝑛𝑟𝑜𝑤𝑠 (R) do // comm. parall. in R computation

for 𝑗 = 𝑖, . . . , 𝑛𝑐𝑜𝑙𝑠 (R) do
R[𝑖] [ 𝑗] = ⟨B[𝑖] · AT [ 𝑗]⟩

return B𝑇 ,R

our specific application requirements, we have also extended struc-

tures like Arrays and Matrices in MP-SPDZ to store and operate

on data. These structures support parallelized scalar multiplication,

matrix-vector multiplication, matrix multiplication, dot product,

vector covariance, and norm (𝐿1, 𝐿2) computation.

QR Algorithm. MUSIC relies on the QR algorithm [24, 37] for

the eigendecomposition of covariance matrices (see pseudocode 2).

We implement the complex QR Algorithm using Gram-Schmidt

orthogonalization. While it converges quickly for the small size

of our input matrix, our implementation supports arbitrary sizes

of input matrices and is extensible to different methods. We lever-

age parallel communication wherever possible, and we minimize

the number of expensive operations such as norms, divisions and

comparisons. Typically, the QR Algorithm iterates until the input

matrix becomes almost diagonal, which in our experiments was in

1 to 3 iterations. Ours and any MPC evaluation requires the number

of iterations to be fixed to not leak any information.

Input profiling. To balance the trade-off between the desired frac-

tional resolution and arithmetic efficiency while avoiding overflows

we perform input profiling and track the numerical progression

during test MPC executions. As a first step, we scale the received

samples to a range of [0.1 − 1] at each receiver to ensure that the

empirical covariance will not be arbitrarily large or small. This does

not affect the outcome as it is simply a per-receiver gain adjustment,

and our approaches exploit the phase correlation of the received

signals. At every step of the execution, we mark the required arith-

metic range and maintain an accuracy of at least 3 decimals, to

identify the minimum fixed-point precision. This leads to a 32-

bit signed fixed-point number with 24 bits for the fractional part

for the Optimized MUSIC implementation and to a 13-bit signed

fixed-point number with 9 bits for the fractional part for SELEST .

4.2 Data split
Samples received by antennas are forwarded to potentially un-

trusted servers and subsequently used as inputs for MPC evalua-

tion. This raises security concerns. First, a semi-honest adversary in

control of a subset of servers is able to process the correlation of the

data their servers hold. Additionally, a malicious adversary can alter

the data before engaging in the MPC. We stress that this is different

than a standard input substitution attack [25], as in this case the in-

put comes from another, honest entity and must not be substituted.

Informally, the server is playing the role of a middle-man.

To address these concerns, the received data sample x is sim-

ply split at the receivers’ level into additive shares, such that x =

x1 + . . . + x𝑀 , and x𝑠 is forwarded to remote server 𝑠 . Observe

that this data split is extremely cheap and can be performed with
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Pseudocode 3 Empirical covariance matrix calculation

for 𝑖 = 1, . . . , 𝐾 do // Parallelism across snapshots

S← S + xx∗ // Parallelism in covariance

S← 1

𝐾−1
S // aggregate instead of averaged

Pseudocode 4 Pseudospectrum search

for 𝑖 = 1, . . . , 180 do // Parallelism across angles

𝑃𝑀𝑈𝑆𝐼𝐶 (𝜙) ← 1

∥𝑎 (𝜙)E∗n ∥2
// avoid inversion

high rates even by resource constrained receivers. After the input

sharing phase of the MPC protocol, server 𝑠 obtains share [x]𝑠 by
adding [x𝑙 ]𝑠 , for 𝑙 = 1, . . . , 𝑀 .

4.3 Optimized MUSIC
We apply our MPC optimization techniques to the MUSIC algo-

rithm and provide a secure, efficient implementation for arithmetic

MPC circuits. Given the scenario discussed in Section 2.2, the ar-

ray of received samples can be written as x = Af +w, where A is

a 𝑁 × 𝑀 matrix of steering vectors, f is a complex vector of the

incident signals on the antenna, and w is the (environmental and

instrumental) noise vector. MUSIC takes advantage of the signal
covariance matrix Ss = Aff∗A∗ that contains the collective infor-
mation of all antenna responses stimulated by the incident signals

f , without the noise. Assuming that the signals and noise are uncor-

related, any vector qm uncorrelated to the signals must belong to

ker(Ss) and, by definition, be orthogonal to all steering vectors in

A. Thus, expression ∥A∗qm∥2 is equal to zero. As the signal corre-

lation Ss cannot be obtained in practice, ker(Ss) is estimated by the

covariance matrix of the received data over 𝐾 snapshots in time:

S = E
[
xx∗

]
=

1

𝐾 − 1

𝐾∑
𝑖=1

xix∗i = Ss + E
[
ww∗

]
= Ss + 𝜎2I, (1)

where 𝜎2
is the noise variance. In fact, the eigenvectors of Ss cor-

responding to the zero eigenvalue are the exact eigenvectors of

S that correspond to the 𝜎2
eigenvalue. Then, if En denotes the

matrix of these eigenvectors, MUSIC plots the pseudospectrum, i.e.,

levels corresponding to the magnitude of the above projection for

different possible angles of incident signals:

𝑃𝑀𝑈𝑆𝐼𝐶 (𝜙) =
1

𝜶 ∗ (𝜙)EnE∗n𝜶 (𝜙)
=

1

∥E∗n𝜶 (𝜙)∥2
(2)

The points of the peak values of eq. (2) correspond to the estimated

DoA, and the magnitude of the peaks directly relate to the strength

of each received signal.

We have implemented MUSIC for MPC in MP-SPDZ, but in-

stitute the following changes resulting in major performance im-

provements. In estimating the covariance matrix for every snapshot

(pseudocode 3), communication rounds are kept to a minimum since

the parties only need to interact in order to compute half the ma-

trix (plus the diagonal). The rest of the matrix is computed locally

by Hermitian symmetry. Additionally, parallel communication is

exploited both in computing the covariance during every snapshot

and across all𝐾 snapshots. Finally, we use the aggregate covariance

matrix instead of the average, skipping the last step to avoid the

unnecessary overhead of fixed-point division. This results to an

estimate scaled by some factor, but we stress that this factor has

no impact on the matrix eigenstructure.

Another computationally heavy part of MUSIC is the pseu-

dospectrum search (pseudocode 4), which evaluates eq. (2) for every

angle of the plane. Even though this operation is also parallelized,

for every angle a significant amount of multiplications and one di-

vision are evaluated. We implement the square norm with parallel

communication and omit inversion to minimize the communication

rounds. After the calculation of the pseudo-spectrum, a function of

the elevation angle is revealed according to the application require-

ments. For instance, the elevation angle is revealed if it is over a

certain threshold. This requires 𝑛 − 1 comparisons, where 𝑛 is the

size of the calculated pseudospectrum, or, comparing the elements

in pairs results in ⌈log𝑛⌉ comparisons.

4.4 SELEST
We show that for the single emission case we can avoid a lot of

the computation of standard MUSIC and still obtain accurate re-

sults. Instead of using the noise subspace, we revert to the signal

subspace and use the covariance matrix of the received signals to es-

timate the DoA to avoid the overhead of the complex QR Algorithm.

At the same time, we optimize the operations for the multi-party

computation case.

We prove correctness of our single emission detection, starting

from theMUSIC algorithm. Let S be the covariance matrix of eq. (1):

S = E [xx∗] = APA∗ + 𝜎2I, with P = ff∗.
MUSIC utilizes the fact that the eigenvectors of Ss which corre-

spond to the zero eigenvalue are orthogonal to all𝑀 signal steering

vectors, in order to maximize (2). Let En be the matrix of these

eigenvectors as columns, and Es be the matrix of the eigenvectors

that correspond to non-zero eigenvalues as columns.

Lemma 4.1. The values that minimize the denominator of (2), are
the same values that maximize the expression 𝑃𝑠 = 𝜶 ∗ (𝜙)EsE∗s𝜶 (𝜙)

Proof. By the Hermitian property of Ss, eigenvectors corre-
sponding to distinct eigenvalues are orthogonal, therefore En⊥Es.
Because Es, En completely define the eigenvectors of Ss, the signal
steering vectors 𝜶 (𝜙𝑠 ) that are orthogonal to En must be parallel to

a corresponding signal eigenvector qs in Es. This naturally creates

a local maximum of 𝑃𝑠 = ∥Es
∗𝜶 (𝜙)∥2 at 𝜙𝑠 . □

Lemma 4.2. In the case of a single incident waveform, projecting
on any column vector of the signal covariance matrix Ss is equivalent
to projecting on the eigenvector of Ss that corresponds to the single
non-zero eigenvalue.

Proof. In the case of a single emission, P = ff∗ = E
[
|𝑓1 |2

]
,

Ss is clearly a 𝑁 × 𝑁 matrix with rank 1 and has (𝑁 − 1) zero
eigenvalues. Ss can be decomposed into matrices EsΛE∗s with Es =
[qs, n1, n2, n3],Λ = diag(𝜆𝑠 , 0, 0, 0); (𝜆𝑠 , q) being the single signal

eigenvalue-eigenvector pair. Therefore Ss = EsΛE∗s = 𝜆𝑠qq∗ and by

the property of the outer product of a vector with itself, Ss has rank
1 and all its columns are linearly dependent on q. □

It is crucial to note that the important information is contained

in the phase of the samples and the norm of a vector is rather irrele-

vant. Also, in practice it is impossible to obtain a column vector of Ss
but we can closely estimate it from the received covariance matrix S.
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Theorem 4.3. In the case of a single incident waveform on an an-
tenna array, DoA estimation using the covariance matrix is equivalent
to DoA estimation using the noise subspace (MUSIC).

𝑃𝑠 = 𝜶 ∗ (𝜙)EsE∗s𝜶 (𝜙) ≈ 𝜶 ∗ (𝜙)SiS∗i 𝜶 (𝜙) = 𝑃SELEST

Please refer to the Appendix for the proof of the theorem.

4.4.1 Localization Output.

Coarse pseudospectrum output. DoA estimation algorithms such

asMUSIC output a complete view of the pseudospectrum, with the

peaks denoting the magnitude and angle of arrival of the incident

signals. Our goal is to provide a flatter, coarser representation of

the pseudospectrum by averaging the output power over a range of

angles. This way, we create a rough picture of the elevation plane

without explicitly revealing the elevation of the targeted emissions.

We achieve this by using a modified steering vector 𝜶̂ (𝜙) which
includes the average information of the array’s original steering

vector over a certain range of angles 𝑓 . In addition to the coarse

pseudospectrum view, this provides significant boost in the per-

formance of the MPC circuit because of the reduced number of

operations. Figure 3 demonstrates the accuracy as well as the out-

put coarseness of this method, for a factor 𝑓 = 18.

If 𝑘 is the degree resolution of the original steering vector of

eq. (4), we obtain 𝑠 points for our modified steering vector with

𝑏 := ⌈𝑘
𝑓
⌉ and we compute 𝜶̂ (𝜙) = [𝜶̂ (𝜙)1, · · · , 𝜶̂ (𝜙)𝑏 ], 𝜶̂ (𝜙)𝑖 =

1

𝑓

∑𝑖 ·𝑓 +𝑓 −1

𝑗=𝑖 ·𝑓 𝜶 (𝜙) 𝑗 and from eq. (2):

𝑃SELEST (𝜙) = 𝜶̂ ∗ (𝜙)vsv∗s 𝜶̂ (𝜙) = ∥v∗s · 𝜶̂ (𝜙)∥2 (3)

In the above, v∗s denotes the chosen signal vector from the co-

variance matrix according to Theorem 4.3. The effect of invers-

ing expression 2 is reflected in Figure 3b by a wider, flatter peak,

compared to Figure 3a. This coarse approximation achieves high

performance without leaking sensitive information, but still reveals

more than nothing about the location of the target emission.

Conditioned output. In addition to the above output method, we

consider the case where nothing is revealed besides whether a sig-

nal matches a certain condition in the monitored area. For example,

we consider areas where flying a drone is permitted under regula-

tions such as a maximum allowed flying altitude. Thus, we modify

the output of our algorithm to compare the calculated pseudospec-

trum values and output only Detection if the estimated elevation

angle exceeds some threshold. In general, the output as a function

of the elevation angle 𝑌 = 𝑓 (𝜃 ) incurs the extra cost of evaluating
the output condition in MPC given the computed pseudospectrum

from eq. (3). Both of these techniques are used in both Optimized

MUSIC and SELEST .
We present SELEST in Algorithm 5. SELEST supports the general

case of𝑀 servers processing 𝐾 snapshots collected by 𝑁 antennas

for two output scenarios: Coarse and Conditioned. Protocol 𝑃 can be

any arbitrary𝑀-party MPC protocol. The algorithm for Optimized

MUSIC replaces [vS] in line 7 of Algorithm 5 by [E𝑁 ] = FQR ( [𝑆])
using our optimized QR Algorithm FQR (Algorithm 7) and contin-

ues accordingly.

Algorithm 5 SELEST

Inputs: Received samples xj = {𝑥 𝑗,1, . . . , 𝑥 𝑗,𝐾 } for snapshots

𝑖 ∈ {1, . . . , 𝐾 }, for antennas 𝑗 ∈ {1, . . . , 𝑁 }. Angle 𝜃𝑡ℎ𝑟 . Algorithm
𝐴 ∈ {Coarse,Conditioned}. Protocol 𝑃 .

Stage 1: Receiver Setup
1: Receiver 𝑗 splits samples xj into additive shares 𝑥

(1)
𝑖,𝑗
, . . . , 𝑥

(𝑀 )
𝑖,𝑗

for all 𝑖 ∈ {1, . . . , 𝐾 }. and forwards shares 𝑥
(𝑠 )
𝑖,𝑗

to server 𝑠 for all

𝑠 ∈ {1, . . . , 𝑀 }.
Stage 2: MPC
2: Server 𝑠 secret shares𝑥

(𝑠 )
𝑖,𝑗

according to protocol𝑃 for all 𝑖 ∈ {1, . . . , 𝐾 }
and 𝑗 ∈ {1, . . . , 𝑁 }.

3: Server 𝑠 computes

[
𝑥𝑖,𝑗

]
𝑠

=
∑𝑀
ℓ=1

[
𝑥
(ℓ )
𝑖,𝑗

]
𝑠
for all 𝑖 ∈ {1, . . . , 𝐾 },

𝑗 ∈ {1, . . . , 𝑁 }.
4: for 𝑖 = 1, . . . , 𝐾 do
5: [Si ] = [xi ] [xi

∗ ], where [xi ] =
[ [
𝑥𝑖,1

]
, . . . ,

[
𝑥𝑖,𝑁

] ]
6: [S] = ∑𝐾

𝑖=1
[Si ]

7: Choose a column of [S], [vS ] := [S]𝑇 (0) .
8: for𝜓 = 1, . . . , 𝑏 do
9: [𝑃SELEST (𝜓 ) ] = [vS ] · 𝜶̂ (𝜃 )𝑇 [𝜓 ]
10: if 𝐴 = Coarse then
11: return 𝑃SELEST
12: else
13: if 𝐴 = Conditioned then
14: [𝜃𝑒𝑙 ] := arg max𝜓∈{1,...,𝑏} { [𝑃SELEST (𝜓 ) ] }
15: if [𝜃𝑒𝑙 > 𝜃𝑡ℎ𝑟 ] then
16: return 𝜃𝑒𝑙
17: else
18: return ⊥

Algorithm 6 Optimized Gram Schmidt FGS
Inputs: Secret shares of input matrix [A]
Output: Secret shares of orthonormal basis [Q], triangular [R]
1: [B] = 0
Stage 1: Form [Q]
2: for 𝑖 = 1, . . . , 𝑛𝑐𝑜𝑙𝑠 ( [A]) do
3: for 𝑗 = 1, . . . , 𝑛𝑟𝑜𝑤𝑠 ( [B]) do
4: [A[𝑖 ] ] = [A[𝑖 ] ] − ⟨[A[𝑖 ] ], [B[ 𝑗 ] ] ⟩ · [B[ 𝑗 ] ]
5: [B[𝑖 ] ] = [A[𝑖 ] ]

[∥A[𝑖 ]∥ ]
Stage 2: Form [R]
6: [R] = 0
7: for 𝑖 = 1, . . . , 𝑛𝑟𝑜𝑤𝑠 ( [R]) do
8: for 𝑗 = 𝑖, . . . , 𝑛𝑐𝑜𝑙𝑠 ( [R]) do
9: [B[𝑖 ] [ 𝑗 ] ] = ⟨[A[ 𝑗 ] ], [B[𝑖 ] ] ⟩
10: return [Q], [R]

Algorithm 7 Optimized QR Algorithm FQR
Inputs: Secret shares of input matrix [A], iterations 𝑖𝑡𝑒𝑟
Output: Secret shares of triangular [A], eigenvectors [Q𝑐 ]
1: [Q𝑐 ] = I, [A1 ] = [A]
2: for 𝑖 = 1, . . . , 𝑖𝑡𝑒𝑟 do
3: [Q], [R] = FGS ( [A𝑖 ])
4: [A𝑖+1 ] = [R] · [Q]
5: [Q𝑐 ] = [Q𝑐 ] · [Q]
6: return [A𝑖𝑡𝑒𝑟+1 ], [Q𝑐 ]

5 IMPLEMENTATION AND EVALUATION
We have implemented and evaluatedMUSIC, Opt-Music, and SE-
LEST in MP-SPDZ to show efficacy of our optimizations and, specif-

ically, the practicality of SELEST as a privacy-preserving drone

localization system. The source code is available for download [54].
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Figure 3: Coarse DoA Estimation of a single emission at 90◦ angle with averaging factor 18

In our implementation, we choose signed fixed-point arithmetic

as required by each of our algorithms according to Section 4.1. For

computations on fixed-point numbers, we use MP-SPDZ standard

128 bit field size to maintain security for operations on numbers of

length 32 bit. All evaluations were performed on a single server with

a 16-Core Intel Xeon E5-2660@2.20GHz processor and 128 GByte of

RAM. As latency dominates total runtime, communication between

parties takes place over the loopback interface, and all parties run

on the same machine. This allows us to precisely control latency

via the Linux kernel Traffic Control (tc/netem) interface.

All techniques have been tested on both synthetic and real data.

Synthetic data was created in Matlab from random data streams and

additive white Gaussian noise. Real data was captured from WiFi

dongles and a DJI Phantom 4 commercial drone in outdoor spaces to

reflect realistic environments. The emissions were recorded using a

Uniform Linear Array (ULA) consisting of 4 antennas, a single Ettus

USRP X310 synchronized using an Ettus OctoClock CDA-2990, and

4 snapshots samples were processed per antenna.

In the following, we analyze accuracy, security, performance,

and costs of our methods with respect to latency and protocol used.

We focus on performance during protocols’ online phases and dis-

cuss the preprocessing separately. We measure throughput in terms

of DoA estimations per second to reflect requirements of a real-

world localization system, and present indicative monetary costs

for the deployment of a system based on our techniques, taking

computational and network traffic costs into account. To compare

performance for different levels of security, we evaluated our tech-

niques using various state of the art MPC protocols, covering a

wide range of adversary models. Table 3 provides a comprehensive

summary of our findings.

5.1 SELEST evaluation
Detection accuracy. Figure 4 compares the accuracy of our tech-

niques against the results of the standard MUSIC algorithm on the

same input data. The results of standard MUSIC were produced

by our Python implementation, using a discretized angle search of

1 deg. The results of our algorithms were obtained by the output

of the MPC Coarse pseudospectrum evaluation using a modified

steering vector with 𝑓 = 18. All results were then shifted into the

same logarithmic scale for better comparability.

Table 2: SELEST offline cost for maximum throughput case
in consumed triples per hour and triple generation cost in
$/h

Usage Rate (10
6
triples/h) Cost ($/h)

Protocol Coarse Conditioned Coarse Conditioned

MASCOT 43.87 48.76 0.693 0.77

Lowgear 43.99 69.68 0.695 1.101

Cowgear 43.26 66.15 0.683 1.044

Semi 65.87 79.25 1.04 1.251

Hemi 63.45 84.67 1.002 1.337

Mal-Shamir 220 290.7 3.474 4.59
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Figure 4: Coarse pseudospectrum identifying the DoA of
transmitted signals from various angles

The effect of the modified steering vector is a pseudospectrum

view with the same trend as MUSIC’s, simultaneously hiding any

particular position of the peak up to an extent depending on the

chosen 𝑓 . Higher values for 𝑓 result in an even coarser view of the

pseudospectrum with slightly improved performance, because of

the decreased amount of computation. Lower values of 𝑓 provide a

more refined view. Figure 4 shows the expected coarse approxima-

tion of up to 𝑓 /2 off the actual angle for over-the-air transmitted

sine waves (Fig. 4a) and over-the-air transmitted drone emission

(Fig. 4b) Our coarse pseudospectrum output accurately reflects

the actual angle of arrival of the target emission in order to infer

whether a device violates a regulation such as altitude restriction.

Security & Privacy. To evaluate different performance vs. secu-

rity trade-offs, we evaluate SELEST for different adversary models
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as shown in Table 3. MASCOT and Lowgear provide the strongest

security guarantees out of the evaluated protocols, being secure in

the presence of a dishonest majority of malicious adversaries, while

Cowgear is secure against covert adversaries. Semi and Hemi are

semi-honest secure variations of the above protocols, but maintain

security against a dishonest majority. These protocols provide the

flexibility of arbitrary number of honest and corrupt parties at the

expense of increased computation.

MPC based on Shamir’s secret sharing protocols achieve secu-

rity against an honest majority of malicious adversaries with a

noticeable improvement in performance and cost. Similarly, the

replicated secret sharing, 3-party computation protocols Ps-Rep

and Rep3 achieve malicious and semi-honest security respectively

for a honest majority of parties, by having two parties holding a

share of a value unknown to the third. This way, two out of three

parties are able to reconstruct a value. The above compromises are

reflected in the performance evaluation in Table 3.

Our system inherently requires trust in the input shares sent by

the receivers to the servers. In any system, an untrusted receiver

could provide incorrect inputs to affect the correctness of the re-

sult, and application specific techniques (e.g. redundancy based)

are required to cope with this type of attack. Additionally, a mali-

cious server could modify a receiver’s shares. There are standard

techniques to mitigate this: an antenna could send cryptographic

hashes of every sample to all parties, which can be verified in the

MPC circuit after the input reconstruction. During the evaluation

of the MPC circuit, security is obtained by the chosen protocol, and

no information is leaked about the recorded samples. In the case of

the coarse pseudospectrum output, the elevation peaks cannot be

traced back to a specific set of input samples and the exact angle

of arrival remains private.

Network impact. We evaluate two crucial factors in the perfor-

mance of the system, communication rounds and communication

complexity. For the former, we show the effect of latency in various

scenarios and protocols. For the latter, we show network traffic

costs based on the total data exchanged for every second of the

evaluation, and the current $0.01 cents/GByte traffic cost between

certain AWS instances[4]. Running the same experiments on a

similar setup using EC2 AWS instances, a reserved m4.4xlarge in-

stance would cost $0.496 effective hourly. Furthermore, the data

transferred between the parties during a single online execution

of SELEST are in the worst case ∼0.33 MByte one-way for protocol

Sy-Shamir for conditioned output. Even at very high throughput,

this requires speeds of ∼50 MBytes/sec, far within the range of the

25 GBit/sec connections between AWS instances [5].

Figure 5 presents the effect of communication rounds for various

protocols in a single MPC evaluation of SELEST , for round trip

time (RTT) latency up to 150 ms which reflects high quality intra-

continental WAN connections. For consistency, we conduct the rest

of the experiments in a 10 ms RTT setting, at the time of writing

the worst case for cloud server instances like AWS EC2 within a

local zone [59]. The amount of exchanged data and therefore the

bandwidth is a negligible factor in the performance compared to

the communication rounds and implied network latency.

Performance. With multiplications requiring interaction, in a sin-

gle execution of SELEST communication between parties is invoked
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(a) coarse output
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(b) conditioned output
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(c) coarse output, high latency
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(d) GC vs. arithmetic protocols

Figure 5: SELEST execution times varying network latency

10 to 28 times depending on the underlying protocol. This results

to idle computational resources, waiting for the data exchange, es-

pecially as the network latency increases. We have heuristically

estimated maximum parallelism for each protocol by measuring the

performance over increased executions for various latency values.

For low latency, we find that most protocols peak in performance at

1 to 10 parallel executions. For a 10 ms RTT the maliciously-secure

protocols’ performance peaked at 60 parallel executions, and the

semi-honest protocols’ performance peaked at 120 − 180 parallel

executions. This verifies our assumption that executions can be

highly parallelized to increase the system throughput, in terms of se-

cure DoA estimations per second. We attribute this difference in the

additional computation required by themalicious protocols for oper-

ating on the MACs of the shares to detect inconsistencies in the par-

ties’ shares and computations. We note that for every execution, 𝑁

party instances are invoked (in our case 𝑁 = 3), and, being executed

on the same server, the player instances share a common pool of re-

sources, thereby restricting the potential parallelism by a factor of 3.

We demonstrate the online performance of SELEST , evaluated
as a throughput of achieved DoA estimations per second in two

cases, coarse pseudospectrum and conditioned. For reference, we also
evaluated the performance of MUSIC in Python (using Hermitian-

optimized eigendecomposition by NumPy) on the same inputs, and

hardware/DoA configuration, and measured 7.44ms per execution,

as opposed to 24s (Table 1). In order to account forMUSIC’s ability
to process multiple emissions, we scale up its performance by a fac-

tor of three (there are four antennas in our system), and compute a

maximum throughput of 403.2 DoA/s, almost 4 orders of magnitude

faster than the Standard MUSIC implementation in MPC (Table 1).

Preprocessing costs. Several protocols in Table 3 achieve a faster

online phase when the required randomness is computed during

an offline phase. While all of the arithmetic protocols benefit from
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Table 3: SELEST online performance (secure DoA estimations/second), 3 parties, 10ms RTT, traffic cost in cents/hour
Model Coarse Conditioned

Malic. Hon. Single Parallel Single Parallel

Protocol Advers. Maj. DoA/s Cost (c/h) DoA/s Cost (c/h) DoA/s Cost (c/h) DoA/s Cost (c/h)

MASCOT ✓ N 13.1 0.001 106.9 0.09 5 0.002 38.7 0.126

Lowgear ✓ N 13.1 0.001 107.2 0.119 4.9 0.002 55.3 0.377

Cowgear ✓ N 13.1 0.001 105.4 0.119 5.0 0.002 52.5 0.377

Semi - N 20.2 0.001 160.5 0.117 5.8 0.002 62.9 0.373

Hemi - N 20.3 0.001 154.6 0.263 5.8 0.002 67.2 0.373

Mal-Shamir ✓ Y 19.8 0.001 536.1 0.09 5.6 0.002 230.7 0.124

Sy-Shamir ✓ Y 6.3 0.036 227.1 2.893 2.5 0.037 151.8 4.413

Ps-Rep ✓ Y 12.0 0.001 601 0.117 4.7 0.001 296.8 0.171

Shamir - Y 20.0 0.001 586.6 0.005 5.6 0.001 293.2 0.149

Rep3 - Y 21.8 0.001 775.9 0.055 5.6 0.001 333.0 0.084

Yao (2PC) - n/a 2.1 0.99 20.3 59.54 2.2 0.99 19.5 59.5

EMP (2PC) - n/a - - - - 0.8 0.002 - -

randomly generated bits for bit-wise operations, the greatest impact

is caused by the preprocessing of multiplication (Beaver [9]) triples.

The SPDZ family of protocols, i.e., MASCOT, Semi [32], Lowgear,

Cowgear and Hemi [33], follow the online phase of the SPDZ pro-

tocol [17] which heavily relies on Beaver triples for performing

multiplications, but offer improved offline phase performance. We

focus on the Lowgear and Cowgear protocols because they per-

form better than MASCOT for large number of triples, yet we note

their higher computation requirement. On the other hand, MAS-

COT relies more on communication and performs better in very

low latency scenarios [33]. Keller et al. [33] measure over 100.000

triples/sec throughput for 3 parties and the same computation set-

ting as in our experiments. Moreover, they estimate near 190 million

triples per dollar and per party given the hourly cost of one hour

AWS r4.16xlarge instance in Amazon’s US East data center. SELEST
requires a varying number of triples depending on the size of the

input and the type of output. For reference, we examine the cost

of the offline phase based on 4 samples of input per antenna (total

of 32 samples) for both coarse and conditioned outputs (Table 2).

Summary of results. Our results show that we are able to achieve

high performance DoA estimation with high accuracy in an MPC

circuit, thus maintaining data privacy and security in the presence

of different types of adversaries. For a coarse spectrum estimation,

we achieve more than 100 DoA/s in the presence of a majority of

compromised servers in the malicious model and more than 160

DoA/s in the semi-honest model. In the case of an honest majority

of servers, our results boast more than 536 DoA/s in the mali-

cious model and more than 775 DoA/s in the semi-honest model.

The more demanding circuit producing conditional outputs also

achieves more than 230 DoA/s in the malicious model and more

than 330 DoA/s in the semi-honest model. We find Ps-Rep proto-

col balanced between high performance and security against one

malicious adversary out of three parties, without the requirement

of preprocessed multiplication triples. We also observe a speedup

compared to non-private MUSIC (403.2 DoA/s), which reflects the

lower computation of SELEST and the potential of parallel execu-

tions due to party interactions. However, SELEST processes a single

emission and its performance is affected by network latency.

We note that ML-based detection techniques (Baset et al. [8]) are

increasingly practical in isolating RF-emissions from millions of

received samples, making our assumption of single emission rea-

sonable. Furthermore, in a reasonably congested residential setting

with hundreds of wireless devices, our results show the feasibility

of a real time, secure, drone localization system.

5.2 Discussion
Constant round protocols. Being the first complex number imple-

mentation for a wireless application, it is natural that our imple-

mentation and evaluation focuses on arithmetic circuits. It is worth

noting another growing field of MPC, Constant Round protocols

which are based on Yao’s GC protocol [62]. In a nutshell, such pro-

tocols usually operate in the binary domain and achieve constant

rounds of communication by having one party (the garbler) create

the circuit, send it to the other party (the evaluator) which evaluates

it. This comes at the cost of a very large circuit that has to be created,

transmitted and evaluated efficiently. We implemented and tested

our algorithm in Yao’s GC in MP-SPDZ [31] and EMP-Toolkit, both

2-party protocols for semi-honest adversaries with the EMP-Toolkit

implementation easily extensible for malicious adversaries using

Authenticated Garbling [57]. Figure 5d shows that 3 party arith-

metic protocols outperformed constant round protocols for RTT

up to 80ms. We observed that constant round protocols only take

the lead for larger number of parties and higher RTT. We attribute

this to the network volume caused by the garbled circuit which

overshadows the few, low-latency communication rounds between

a small number of parties in arithmetic evaluation: we observed 655

times more communication in Yao/EMP-Toolkit compared an equiv-

alent MASCOT online phase. Moreover, a faster CPU would favor

the garbled circuit approach, since it relies in computation for gar-

bling and evaluating the circuit more than arithmetic protocols do.

Other applications. Our results are also promising for use in

extended DoA estimation, such as higher dimension search and

similar applications. Some applications aim for Acoustic Source

Localization (ASL) by using microphone arrays to collect samples

and pose similar security concerns [39].
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A APPENDIX
Theorem A.1. In the case of a single incident waveform on an an-

tenna array, DoA estimation using the covariance matrix is equivalent
to DoA estimation using the noise subspace (MUSIC).

𝑃𝑠 = 𝜶 ∗ (𝜙)EsE∗s𝜶 (𝜙) ≈ 𝜶 ∗ (𝜙)SiS∗i 𝜶 (𝜙) = 𝑃SELEST

Proof. When P = ff∗ = E
[
|𝑓1 |2

]
the signal covariance matrix

can be written Ss = APA∗ = PAA∗. For simplicity we consider a

Uniform Linear Array with the following steering vector, but the

proof holds for arbitrary antenna arrays:

𝜶 (𝜙) = [1, 𝑒 𝑗𝑘𝑑𝑐𝑜𝑠𝜙 , 𝑒 𝑗𝑘2𝑑𝑐𝑜𝑠𝜙 , · · · , 𝑒 𝑗𝑘 (𝑁−1)𝑑𝑐𝑜𝑠𝜙 ]

= [1, 𝑧, 𝑧2, · · · , 𝑧𝑁−1]
(4)

with 𝑧 = 𝑒 𝑗𝑘𝑑𝑐𝑜𝑠𝜙 and |𝑧 | = 1. Then:

S = Ss + 𝜎2I = PAA∗ + 𝜎2I

= E
[
|𝑓1 |2

] 

1 + 𝜎̃ 𝑧 𝑧2 · · · 𝑧𝑁−1

𝑧 𝑧𝑧 + 𝜎̃ 𝑧𝑧2 · · · 𝑧𝑧𝑁−1

𝑧2 𝑧2𝑧 𝑧2𝑧2 + 𝜎̃ · · · 𝑧2𝑧𝑁−1

.

.

. · · · · · ·
. . .

.

.

.

𝑧𝑁−1 𝑧𝑁−1𝑧 𝑧𝑁−1𝑧2 · · · 𝑧𝑁−1𝑧𝑁−1 + 𝜎̃



where 𝜎̃ = 𝜎2

E[ |𝑓1 |2 ] .

We can now express a column vector of S as

s𝑖 = [𝑧𝑖 , 𝑧𝑧𝑖 , · · · , 𝑧𝑖𝑧𝑖 + 𝜎̃, · · · , 𝑧𝑁−1𝑧𝑖 ]𝑇

and have the dot product of two arbitrary column vectors of S be

⟨s𝑖 · s𝑗 ⟩ =
𝑁−1∑
𝑘=0

s̄𝑖𝑘s𝑗𝑘 = 𝑧𝑖𝑧 𝑗 (𝑁 + 2𝜎̃) (5)

For the norm of a column vector of S, we have ∥s𝑖 ∥ =
√∑𝑁−1

𝑘=0
|𝑠𝑖𝑘 |2 =√

(𝑁 + 𝜎̃), and therefore ∥s𝑖 ∥ · ∥s𝑗 ∥ = (𝑁 + 𝜎̃). Then by the vector

dot product:

cos𝜃 =
Re(⟨s𝑖 · s𝑗 ⟩)
∥s𝑖 ∥ · ∥s𝑗 ∥

= Re(𝑧 |𝑖−𝑗 |) (1 + 𝜎̃

𝑁 + 𝜎̃ ) ≤ Re(𝑧 |𝑖−𝑗 |) (1 + 𝜎̃)

However, 𝜎̃ = 𝜎2

E[ |𝑓1 |2 ] and the noise variance can be safely as-

sumed orders of magnitude less than the expected norm of the

incident signal. This shows that choosing two arbitrary vectors

from S is equivalent to choosing two arbitrary vectors from Ss. □
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