
Computing (2019) 101:1265–1286
https://doi.org/10.1007/s00607-018-0634-5

EPiC: efficient privacy-preserving counting for
MapReduce

Triet Dang Vo-Huu1 · Erik-Oliver Blass2 ·
Guevara Noubir1

Received: 6 May 2016 / Accepted: 6 June 2018 / Published online: 18 June 2018
© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Abstract In the face of an untrusted cloud infrastructure, outsourced data needs to
be protected. We present EPiC, a practical protocol for the privacy-preserving eval-
uation of a fundamental operation on data sets: frequency counting. In an encrypted
outsourced data set, a cloud user can specify a pattern, and the cloud will count the
number of occurrences of this pattern in an oblivious manner. A pattern is expressed
as a Boolean formula on the fields of data records and can specify values counting,
value comparison, range counting, and conjunctions/disjunctions of field values. We
show how a general pattern, defined by a Boolean formula, is arithmetized into a mul-
tivariate polynomial and used in EPiC. To increase the performance of the system, we
introduce a new privacy-preserving encoding with “somewhat homomorphic” prop-
erties. The encoding is highly efficient in our particular counting scenario. Besides a
formal analysis where we prove EPiC’s privacy, we also present implementation and
evaluation results. We specifically target Google’s prominent MapReduce paradigm
as offered by major cloud providers. Our evaluation performed both locally and in
Amazon’s public cloud with up to 1 TByte data sets shows only a modest overhead of
20% compared to non-private counting, attesting to EPiC’s efficiency.
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1 Introduction

Cloud computing is a promising technology for large enterprises and even governmen-
tal organizations. Major cloud computing providers such as Amazon and Google offer
users to outsource their data and computation. The main advantage for users lies in the
clouds’ flexible cost model: users are only charged by use, e.g., total amount of storage
or CPU time used. In addition, clouds “elastic” services allow the users to efficiently
scale resources to satisfy dynamic load. The appeal and success of outsourcing data
and operating on outsourced data is exemplified by Google’s prominent MapReduce
API [6].MapReduce is typically used for analysis operations on huge amounts of (out-
sourced) data, e.g., scanning through data and finding patterns, counting occurrences
of specific patterns, and other statistics [11].

While the idea of moving data and computation to a (public) cloud for cost savings
is appealing, trusting the cloud to store and protect data against adversaries is a serious
concern for users. Examples for adversaries can be hackers that break into the cloud
(data center) to steal data, insiders such as data center administrative staff who can
easily access data, and other cloud users hosted on the same data center (“multi ten-
ancy”). Finally, as cloud providers place data centers abroad in foreign countries with
unclear privacy laws, local authorities are threatening outsourced data. Such attacks
are realistic and have already been reported in the real-world [10,17,20,26].

The encryption of data is a viable privacy protection mechanism, but it renders sub-
sequent operations on encrypted data a challenging problem. To address this problem,
Fully Homomorphic Encryption (FHE) techniques have been investigated, cf. Gentry
[8] or Vaikuntanathan [23] for an overview. FHE guarantees that computations can
be performed on encrypted data as if ciphertexts were plaintexts, while the cloud nei-
ther learns details about the stored data nor about the results. However, today’s FHE
schemes are still overly inefficient [5,9,24], and a deployment in a real-world cloud
would outweigh any cost advantage offered by the cloud. Moreover, any solution for a
real-world cloud needs to be tailored to the specifics of the cloud computing paradigm,
e.g., MapReduce [6].

This paper presents EPiC—Efficient PrIvacy-preserving Counting forMapReduce,
an efficient, practical, yet privacy-preserving protocol for a fundamental data analysis
primitive in MapReduce: counting occurrences of patterns. In an outsourced data set
comprising a large number of encrypted data records, EPiC allows the cloud user to
specify a pattern, and the cloud will count the number of occurrences of this pattern
(and therefore histograms) in the stored ciphertexts without revealing the pattern and
how often it occurs. A pattern is expressed as a Boolean formula on countable fields of
data records and can specify a specific field value, a value comparison, a range of field
values, and more complex forms of conjunctions/disjunctions among sub-patterns.
For example, in an outsourced data set of patient health records, a pattern could be
age ∈ [50, 70] and (diabetes = 1 or hypertension = 1). The main idea of EPiC
is to transform the problem of privacy-preserving pattern counting into a summation
of polynomial evaluations. Our work is inspired by Lauter et al. [15] to use some-
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what homomorphic encryption to address specific privacy-preserving operations. In
EPiC, we extend a previous work on cPIR protocols [22] to design a new “encoding”
mechanism that exhibits homomorphic properties at the expense of growing ciphertext
size (thus, the scheme is called somewhat homomorphic). While we call our encoding
encryption in the rest of this paper, we stress that our encryption does not provide tradi-
tional IND-CPA security (INDistinguishability under Chosen Plaintext Attacks [14]),
but only weaker properties suited to the context we target in this paper, i.e., the sum-
mation of polynomial evaluations. In return, our “encryption” is particularly efficient
in this context. We also show how a general pattern, defined by a Boolean formula,
is arithmetized into a multivariate polynomial over binary finite (Galois) field [14]—
G F(2)—optimizing for efficiency. EPiC evaluates this polynomial efficiently by using
a new, efficient somewhat homomorphic encryption mechanism that is based on the
HiddenModular Group Order assumption [22]—fully homomorphic encryption is not
required. In conclusion, the contributions of this paper are:

– EPiC, a new protocol to enable privacy-preserving pattern counting inMapReduce
clouds. EPiC reduces the problem of counting occurrences of a Boolean pattern
to the summation of a multivariate polynomial evaluated on encrypted data.

– Designing a new encoding/encryption scheme specifically addressing secure
counting in a highly efficient manner.

– An implementation of EPiC together with an extensive evaluation in a realistic
setting. The source code is available for download [25].

2 Problem statement

2.1 Cloud counting

We will use an example application to motivate our work. Along the lines of recent
reports [21], imagine a hospital scenario where patient records are managed electroni-
cally. To reduce cost and grant access to, e.g., other hospitals and external doctors, the
hospital refrains from investing into an own, local data center, but plans to outsource
patient records to a public cloud. Regulatory matters require the privacy-protection
of sensitive medical information, so outsourced data has to be encrypted. However,
besides uploading, retrieving or editing patient records performed by multiple entities
(hospitals, doctors etc.), one entity eventually wants to collect some statistics on the
outsourced patient records without the necessity of downloading all of them.

More specifically, we assume that each patient record R, besides raw data such
as a picture or some doctors’ notes, also includes one or more countable fields R.c
containing some patterns. In practice, this field could denote the category or type of
disease a patient is suffering from, e.g., “diabetes” or “hypertension”. A user (e.g.,
doctor) U wants to extract the frequency of occurrence of pattern χ , e.g., how many
patients have R.disease = χ . Due to the large amount of data, downloading each
patient record is prohibitive, and the counting should be performed by the cloud.
While encryption of data, access control, and key management in a multi-user cloud
environment are clearly important topics, we focus on the problem of a-posteriori
extracting information out of the outsourced data in a privacy-preserving manner.
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The cloud must neither learn details about the stored data, nor any information about
the counting, what is counted, the count itself, etc. Instead, the cloud processes U’s
counting queries “obliviously”.Wewill now first specify the general setup of counting
schemes for public clouds and then formally define privacy requirements. Note that
throughout this paper, we will assume the countable fields to be non-negative integer
fields. Besides, records may contain non-countable data, e.g., pictures or doctors’
notes, that can be IND-CPA (AES-CBC) encrypted—Therewith, it is of no importance
for privacy defined below.

Definition 1 (Cloud counting)LetRdenote a sequenceof recordsR := {R1, . . . , Rn}.
Besides some non-countable data, each record Ri containsm different countable fields.
The k-th countable field of the i-th record, denoted as Ri,k, 1 ≤ k ≤ m, can take values
Ri,k ∈ Dk = {0, 1, . . . , |Dk |− 1}, whereDk denotes the domain of the k-th field with
size1 |Dk |. For the “multi-domain” ofm countable fields wewriteD = D1×· · ·×Dm .
A privacy-preserving counting scheme comprises the following probabilistic polyno-
mial time algorithms:

1. KeyGen(κ): using a security parameter κ , outputs a secret key S.
2. Encrypt(S,R): uses secret key S to encrypt the sequence of records R to E :=

{ER1, . . . , ERn }, where ERi denotes the encryption of record Ri .
3. Upload(E): uploads the sequence of encryptions E to the cloud.
4. PrepareQuery(S, χ): generates an encrypted query Q out of secret S and the

multiple-field pattern χ ∈ D.
5. ProcessQuery(Q, E): uses an encrypted query Q, the sequence of ciphertexts

E , and outputs a result EΣ . This algorithm performs the actual counting.
6. Decode(S, EΣ): takes secret S and EΣ to output a final result, the occurrences

Σ (the “count”) of the specified pattern inR.

According to this definition, cloud user U encrypts the sequence of records and
uploads them into the cloud. If U wants to know the number of occurrences of χ in
the records, he prepares a query Q, which is—as we will see later—simply a fixed-
length sequence of encrypted values. U then sends Q to the cloud, and the cloud
processes Q. Finally, the cloud sends a result EΣ back to U who can decrypt this
result and learn the number Σ of occurrences of pattern χ , i.e., the count. The idea of
a performing the counting in the cloud is to put the main computational burden on the
cloud side. Both storage and computational overhead forKeyGen, Encryt,Upload,
PrepareQuery, and Decode should be lightweight compared to ProcessQuery.

2.2 Privacy

In the face of an untrusted cloud infrastructure, cloud userU wants to perform counting
in a privacy-preserving manner. Intuitively, the data stored at the cloud as well as the
counting operations must be protected against a curious cloud. Informally, we demand
(1) storage privacy, where the cloud does not learn anything about stored data, and

1 Domain size |Dk | indicates the number of different values a field can take.
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(2) counting privacy, where the cloud does not learn anything about queries and query
results. The cloud, which we now call “adversary” A, should only learn “trivial”
privacy properties like the total size of outsourced data, the total number of patient
records or the number of counting operations performed for U . We formalize privacy
for counting using a game-based setup. In the following, ε(κ) denotes a negligible
function in the security parameter κ .

Definition 2 (Bit mapping) Let R = {R1, . . . , Rn} be a set of records, and Ri,k ∈
{0, 1}∗ the k-th field of record Ri . Let χ,Σ ∈ {0, 1}∗ be bit string representations of
a pattern and a count. For X ∈ {Ri,k, χ,Σ}, bit( j, X) denotes the j-th bit of X .

Definition 3 (Storage privacy) A challenger generates two same-size same-field-
types sets of records R,R′ and two patterns χ, χ ′ ∈ D. The challenger then uses
Encrypt and PrepareQuery to compute the encrypted sets of records E, E ′ and
two encrypted counting queries Q, Q′ corresponding to two patterns χ, χ ′. Using
ProcessQuery, he evaluates E with Q, and E ′ with Q′ to get encrypted results
EΣ, E ′

Σ . The challenger sends I := {E, E ′, Q, Q′, EΣ, E ′
Σ } to adversaryA. For any

patterns χ, χ ′, any X, X ′ such that either X ∈ {{Ri,k}} and X ′ ∈ {{Ri,k}} or X = χ

and X ′ = χ ′ or X = Σ and X ′ = Σ ′, and for any b = bit( j, X) and b′ = bit( j ′, X ′),
the adversary A outputs 1, if she guesses b = b′, and 0 otherwise. A protocol pre-
serves storage privacy, iff for any probabilistic polynomial time (PPT) algorithm A,
the gain of using A to produce correct output over a random guess is negligible. That
is,

∣
∣Pr

[A(I ) = 1|b = b′] − 1
2

∣
∣ ≤ ε(κ) and

∣
∣Pr

[A(I ) = 0|b �= b′] − 1
2

∣
∣ ≤ ε(κ).

Definition 4 (Counting privacy) A challenger generates two same-size same-field-
types sets of records R,R′, and two patterns χ, χ ′, uses Encrypt, PrepareQuery,
and ProcessQuery, and sends encrypted I := {E, E ′, Q, Q′, EΣ, E ′

Σ }, to A. Now,
A outputs 1, if χ = χ ′, and 0 otherwise. A protocol preserves counting privacy, iff for
anyPPT algorithmA the probability of correct output is not better than a randomguess:
∣
∣Pr

[A(I ) = 1|χ = χ ′] − 1
2

∣
∣ ≤ ε(κ) and

∣
∣Pr

[A(I ) = 0|χ �= χ ′] − 1
2

∣
∣ ≤ ε(κ).

Similar to traditional indistinguishability, storage privacy and counting privacy
captures the intuition that, by storing data and counting, the cloud should not learn
anything about the content it stores. In addition, the cloud should not learn anything
about the counting performed, such as which pattern is counted, whether a pattern is
counted twice or what the resulting count is.

2.3 MapReduce

Theefficiencyof counting relies on theperformanceofProcessQuerywhich involves
processing huge amounts of data in the cloud. Cloud computing usually processes
data in parallel via multiple nodes in the cloud data center based on some computation
paradigm. For efficiency, ProcessQuery has to take the specifics of that computation
into account. One of the most widespread, frequently used framework for distributed
computation that is offered by major cloud providers today is MapReduce [6].

In the following, we will give a very compressed overview about MapReduce,
only to understand EPiC. For more details, refer to Dean and Ghemawat [6]. In the
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MapReduce framework, a user uploads his data into the cloud. During upload, data
is automatically split into pieces (InputSplits) and distributed among the nodes in
the cloud’s data center. If the user wants the cloud to perform an operation on the
outsourced data, he uploads an implementation of his operation, e.g., Java .class files,
to the cloud.More precisely, the user has to provide implementations of two functions,
the so called map function and the reduce function—these two functions will be
executed by the cloud on the user’s data.

EPiC’s counting “job” runs in two phases. First, in the “mapping” phase, Mapper
nodes scan data through InputSplits (data pieces split automatically by MapReduce
framework) and evaluate the counting’s map function on the data. These operations
are performed by all Mappers in parallel. The outputs of each map function are sent
to one Reducer node, which, in the “reducing” phase, aggregates them and produces
a final output that is sent back to the user. This setup takes advantage of the parallel
nature of a cloud data center and allows for scalability and elasticity.

3 EPiC protocol

To motivate the need for a more sophisticated protocol like EPiC, we briefly discuss
why possible straightforward solutions do not work in our application scenario.

Precomputed counters One could imagine that the cloud user, in the purpose of
counting a value χk in a single countable field Dk , simply stores encrypted counters
for each possible value of χk in domainDk in the cloud. Each time records are added,
removed or updated, the cloud user updates the encrypted counters. However, this
approach does not scale very well in our scenario where multiple cloud users (differ-
ent “doctors”) perform updates and add or modify records. An expensive user side
lockingmechanismwould be required to ensure consistency of the encrypted counters.
Moreover, in the case of complex queries involving multiple fields, all possible combi-
nations of counters need to be updated by users involving a lot of user side computation.

Per-record counters (“Voting”) Alternatively and similarly to a naive voting
scheme, each encrypted record stored in the cloud could be augmented with an
encrypted “voting” field containing |Dk | subsets, each of log2 n bits. If a record’s
countable value in field Dk matches the value corresponding to a subset, then the
according subset is set to 1. To find the count, the cloud sums the encrypted vot-
ing fields (using additive homomorphic encryption) for all records. Again, such an
approach requires heavy locking mechanism and recomputation of counters for each
operation of adding, removing, or modifying a record. In conclusion, these straight-
forward solutions require heavy user-side computation and do not provide efficient,
practical, and flexible solutions for multi-user, multiple field data sets.

3.1 EPiC overview

For ease of understanding, we initially introduce EPiC for the simpler case of count-
ing on only a single countable field Dk in a multiple countable fields data set where
values are in GF(q). Subsequently, we extend EPiC to support counting on Boolean
combinations of multiple countable fieldsD1, . . . ,Dm over GF(q). Finally, for perfor-
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mance improvement, we further optimize our mechanisms by considering conversion
of (generic) finite fields GF(q) into binary finite fields GF(2).

EPiC’s main rationale is to perform the counting in the cloud by evaluating an
indicator polynomial Pχ (·), as query Q, specific to the pattern χ the cloud user U is
interested in. Conceptually, the cloud evaluates Pχ (·) on the countable fields’ values
of each record. The outcome of all individual polynomial evaluations is a (large) set of
values of either “1” or “0”. The cloud now adds these values and sends the sum back
to U , who learns the number of occurrences of χ in the investigated set of records.

3.2 Counting on a single field

Without loss of generality, we assume a user U wishes to count occurrences of χ in
the first field D1 in an oblivious manner. The idea is to prepare a univariate indicator
polynomial Pχ (x) such that

Pχ (x) =
{

1, if x = χ

0, otherwise
, (1)

and scan through the data set R = {R1, . . . , Rn} of all records to compute the sum
∑n

i=1 Pχ (Ri,1). The result is the number of occurrences of χ in the first field in the
data set. The idea for generating Pχ (x) is to construct the polynomial in the Lagrange
interpolation form

Pχ (x) :=
|D1|−1
∑

j=0

a j · x j :=
∏

α∈D1,α �=χ

x − α

χ − α
. (2)

The polynomial Pχ (x) is of degree |D1| − 1, and its coefficients a j are uniquely
determined.

Encrypted polynomial In EPiC, each countable value Ri,k is encrypted to ERi,k . The
above indicator polynomial based counting method for plaintext values can be applied
to ciphertexts in a similar manner. User U prepares the indicator polynomial based on
plaintext χ , but U encrypts coefficients a j to Ea j before sending them to the cloud,
which now computes the encrypted sum

EΣ :=
n

∑

i=1

Pχ (ERi,1) =
n

∑

i=1

|D1|−1
∑

j=0

Ea j · (ERi,1)
j . (3)

Note that the polynomial coefficients are encrypted (and potentially large), but the
polynomial degree remains |D1|−1. In order for the cloud to compute EΣ and user U
to decrypt it later, additively andmultiplicatively homomorphic properties are required
for the encryption, which we describe in Sect. 3.5. As a final step, U simply receives
back EΣ and only decrypts the count σ := Dec(EΣ) = Pχ (x). This does not require
high computational costs at the user, suiting the cloud computing paradigm well.
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Cloud computation cost The above technique requires n · |D1| additions, n · |D1|
multiplications, and n · (|D1| − 1) exponentiations. We can improve efficiency by
rearranging the order of computations in Eq. (3) as follows:

EΣ :=
n

∑

i=1

Pχ (ERi,1) =
n

∑

i=1

|D1|−1
∑

j=0

Ea j · (ERi,1)
j =

|D1|−1
∑

j=0

(

Ea j ·
n

∑

i=1

(ERi,1)
j

)

.

(4)
Therewith, the number of multiplications is reduced to |D1|. We also note that in the
case of a binary domain (|D1| = 2), Eq. (4) becomes EΣ = Ea0 ·n+ Ea1 ·∑n

i=1 ERi,1 ,
i.e., there are no exponentiations. This observation motivates our optimization
described later in Sect. 3.4.

Oblivious counting First, the query is submitted to the cloud as a sequence of
encrypted coefficients of the indicator polynomial; second, no matter what query is
made, exactly |D1| coefficients (including 0-coefficients) are sent, thus preventing the
cloud to infer query information based on the query size. We will discuss the user
privacy in details in Sect. 3.7.

3.3 Counting patterns defined by a Boolean formula

We now extend the indicator polynomial based counting technique towards a general
solution for counting patterns defined by any Boolean combination of multiple fields
in the data set. That is, each Ri record can contain multiple countable fields, such as
Ri,1, Ri,2, . . . , Ri,m . First, we present EPiC’s construction of the indicator polynomial
for conjunctive combinations of fields (Imagine U being interested in counting the
number of recordswhere Ri .c1 = χ1 and Ri .c2 = χ2). Besides supporting conjunctive
combinations, we extend EPiC to disjunctive combinations. Therewith, we generalize
EPiC for any Boolean combination of the countable fields. The key technique for
defining an indicator polynomial corresponding to an arbitrary Boolean expression
among multiple fields is to transform Boolean operations to arithmetic operations,
which is similar to arithmetization [3,18].

Conjunctive counting Assume cloud user U is interested in counting the number
of records that have their m countable fields set to the pattern χ = (χ1, . . . , χm).
Here, χk denotes the queried value in the k-th field (1 ≤ k ≤ m). Let ϕ = (x1 =
χ1 ∧ · · · ∧ xm = χm) be the conjunction among m fields in the data set. User U can
now construct

Pϕ(x) =
m

∏

k=1

Pχk (xk), (5)

where x = (x1, . . . , xm) denotes the variables in the multivariate polynomial Pϕ(x),
and Pχk (xk) is the univariate indicator polynomial (as defined in Sect. 3.2) for counting
χk in the k-th field. Therewith, Pϕ(x) satisfies the property of indicator polynomial
as in Eq. (1), i.e., Pϕ(x) yields 1 only when χ is matched. Note that the size of the
multi-domain D is |D| = ∏m

k=1 |Dk |, and the degree of Pϕ(x) is
∑m

k=1 (|Dk | − 1).
The product of univariate polynomials in Eq. (5) can be expanded to
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m
∏

k=1

Pχk (xk) =
∑

∀j=( j1,..., jm )

aj · x j1
1 · x j2

2 · · · x jm
m ,

inwhich each coefficientaj is uniquely determined byaj = a1, j1 ·a2, j2 · · · am, jm , where
ak, jk is a coefficient of the k-th univariate indicator polynomial Pχk (xk) corresponding

to the exponent x jk
k . User U prepares all coefficients aj of the indicator polynomial

and sends their encryption Eaj to the cloud, which then computes the encrypted sum
EΣ and replies back to U for decrypting the count.

Disjunctive counting Assume U’s objective is to count the number of records that
have value χ1 in D1 or value χ2 in D2. The multivariate indicator polynomial for this
disjunction is computed as

Pχ1∨χ2(x) = Pχ1(x1) + Pχ2(x2) − Pχ1∧χ2(x), (6)

where Pχ1(x1), Pχ2(x2) are univariate indicator polynomials forD1,D2, respectively,
and Pχ1∧χ2(x) is amultivariate indicator polynomial for conjunctive counting between
D1 and D2. This method can be easily generalized to design counting query for dis-
junctions of m fields.

Complement counting U can count records that do not satisfy a condition among
fields by “flipping” the satisfying indicator polynomial: P¬ϕ(x) = 1 − Pϕ(x).

Integer range counting Assume U wants to count records having a field Dk lying in
an integer range [a, b], i.e., ϕ = (xk = a ∨ xk = a + 1 ∨ · · · ∨ xk = b). Based on
disjunctive constructing method, we have P[a,b](xk) = Pa(xk) + Pa+1(xk) + · · · +
Pb(xk) − Pa∧a+1 − . . .; Since (xk = u) and (xk = v) are exclusive disjunctions for
any u �= v ∈ [a, b], P[a,b](xk) reduces to: P[a,b](xk) = ∑b

χk=a Pχk (xk).

Integer comparison counting Integer comparisons can be constructed based on inte-
ger range counting: Pχk≤a(xk) = P[0,a](xk), or Pχk>a(xk) = P[a+1,|Dk |−1](xk). Our
initial motivating example in Sect. 1 can be expressed as:

Pϕ(x) =
⎛

⎝

70
∑

age=50

Page(x)

⎞

⎠ · (

Pdia=1(x) + Phyp=1(x) − Pdia=1(x) · Phyp=1(x)
)

.

PrivacyAlthough the user-defined queries are different in construction, the encrypted
queries Q always have exactly |D| = ∏m

k=1 |Dk | encrypted coefficients as we include
zero coefficients also. Asmentioned in Sect. 3.2, this prevents the cloud to differentiate
queries based on query sizes.

Efficiency The user-side computation involving constructing the query’s coefficients
is carried on plain-text before encryption, hence it introduces much lower computation
cost compared to the computation burden on the cloud. To improve the user-side perfor-
mance, one could apply optimizing techniques for reducing complex expressions, but
this is out of scope of our work. To improve the cloud’s performance, we rearrange the
order of computations for the sequence of encryptedfields E(Ri ) = (ERi,1 , . . . , ERi,m )

and coefficients aj, j = ( j1, . . . , jm) ∈ D to achieve EΣ as
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n
∑

i=1

Pχ (E(Ri )) =
n

∑

i=1

∑

j∈D
Eaj(ERi,1)

j1 · · · (ERi,m ) jm

=
∑

j∈D

(

Eaj

n
∑

i=1

m
∏

k=1

(ERi,k )
jk

)

where aj are the query’s coefficients corresponding to monomials x j1
1 · x j2

2 · · · x jm
m .

3.4 Optimization through arithmetization in GF(2)

EPiC’s efficiency relies on the computations performed by the cloud. As discussed in
Sect. 3.2, there are no exponentiations required for counting on a binary field. Con-
sequently, we optimize EPiC by converting generic (non-binary) fields into multiple
binary fields, thereby avoiding costly exponentiations. Note that as the conversion pre-
serves Boolean expression output, results shown in Sect. 3.3 still hold, and protocol
details discussed later in Sect. 3.6 remain unchanged.

Our idea is to store every generic field Dk as separate binary fields Dk,1, Dk,2, . . .,
Dk,‖Dk‖. 2 Therefore, m generic fieldsD1, . . . ,Dm become

∑m
k=1 ‖Dk‖ binary fields

D1,1, . . . ,D1,‖D1‖, . . . ,Dm,1, . . . ,Dm,‖Dm‖. The indicator polynomial for counting
χk in each field Dk becomes

Pχk,1∧···∧χk,‖Dk‖(xk,1, . . . , x1,‖Dk‖) =
‖Dk‖∏

l=1

Pχk,l (xk,l),

where xk,l represents the l-th bit in the generic field Dk , and χk,l denotes the corre-
sponding queried bit value. Applying arithmetization to “transform” from Boolean to
multivariate polynomials, Boolean expressions of m generic fields can be converted
into equivalent multiple binary fields. For convenience in later sections, we call the
conversion to binary fields “GF(2) arithmetized” (shortly “G”), while the original is
“Basic” (shortly “B”). We note that although the number of coefficients of the GF(2)
arithmetized multivariate indicator polynomial corresponding to each query remains
the same as in the generic case, the (multivariate) degree of the GF(2) arithmetized
polynomial is much lower at

deg(P(G)) =
m

∑

k=1

‖Dk‖ =
m

∑

k=1

�log2 |Dk |� 
m

∑

k=1

(|Dk | − 1) = deg(P(B)).

This implies a significant improvement for computational costs on the cloud. We refer
to EPiC’s evaluation in Sect. 4 for details.

2 ‖X‖ = �log2 |X |� denotes size in bits of X .
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3.5 Encryption

Since EPiC’s indicator polynomial based counting technique involves additions and
multiplications on ciphertexts, an appropriate homomorphic encryption scheme is
needed as a building block. While there already exist various schemes, their compu-
tational complexities are often high [5,8,15,24], rendering their use in current clouds
impractical. Although EPiC can seamlessly integrate related work, we derive a some-
what homomorphic encryption scheme from the computational Private Information
Retrieval (cPIR) technique of Trostle and Parrish [22]. The scheme is a secret key
encryption scheme, where the cloud does not have the secret key to decrypt the data,
but instead blindly performs operations on outsourced data. Aswewill see, this scheme
does not enjoy the same security properties, i.e., IND-CPA, as related work, but only
security with respect to Definitions 3 and 4 as required in the specific context of EPiC.
Due to its weaker security properties, our scheme is especially practical in the settings
we target.

Again, we stress that any (somewhat) homomorphic encryption scheme can be
used as an exchangeable building block in EPiC. In the time between submission and
publication of this work, new research results have pointed out security issues with
the Hidden Modular Group Order assumption [16], and future work might consider
adopting, e.g, NTRU [12] for efficient (somewhat) homomorphic encryption.

3.5.1 Encryption scheme

– Key generation—KeyGen(s1, s2, n,D): Parameters s1, s2 ∈ N are security
parameters, n ∈ N is the upper bound for the total number of records in the data
set, and D = D1 × · · · ×Dm is the multi-domain of m countable fields. KeyGen
computes a random prime q, a random prime p, and a random (maybe non-prime)
b ∈ Zp. The secret key, the output of KeyGen, is defined as K := {p, b}. The
prime p and q are generated based on the following conditions (cf. Sect. 3.5.3):

q > n (7)

‖p‖ ≥ s1 + ‖n‖ + ‖q‖ +
m

∑

k=1

(s2 + ‖q‖) · (|Dk | − 1). (8)

– Encryption—Enc(P): Selects a random number r , ‖r‖ ≤ s2, and encrypts the
plaintext P to C = Enc(P) := b · (r · q + P) mod p.

– Decryption—Dec(C): Decrypts C to P = Dec(C) := b−1 · C mod p mod q.
– Security The security of our encryption scheme (cf. Sect. 3.7) is based on the
Hidden Modular Group Order hardness assumption and the cPIR protocol in [22].
The rationale is that, for appropriate security parameters, more than half of the
bits of p are still secret against any PPT adversary; and if a PPT adversary can
break the cPIR protocol, the Hidden Group Order p is also revealed, violating the
assumption.
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3.5.2 Arithmetic

The addition and multiplication operations on ciphertexts take place in the integers.
There is no modulo reduction, as the cloud does not know p. One can verify that
this scheme provides additively and multiplicatively homomorphic properties. Let
‖C‖ denote the size in bits of a ciphertext C. The size of ciphertext grows after each
operation (thus, this scheme is only somewhat homomorphic).

– Addition: ‖C1 + C2‖ =
{ ‖C1‖ + 1, if ‖C1‖ = ‖C2‖.
max(‖C1‖, ‖C2‖), otherwise.

.

– Multiplication: ‖C1 · C2‖ = ‖C1‖ + ‖C2‖ − 1.
– Scalar multiplication: ‖n · C‖ = ‖n‖ + ‖C‖ − 1.
– Exponentiation: ‖C j‖ = j · ‖C‖ − ( j − 1).

Note that a multiplication of ciphertexts will increase the exponent of b in the result.
Therefore, in general, a decryption of a ciphertext after ( j − 1) multiplications has to
be P j = Dec(C j , j) := b− j · C j mod p mod q. Note the soundness of our scheme:

Dec(C j , j) = b− j · C j mod p mod q = b− j · [b · (r · q + P)] j mod p mod q

= (r · q + P) j mod q = P j .

So, contrary to related work, decryption in our scheme requires a number of multi-
plications performed on the ciphertext. Also, EPiC’s encryption scheme does not allow
addition of two ciphertexts that have different exponents of b. In the particular context
of EPiC, we can accept these limitations, and we gain high computation efficiency in
return.

3.5.3 Selection of p and q

Since ciphertexts increase for every multiplication and addition, this scheme requires
a careful selection of q and p in advance such that the decryption is sound. Let
e(P) = r · q + P . Consider a ciphertext C = Enc(P) = b · e(P) mod p and its

decryption procedure: Dec(C) = b−1 · C mod p mod q = e(P) mod p mod q
(a)=

e(P) mod q
(b)= P . For the equalities (a) and (b) to hold, the plaintext P needs to

satisfy: 1) P ∈ G F(q) for (b) to hold; 2) e(P) ∈ G F(p) for (a) to hold.
In EPiC, user U receives the encrypted final sum EΣ from the cloud. In this

context, P = σ = Dec(EΣ) is the plaintext count to be decrypted from EΣ . The
first condition requires that σ ∈ G F(q). Since σ is the count value, it is at most the
number of records in the data set, i.e., σ ≤ n. This implies q > n as in Eq. (7).

Since e(σ ) = ∑

j∈D(e(aj) · ∑n
i=1

∏m
k=1(e(Ri,k))

jk ) and the second condition
requires e(σ ) ∈ G F(p). Therewith, we establish the lower bound on the size of p as
‖p‖ ≥ ‖n‖+‖q‖+∑m

k=1(s2+‖q‖)·(|Dk |−1). For theHiddenModular GroupOrder
assumption, a security parameter s1 has to be added to the size of p [22], therewith
yielding the requirement for p as in Eq. (8).
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3.5.4 Encrypting data and query

We employ this encryption scheme to encrypt both countable fields and query. Using
the secret key K = {p, b} returned from KeyGen, the user encrypts each countable
field Ri,k to ERi,k = Enc(Ri,k) before uploading his encrypted data to the cloud.
The encryption of a counting query Q, as a sequence of encrypted coefficients Eaj ,
however, is more difficult. A simple method of encrypting aj to Eaj = Enc(aj) does
not allow the decryption of the final sum EΣ of Eq. (7) due to different exponents of
b in the multivariate monomials, explained below.

Consider the cloud computation in Eq. (7) . For every j = ( j1, . . . , jm) ∈ D,
jk ∈ Dk , the corresponding multivariate monomial

∏m
k=1(ERi,k )

jk has a multi-degree
dependent on j. More precisely, let d1(j) = deg

∏m
k=1(ERi,k )

jk denote the multi-
degree of the multivariate monomial

∏m
k=1(ERi,k )

jk , then d1(j) = ∑m
k=1 jk . If aj was

simply encrypted similarly to the encryption of countable fields, i.e., Eaj = Enc(aj),
each product Eaj · ∑n

i=1
∏m

k=1(ERi,k )
jk would contain b of different degree equal to

1 + d1(j). This would prohibit additions among them to obtain the decryptable final
sum EΣ , as our encryption scheme only allows adding ciphertexts containing the same
exponents of b. Our approach is to “augment” the exponents of b in the coefficients.
Specifically, we encrypt aj to

Eaj := Enc(aj) · (Enc(1))d2(j) = bd2(j)+1 · e(aj) mod p, (9)

where d2(j) = ∑m
k=1(|Dk | − jk − 1). Therewith, EΣ will contain b of degree d =

1+ d1(j) + d2(j) = 1+ ∑m
k=1(|Dk | − 1), which is independent of j. All multivariate

monomials now have the same exponents of b, allowing successful decryption of EΣ .

3.6 Detailed protocol description

With all ingredients ready, we now describe EPiC using the notation of Sect. 2.1.
KeyGen(κ): Based on security parameter κ , cloud user U chooses s1, s2 for the

somewhat homomorphic encryption, determines an upper bound n for the total number
of records that might be stored and the appropriate multi-domain D for the count-
able fields. U generates a secret key K from the somewhat homomorphic encryption
KeyGen(s1, s2, n,D) and a symmetric key K ′ for a block cipher such as AES used
for non-countable data. The secret key S := {K , K ′} is used throughout EPiC.

Encrypt(S,R): Assume U wants to store n records R = {R1, . . . , Rn}. Each
record Ri is encrypted separating the countable values Ri,k from the rest of the
record. Ri,k is encrypted using the somewhat homomorphic encryption mechanism,
i.e., ERi,k := Enc({p, b}, Ri,k). For the rest of the record Ri , a random initialization
vector I V is chosen and the record is AESK -CBC encrypted. In conclusion, a record
Ri encrypts to ERi := {ERi,1 , . . . , ERi,m , I V,AESK-CBC(Ri,rest )}. The output of
Encrypt is the sequence of encrypted records. E := {ER1, . . . , ERn }.

Upload(E): Upload simply sends all records as one large file to the MapReduce
cloud where the file is automatically split into InputSplits.
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Algorithm 1: ProcessQuery

For each Mapper M:

init sj := 0, ∀j ∈ D
forall ERi in InputSplit(M) do

read {ERi,1 , . . . , ERi,m }
forall j = ( j1, . . . , jk ) ∈ D do

sj := sj + ∏m
k=1 (ERi,k ) jk

end
end
emit {j, sj}, ∀j ∈ D

Reducer R:

init EΣ := 0, Sj := 0, ∀j ∈ D
forall {j, sj} in MappersOutput do

Sj := Sj + sj
end
forall j in D do

EΣ := EΣ + Eaj · Sj
end
write {EΣ }

PrepareQuery(S, χ): To prepare a query for χ , U computes the |D| coefficients
aj, j ∈ D, of the indicator polynomial Pχ (x) as described in Sect. 3.3. Coefficients aj
are encrypted and sent to the cloud. The cloud will be using these coefficients to per-
form the evaluation of Pχ (x). Consequently in EPiC, the output Q of PrepareQuery
sent to the cloud is Q := {Eaj, j ∈ D}.

ProcessQuery(Q, E): Based on the data set size and the cloud configuration, the
MapReduce framework selects M Mapper nodes and 1 Reducer node. Algorithm 1
depicts the specification of EPiC’s map and reduce functions that will be executed
by the cloud. In the mapping phase, for each input record Ri in their locally stored
InputSplits, the Mappers compute in parallel all monomials

∏m
k=1 (ERi,k )

jk of the
countable fields and add the same-degree monomials together. After the Mappers
finish scanning over all records, the sums sj of monomials are output as key-value
pairs. These pairs contain the multi-degree j as key, and the computed sum sj as value.
In MapReduce, the output of the Mappers is then automatically sent (“emitted”) to the
Reducer. Based on the sums received from all Mappers, the Reducer combines them
together to obtain the global sums Sj, i.e., the sums over all records in the data set.
In a last step, the Reducer uses the coefficients Eaj received from U to evaluate the
polynomial by computing the inner product with the global sums. The result EΣ is
sent back to U and can be decrypted to obtain the count value.

Decode(S, EΣ): U receives EΣ and computes the counting result σ = Dec(EΣ).

3.7 Privacy analysis

We now formally prove Storage and Counting privacy for EPiC and its underlying
encryption. We stress that, below, we neither target nor prove that our encryption
provides traditional IND-CPA security. Instead, we show that, in combination with
other details of our protocol, it provides security according to Definitions 3 and 4.

Lemma 1 (Storage privacy) Based on the security of the cPIR scheme by Trostle and
Parrish [22], EPiC preserves storage privacy.

Proof cPIR-security by Trostle and Parrish [22] can be summarized as follows. With
a u × u bit database, a user wants to retrieve an y-th row and sends an encrypted
PIR request to the cloud: P = {Ev1, . . . , Evu }, where Evk = Enc(vk), cf. Sect. 3.5,
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and vk = 1, if k = y, and vk = 0 otherwise. This cPIR protocol is secure iff for
all PPT adversaries A∗, the probability of finding y is negligible more than guessing,
i.e., Pr

[A∗(P) = y
] ≤ 1/u + ε∗(κ). We now prove our lemma by reduction from

cPIR security.We show that, for security parameter κ , any PPT (t (κ), ε(κ))-adversary
A breaking EPiC’s storage privacy (Definition 3) in t (κ) steps with non-negligible
advantage ε(κ) can be used to construct a (t∗(κ), ε∗(κ))-adversaryA∗ as a subroutine
breaking the cPIR protocol in [22]. We construct A∗ based on the parity of u.
1. u is odd. First,A∗ receives as input the PIR request P and splits P into two halves
E = {Ev1, . . . , Ev�u/2� }, E ′ = {Ev�u/2�+1 , . . . , Eu−1}, i.e., treating the PIR request as
two EPiC data sets of the same size (�u/2� records). Since Evk are either encryp-
tions of 0 or 1, E and E ′ are now viewed as single-binary-field data sets, where each
record contains only 1 countable binary field.A∗ randomly selects l1, l2, l ′1, l ′2 ∈ [1, u]
and creates two EPiC counting queries Q = {Evl1

, Evl2
}, Q′ = {Evl′1

, Evl′2
}. These

are two valid queries, because for single-binary-field data sets E, E ′, any EPiC query
contains exactly 2 encrypted coefficients of 0 or 1, cf. Sect. 3.3. Then A∗ runs Pro-
cessQuery on E with Q, and E ′ with Q′, thereby obtaining EΣ and E ′

Σ .A∗ forwards
I = {E, E ′, Q, Q′, EΣ, E ′

Σ } to A. A∗’s output depends on A’s output as follows.
IfA outputs 0,A∗ outputs u. The intuition is that, sinceA “believes” the two halves

E and E ′ are the same, A′ concludes that the requested element must not belong to
either E or E ′, i.e., vu = 1. If A outputs 1, A∗ randomly selects k ∈ [1, u − 1] and
outputs k. The intuition is that “A outputs 1” indicates the requested row index is
between 1 and u − 1, and A∗ simply makes a random guess for it. The probability
for A∗ to output correctly is Pr

[A∗(P) = y
] = Pr [A = 0|y = u] · Pr [y = u] +

Pr [A = 1, k = y|y < u]· Pr [y < u] = ( 1
2 + ε(κ)

)· 1u +( 1
2 + ε(κ)

)· 1
u−1 · u−1

u = 1
u +

2ε(κ)
u . Therewith,A∗ has a non-negligible advantage of ε∗(κ) = 2ε(κ)/u in finding y.

2. u is even. A∗ makes a new PIR request P ′ by removing the last element vu from
P , that is P ′ = {Ev1, . . . , Evu−1}. Then A∗ uses the same approach as above for P ′,
i.e., splitting P ′ into 2 halves, feeding both toA. Now,A∗ outputs u − 1, ifA outputs
0, or outputs random k ∈ [1, u − 2] otherwise. It can be observed that A∗ can find y
with non-negligible probability, only if y �= u, i.e., the requested element is not the
last element discarded from P . Otherwise,A∗ cannot find y. More precisely, the prob-
ability of correct guess is Pr

[A∗(P) = y
] = Pr

[

A∗(P ′) = y|y < u
] · Pr [y < u] +

Pr
[

A∗(P ′) = y|y = u
] · Pr [y = u] =

(
1

u−1 + 2ε(κ)
u−1

)

· u−1
u + 0 · 1

u = 1
u + 2ε(κ)

u .

Therefore, A∗ also has a non-negligible advantage of 2ε(κ)/u in finding y.
Consequently, in both cases, A∗ has a non-negligible advantage ε∗(κ) = 2ε(κ)/u

of breaking the cPIR protocol in t∗(κ) = t (κ) steps, rendering our reduction tight.
��

Lemma 2 (Counting privacy) Based on the security of the cPIR scheme by Trostle
and Parrish [22], EPiC preserves counting privacy.

Proof We prove our lemma by reduction from cPIR security. Recall the cPIR-security
definition as in Lemma 1’s proof. We assume the existence of a PPT (t (κ), ε(κ))-
EPiC-adversaryA breaking EPiC’s counting privacy (Definition 4) in t (κ) steps with
non-negligible advantage ε(κ). In the following, we construct a new (t∗(κ), ε∗(κ))-
PIR-adversary A∗ that breaks this cPIR security.
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A∗ receives as input the PIR request P = {Ev1, . . . , Evu }, where vy = 1 and vk =
0,∀k �= y. The goal ofA∗ is to guess y. First,A∗ sets E = E ′ = P and randomly picks
4 elements El1 , El2 , El ′1 , El ′2 from P to make two EPiC queries Q = {El1 , El2}, Q′ =
{El ′1, El ′2}. Note that E, E ′ can be viewed as EPiC’s two identical single-binary-field
data sets, and Q, Q′ are valid queries (corresponding to some patterns χ, χ ′) for E, E ′.
Then A∗ runs ProcessQuery on E with Q and on E ′ with Q′ to obtain EΣ , E ′

Σ .
Now, A∗ forwards I = {E, E ′, Q, Q′, EΣ, E ′

Σ } to A and observes A’s output.
Let U = {1, . . . , u}, L = {l1, l2, l ′1, l ′2}. If A returns 1, A∗ concludes that

the two queries Q and Q′ are identical, implying that Evy /∈ Q ∪ Q′, i.e.,
y /∈ L . Therewith, A∗ makes a guess for y by selecting a random k ∈
U\L and outputs k. Otherwise, if A returns 0, A∗ concludes that vy is in
either Q or Q′, thus A∗ outputs a random k ∈ L . The probability of cor-
rect guess is Pr

[A∗(P) = y
] = Pr [A(I ) = 1, k = y|y ∈ U\L] · Pr [y ∈ U\L] +

Pr [A(I ) = 0, k = y|y ∈ L]· Pr [y ∈ L] = ( 1
2 + ε(κ)

)· 1
u−4 · u−4

u +( 1
2 + ε(κ)

)· 14 · 4u =
1
u + 2ε(κ)

u . That is A∗ has a non-negligible advantage ε′(κ) = 2ε(κ)/u of breaking the
cPIR protocol in t∗(κ) = t (κ) steps. ��

4 Evaluation

To show its real-world applicability, we have implemented EPiC in Hadoop’s MapRe-
duce framework v1.0.3 [2], and evaluated it onAmazon’s publicMapReduce cloud [1].
EPiC implementation is written in Java, and all cryptographic operations are unop-
timized, relying on Java’s standard BigInteger data type. Still, exponentiation, e.g.
C j , with j = 15 and |C| ≈ 4000 takes < 2ms on a 1.8GHz Intel Core i7 laptop, a
single addition is not measurable with < 1μs. Figure 1 shows a benchmark of various
operations on the ciphertexts using our encryption scheme. In our evaluation, we use
security parameters s1 = 400 bits for good security [22], and s2 = |r | = 160 bits.
We have implemented a data generator program to randomly generate patient records
with m countable fields with size between 4 and 10 bits.

We have evaluated the performance of EPiC by comparing our “Basic” and “GF(2)
arithmetized” solutions with a “non-privacy-preserving” solution. Unless otherwise
stated, the single/multi-domain size in both “Basic” and “GF(2) arithmetized” solu-
tions is always set to the same value |D| for comparison. For brief presentation, we use
subscript “B” for Basic, and “G” for GF(2) arithmetized approach, e.g., ‖pB‖, ‖pG‖
indicate the size in bits of p in Basic, GF(2) arithmetized approach respectively. We
also set u = s1 + ‖n‖ + ‖q‖, v = s2 + ‖q‖ as fixed parameters.

Size of prime p As discussed in Sect. 3.5, prime q depends only on the number of
records n, while prime p also depends on |D|. We show the benefit of the GF(2)
arithmetized approach (m = ‖D‖, |Dk | = 2) by demonstrating that a conversion to
multiple binary fields reduces ‖p‖ significantly to ‖pG‖ = u + ‖D‖ · v, while the
Basic approach (m = 1, |D1| = |D|) requires that ‖pB‖ = u + (|D| − 1) · v. Figure 2
shows ‖p‖’s logarithmic increase with GF(2) arithmetized and linear increase with
Basic approach.
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Fig. 1 Computation time of
various operations on ciphertexts
using our encryption scheme.
The exponentiation time is
measured for C15
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Fig. 2 Size of p depends on
size of domain D
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Storage costThe storage cost depends on the size of the data stored on the cloud,which
is determined by the size of p. In Basic approach, a generic field of domainD requires
a storage of SB = ‖pB‖ = u + (|D| − 1) · v bits. In GF(2) arithmetized approach,
the equivalent multiple binary fields requires a storage of SG = ‖D‖ · ‖pG‖ =
‖D‖ · (u + ‖D‖ · v) bits. Again, in Fig. 3, we see a linear increase of storage in Basic,
and logarithmic increase in GF(2) arithmetized approach.

User computation cost U prepares the query in plaintext, which incurs very low com-
putation cost compared to ciphertext operations performed on the cloud. Encrypting
one coefficient takes about 1 ms (Fig. 1), resulting in roughly |D| ms for encrypting
all |D| coefficients of the query, regardless of using Basic or GF(2) arithmetized.

Communication cost Due to oblivious counting, user U prepares and sends all |D|
coefficients corresponding toallmonomials to the cloud.The total size of the encrypted
coefficients is |D| · ‖p‖. In Basic approach, the query size is Q B = |D| · ‖pB‖ =
|D| · (u + (|D| − 1) · v). In contrast, the GF(2) arithmetized approach reduces to
QG = |D| · ‖pG‖ = |D| · (u + ‖D‖ · v). For example of a data set containing
n = 106 records with a countable field of domain size |D| = 1024 (i.e., ‖D‖ = 10),
the corresponding query size in each approach is Q B = 22.5 MBytes, and QG =
280 KBytes, respectively.

The answer size (size in bits of the received ciphertext as final sum) depends on
the maximum size of the multivariate monomial. The monomial size is determined
by the ciphertext size (i.e., ‖p‖) and the number of performed multiplications, i.e., its
multi-degree. Let d denote the maximum multi-degree of monomials, then, d = |D|
in the Basic approach, and d = ‖D‖ in the GF(2) arithmetized approach. We have
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Fig. 3 Consumed storage for
each field depends on size of
domain D
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Fig. 4 Communication cost
depends on size of domain D
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AB = |D|·‖pB‖ = |D|·(u+(|D|−1)·v) and AG = ‖D‖·‖pG‖ = ‖D‖·(u+‖D‖·v).

For example of a data set of n = 106 records with a countable field of |D| = 1024,
the answer size in each approach is AB = 22.5 Mbytes, and AG = 2.7 KBytes,
respectively.

Total transfer cost: The total communication cost, C = Q + A, as shown in Fig. 4, is
much less in GF(2) arithmetized approach than in Basic approach:

CB = Q B + AB = 2 · |D| · (u + (|D| − 1) · v),

CG = QG + AG = (|D| + ‖D‖) · (u + ‖D‖ · v).

Cloud computationWehave evaluated the cloud computation cost for large-scale data
sets on Amazon’s public cloud. As Amazon imposes an (initial) limit of 20 instances
per job, we restrict ourselves to 20 Standard Large On-Demand instances [1]. Each
instance comprises 4 2.27GHz Intel Xeon CPUs and a total of 7.5 GB RAM.

Variable data set size First, we fix the size of each record to 1 MB. The data set size
(x-axis) is varied from 100 GB to 1 TB. We query a countable field of size |D| = 16.
Figure 5 shows the average counting time for a MapReduce job on the whole data
set of different sizes. The y-axis shows the total time for MapReduce to evaluate the
user’s query. This is the time that a user has to pay for to Amazon. To put our results
into perspective, we not only show the time for both Basic and GF(2) arithmetized
approaches, but as well the time a “non-privacy-preserving” counting would take, i.e.,
the countable field is not encrypted and directly counted. Moreover, we also show
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Fig. 5 Counting time versus
data set size (|D| = 16)
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Fig. 6 50 GB data sets, varying
record size (|D| = 16)
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the overhead ratio between EPiC’s two approaches and non-private counting. The
additional overhead introduced by EPiC over non-private counting is less than 20%.
We conjecture that only 20% overhead/additional cost over non-privacy-preserving
counting is acceptable in many real-world situations, rendering EPiC practical.

Variable record size To also evaluate the effect of the size of the records on the general
performance, we run the system with a fixed data set size of 50 GB. The record size is
changed from100KB to 1MB. Figure 6 shows that, while IO time remains unchanged,
a higher number of records increases counting time in EPiC. However, the overhead
of EPiC is still under 20% even for small record sizes such as 100 KB compared to
non-private counting. That is, EPiC is efficient even for small patient records.
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Fig. 8 Different query types on
the same data set
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Effect of multiple fields To study the efficiency of transforming a single countable field
D into multiple fields of different size, we conduct an experiment on a data set size of
100GB. The total domain size is set to |D| = 1024 (10 bits). We compare three cases:
(a) transform D into 10 single binary fields; (b) transform D into 5 quaternary fields
each of 2 bits; (c) transformD into 3 fields of 3 bits, 3 bits, and 4 bits, respectively. In
Fig. 7, we can see that the GF(2) arithmetized approach yields the best performance.

Query types Finally, to evaluate the effects of different query types on the performance,
we run EPiC with a fixed data set of 100 GB. Total domain size is |D| = 1024. We
make 3 different queries: (a) query for a specific value; (b) query for the MSB of the
field equal to 0; (c) query for the LSB of the field equal to 0. Figure 8 demonstrates
that there is no significant difference in counting time between different queries.

5 Related work

Protecting privacy of outsourced data and delegated operations in a cloud computing
environment is the perfect setting for fully homomorphic encryption. While there is
certainly a lot of ongoing research in fully homomorphic encryption (see Vaikun-
tanathan [23] for an overview), current implementations indicate high storage and
computational overhead [9], rendering fully homomorphic encryption impractical for
the cloud.

Similar to EPiC, Lauter et al. [15] observe that oftenweaker “somewhat” homomor-
phic encryption might be sufficient. Lauter et al. [15]’s scheme is based on a protocol
for lattice-based cryptography by Brakerski and Vaikuntanathan [5]. However, for
the specific application scenario considered in this paper, EPiC’s somewhat homo-
morphic encryption scheme allows for much faster exponentiation. Superficially, our
work bears similarity with the work of Kamara and Raykova [13] that protect poly-
nomial evaluation by randomized reduction techniques. With q being the degree of a
polynomial, the user splits each data record into 2 ·q +1 shares, each of size 2 ·q +1.
Shares are then uploaded and evaluated in parallel, and results are aggregated. How-
ever, storage expansion, even for modest values of q, the approach quickly becomes
impractical. Also, for different polynomials, the user would need to upload the data
multiple times.

Searching on encrypted data has received a lot of attention recently, cf. seminal
papers [4,19]. While closely related, it is far from straightforward to adopt these
schemes to perform efficient counting in a highly parallel cloud computing, e.g.,
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MapReduce environment. Also notice that, e.g., Boneh et al. [4] rely on the compu-
tation of very expensive bilinear pairings for each element of a data set, rendering
this approach impractical in a cloud setting. Much research has been done to compute
statistics in a privacy-preserving manner using differential privacy, see the seminal
paper by Dwork [7]. Contrary to the threat model considered in this paper, the adver-
sary in differential privacy research is not the cloud infrastructure, but a curious user
querying statistics to learn information about individual entries in a data set. EPiC
addresses the opposite problem, where a user does not trust the cloud infrastructure.

6 Conclusion

In this paper, we present EPiC to address a fundamental problem of statistics compu-
tation on outsourced data: privacy-preserving pattern counting. EPiC’s main idea is to
count occurrences of patterns in outsourced data through a privacy-preserving sum-
mation of the pattern’s indicator-polynomial evaluations over the encrypted dataset
records. Using a “somewhat homomorphic” encryption mechanism, the cloud neither
learns any information about outsourced data nor about the queries performed. Our
implementation and evaluation results for MapReduce running on Amazon’s cloud
with up to 1 TByte of data show only modest overhead compared to non-privacy-
preserving counting. This makes EPiC practical in a real-world cloud computing
setting today.
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