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Abstract. In the face of an untrusted cloud infrastructure, outsourced data needs
to be protected. We present EPiC, a practical protocol for the privacy-preserving
evaluation of a fundamental operation on data sets: frequency counting. We show
how a general pattern, defined by a Boolean formula, is arithmetized into a multi-
variate polynomial and used in EPiC. To increase the performance of the system,
we introduce a new efficient privacy-preserving encoding with “somewhat ho-
momorphic” properties based on previous work on the Hidden Modular Group
assumption. Besides a formal analysis where we prove EPiC’s privacy, we also
present implementation and evaluation results. We specifically target Google’s
prominent MapReduce paradigm as offered by major cloud providers. Our eval-
uation performed both locally and in Amazon’s public cloud with up to 1 TByte
data sets shows only a modest overhead of 20% compared to non-private count-
ing, attesting to EPiC’s efficiency.

1 Introduction
Cloud computing is a promising technology for large enterprises and even governmen-
tal organizations. Major cloud computing providers such as Amazon and Google offer
users to outsource their data and computation. While the idea of moving data and com-
putation to a (public) cloud for cost savings is appealing, trusting the cloud to store and
protect data against adversaries is a serious concern for users. The encryption of data
is a viable privacy protection mechanism, but it renders subsequent operations on en-
crypted data a challenging problem. To address this problem, Fully Homomorphic En-
cryption (FHE) techniques have been investigated, cf. Gentry [8] or see Vaikuntanathan
[15] for an overview. FHE guarantees that the cloud neither learns details about the
stored data nor about the results. However, today’s FHE schemes are still overly in-
efficient [5, 9, 16], and a deployment in a real-world cloud would outweigh any cost
advantage offered by the cloud. Moreover, any solution for a real-world cloud needs to
be tailored to the specifics of the cloud computing paradigm, e.g., MapReduce [6].

This paper presents EPiC – Efficient PrIvacy-preserving Counting for MapReduce,
an efficient, practical, yet privacy-preserving protocol for a fundamental data analysis
primitive in MapReduce: counting occurrences of patterns. In an outsourced data set
comprising a large number of encrypted data records, EPiC allows the cloud user to
specify a pattern, and the cloud will count the number of occurrences of this pattern
(and therefore histograms) in the stored ciphertexts without revealing the pattern and
how often it occurs. A pattern is expressed as a Boolean formula on countable fields



of data records and can specify a specific field value, a value comparison, a range of
field values, and more complex forms of conjunctions/disjunctions among sub-patterns.
For example, in an outsourced data set of patient health records, a pattern could be
age ∈ [50, 70] and (diabetes = 1 or hypertension = 1). The main idea of EPiC is
to transform the problem of privacy-preserving pattern counting into a summation of
polynomial evaluations. Our work is inspired by Lauter et al. [11] to use somewhat ho-
momorphic encryption to address specific privacy-preserving operations. In EPiC, we
extend a previous work on cPIR protocols [14] to design a new “encoding” mechanism
that exhibits somewhat homomorphic properties. While we call our encoding encryp-
tion in the rest of this paper, we stress that our encryption does not provide traditional
IND-CPA security, but only weaker properties suited to the context we target in this
paper, i.e., the summation of polynomial evaluations. In return, our “encryption” is par-
ticularly efficient in this context. We also show how a general pattern, defined by a
Boolean formula, is arithmetized into a multivariate polynomial over GF (2), optimiz-
ing for efficiency. In conclusion, the contributions of this paper are:

– EPiC, a new protocol to enable privacy-preserving pattern counting in MapReduce
clouds. EPiC reduces the problem of counting occurrences of a Boolean pattern to
the summation of a multivariate polynomial evaluated on encrypted data.

– A new, practical “somewhat homomorphic” encoding/encryption scheme specifi-
cally addressing secure counting in a highly efficient manner.

– An implementation of EPiC and its encryption mechanism together with an exten-
sive evaluation in a realistic setting. The source code is available for download [17].

2 Problem Statement
Overview: We will use an example application to motivate our work. Imagine a hospi-
tal scenario where patient records are managed electronically. To reduce cost and grant
access to, e.g., other hospitals and external doctors, the hospital refrains from investing
into an own, local data center, but plans to outsource patient records to a public cloud.
Regulatory matters require the privacy-protection of sensitive medical information, so
outsourced data has to be encrypted. However, besides uploading, retrieving or edit-
ing patient records performed by multiple entities (hospitals, doctors etc.), one entity
eventually wants to collect some statistics on the outsourced patient records without the
necessity of downloading all of them.

2.1 Cloud Counting
More specifically, we assume that each patient record R includes one or more count-
able fields R.c containing some patterns. A user (e.g., doctor) U wants to extract the
frequency of occurrence of pattern χ, e.g., how many patients have R.disease = χ.
Due to the large amount of data, downloading each patient record is prohibitive, and the
counting should be performed by the cloud. While encryption of data, access control,
and key management in a multi-user cloud environment are clearly important topics, we
focus on the problem of a-posteriori extracting information out of the outsourced data in
a privacy-preserving manner. The cloud must neither learn details about the stored data,
nor any information about the counting, what is counted, the count itself, etc. Instead,
the cloud processes U’s counting queries “obliviously”. We will now first specify the



general setup of counting schemes for public clouds and then formally define privacy
requirements. Note that throughout this paper, we will assume the countable fields to
be non-negative integer fields. Besides, records may contain non-countable data, e.g.,
pictures or doctors’ notes, that can be IND-CPA (AES-CBC) encrypted – Therewith, it
is of no importance for privacy defined below.

Definition 1 (Cloud Counting). Let R denote a sequence of records R := {R1, . . . ,
Rn}. Besides some non-countable data, each record Ri contains m different countable
fields. The k-th countable field of the i-th record, denoted as Ri,k, 1 ≤ k ≤ m, can take
values Ri,k ∈ Dk = {0, 1, . . . , |Dk| − 1}, where Dk denotes the domain of the k-th
field with size3 |Dk|. For the “multi-domain” of m countable fields we write D = D1×
· · · ×Dm. A privacy-preserving counting scheme comprises the following probabilistic
polynomial time algorithms:

1. KEYGEN(κ): using a security parameter κ, outputs a secret key S.
2. ENCRYPT(S,R): uses secret key S to encrypt the sequence of records R to E :=
{ER1

, . . . , ERn
}, where ERi

denotes the encryption of record Ri.
3. UPLOAD(E): uploads the sequence of encryptions E to the cloud.
4. PREPAREQUERY(S, χ): generates an encrypted query Q out of secret S and the

multiple-field pattern χ ∈ D.
5. PROCESSQUERY(Q, E): uses an encrypted queryQ, the sequence of ciphertexts E ,

and outputs a result EΣ . This algorithm performs the actual counting.
6. DECODE(S, EΣ): takes secret S and EΣ to output a final result, the occurrences
Σ (the “count”) of the specified pattern inR.

According to this definition, cloud user U encrypts the sequence of records and
uploads them into the cloud. If U wants to know the number of occurrences of χ in the
records, he prepares a query Q, which is – as we will see later – simply a fixed-length
sequence of encrypted values. U then sends Q to the cloud, and the cloud processes Q.
Finally, the cloud sends a result EΣ back to U who can decrypt this result and learn the
number Σ of occurrences of pattern χ, i.e., the count.

2.2 Privacy

In the face of an untrusted cloud infrastructure, cloud user U wants to perform counting
in a privacy-preserving manner. Informally, we demand 1) storage privacy, where the
cloud does not learn anything about stored data, and 2) counting privacy, where the
cloud does not learn anything about queries and query results. The cloud, which we
now call “adversary” A, should only learn “trivial” privacy properties like the total
size of outsourced data, the total number of patient records or the number of counting
operations performed for U . We formalize privacy for counting using a game-based
setup. In the following, ε(κ) denotes a negligible function in the security parameter κ.

Definition 2 (Bit mapping). Let R = {R1, . . . , Rn} be a set of records, and Ri,k ∈
{0, 1}∗ the k-th field of record Ri. Let χ,Σ ∈ {0, 1}∗ be bit string representations of a
pattern and a count. For X ∈ {Ri,k, χ,Σ}, bit(j,X) denotes the j-th bit of X .

3 Domain size |Dk| indicates the number of different values a field can take.



Definition 3 (Storage privacy). A challenger generates two same-size same-field-types
sets of records R,R′ and two patterns χ, χ′ ∈ D. The challenger then uses ENCRYPT
and PREPAREQUERY to compute the encrypted sets of records E , E ′ and two encrypted
counting queries Q,Q′ corresponding to two patterns χ, χ′. Using PROCESSQUERY,
he evaluates E with Q, and E ′ with Q′ to get encrypted results EΣ , E′Σ . The challenger
sends I := {E , E ′, Q,Q′, EΣ , E′Σ} to adversary A. For any patterns χ, χ′, any X,X ′

such that either X ∈ {{Ri,k}} and X ′ ∈ {{Ri,k}} or X = χ and X ′ = χ′ or X = Σ
and X ′ = Σ′, and for any b = bit(j,X) and b′ = bit(j′, X ′), the adversaryA outputs
1, if she guesses b = b′, and 0 otherwise. A protocol preserves storage privacy, iff for
any probabilistic polynomial time (PPT) algorithm A, the probability of correct output
is not higher than a random guess. That is,

∣∣Pr [A(I) = 1|b = b′]− 1
2

∣∣ ≤ ε(κ) and∣∣Pr [A(I) = 0|b 6= b′]− 1
2

∣∣ ≤ ε(κ).
Definition 4 (Counting privacy). A challenger generates two same-size same-field-
types sets of records R,R′, and two patterns χ, χ′, uses ENCRYPT, PREPAREQUERY,
and PROCESSQUERY, and sends encrypted I := {E , E ′, Q,Q′, EΣ , E′Σ}, to A. Now,
A outputs 1, if χ = χ′, and 0 otherwise. A protocol preserves counting privacy, iff
for any PPT algorithm A the probability of correct output is not better than a random
guess:

∣∣Pr [A(I) = 1|χ = χ′]− 1
2

∣∣ ≤ ε(κ) and
∣∣Pr [A(I) = 0|χ 6= χ′]− 1

2

∣∣ ≤ ε(κ).
Similar to traditional indistinguishability, storage privacy and counting privacy cap-

tures the intuition that, by storing data and counting, the cloud should not learn anything
about the content it stores. In addition, the cloud should not learn anything about the
counting performed, such as which pattern is counted, whether a pattern is counted
twice or what the resulting count is.

2.3 MapReduce
The efficiency of counting relies on the performance of PROCESSQUERY which in-
volves processing huge amounts of data in the cloud. Cloud computing usually pro-
cesses data in parallel via multiple nodes in the cloud data center based on some com-
putation paradigm. For efficiency, PROCESSQUERY has to take the specifics of that
computation into account. One of the most widespread, frequently used framework
for distributed computation that is offered by major cloud providers today is MapRe-
duce [6]. EPiC’s counting “job” runs in two phases. First, in the “mapping” phase, Map-
per nodes scan data through InputSplits (data pieces split automatically by MapReduce
framework) and evaluate the counting’s map function on the data. These operations are
performed by all Mappers in parallel. The outputs of each map function are sent to one
Reducer node, which, in the “reducing” phase, aggregates them and produces a final
output that is sent back to the user. This setup takes advantage of the parallel nature of
a cloud data center and allows for scalability and elasticity.

3 EPiC Protocol
To motivate the need for a more sophisticated protocol like EPiC, we briefly discuss why
possible straightforward solutions do not work in our particular application scenario.
Precomputed Counters: One could imagine that the cloud user, in the purpose of count-
ing a value χk in a single countable field Dk, simply stores encrypted counters for each



possible value of χk in domain Dk in the cloud. Each time records are added, removed
or updated, the cloud user updates the encrypted counters. However, this approach does
not scale very well in our scenario where multiple cloud users (different “doctors”) per-
form updates and add or modify records. An expensive user side locking mechanism
would be required to ensure consistency of the encrypted counters. Moreover, in the
case of complex queries involving multiple fields, all possible combinations of counters
need to be updated by users involving a lot of user side computation.
Per-Record Counters (“Voting”): Alternatively and similar to a naive voting scheme,
each encrypted record stored in the cloud could be augmented with an encrypted “vot-
ing” field containing |Dk| subsets, each of log2 n bits. If a record’s countable value
in field Dk matches the value corresponding to a subset, then the according subset is
set to 1. To find the count, the cloud sums the encrypted voting fields (using addi-
tive homomorphic encryption) for all records. Again, such an approach requires heavy
locking mechanism and recomputation of counters for each operation of adding, remov-
ing, or modifying a record. In conclusion, these straightforward solutions require heavy
user-side computation and do not provide efficient, practical, and flexible solutions for
multi-user, multiple field data sets.

3.1 EPiC Overview

For ease of understanding, we initially introduce EPiC for the simpler case of count-
ing on only a single countable field Dk in a multiple countable fields data set where
values are in GF(q). Subsequently, we extend EPiC to support counting on Boolean
combinations of multiple countable fields D1, . . . ,Dm over GF(q). Finally, for perfor-
mance improvement, we further optimize our mechanisms by considering conversion
of (generic) finite fields GF(q) into binary finite fields GF(2).

EPiC’s main rationale is to perform the counting in the cloud by evaluating an in-
dicator polynomial Pχ(·), as query Q, specific to the pattern χ the cloud user U is
interested in. Conceptually, the cloud evaluates Pχ(·) on the countable fields’ values of
each record. The outcome of all individual polynomial evaluations is a (large) set of
values of either “1” or “0”. The cloud now adds these values and sends the sum back to
U , who learns the number of occurrences of χ in the investigated set of records.

3.2 Counting on a single field

Without loss of generality, we assume a user U wishes to count occurrences of χ in
the first field D1 in an oblivious manner. The idea is to prepare a univariate indicator

polynomial Pχ(x) such that Pχ(x) =

{
1, if x = χ
0, otherwise , and scan through the data set

R = {R1, . . . , Rn} of all records to compute the sum
∑n
i=1 Pχ(Ri,1). The result is

the number of occurrences of χ in the first field in the data set. The idea for generating
Pχ(x) is to construct the polynomial in the Lagrange interpolation form Pχ(x) :=∑|D1|−1
j=0 aj · xj :=

∏
α∈D1,α6=χ

x−α
χ−α . The polynomial Pχ(x) is of degree |D1| − 1,

and its coefficients aj are uniquely determined.
Encrypted polynomial: In EPiC, each countable valueRi,k is encrypted toERi,k

. The
above indicator polynomial based counting method for plaintext values can be applied
in a similar manner. User U prepares the indicator polynomial based on plaintext χ, but



U encrypts coefficients aj to Eaj before sending them to the cloud, which now com-
putes the encrypted sum EΣ :=

∑n
i=1 Pχ(ERi,1

) =
∑n
i=1

∑|D1|−1
j=0 Eaj · (ERi,1

)j .
Note that the polynomial coefficients are encrypted (and potentially large), but the poly-
nomial degree remains |D1| − 1. In order for the cloud to compute EΣ and user U to
decrypt it later, additively and multiplicatively homomorphic properties are required
for the encryption, which we describe in Section 3.5. As a final step, U simply receives
back EΣ and only decrypts the count σ := DEC(EΣ) = Pχ(x). This does not require
high computational costs at the user, suiting the cloud computing paradigm well.
Cloud computation cost: The above technique requires n·|D1| additions, n·|D1|multi-
plications, and n ·(|D1|−1) exponentiations. We can improve efficiency by rearranging
the order of computations:EΣ :=

∑n
i=1 Pχ(ERi,1

) =
∑n
i=1

∑|D1|−1
j=0 Eaj · (ERi,1

)j =∑|D1|−1
j=0 (Eaj ·

∑n
i=1 (ERi,1

)j). Therewith, the number of multiplications is reduced
to |D1|. We also note that in the case of a binary domain (|D1| = 2), there are no expo-
nentiations. This observation motivates our optimization described later in Section 3.4.
Oblivious counting: First, the query is submitted to the cloud as a sequence of en-
crypted coefficients of the indicator polynomial; second, no matter what query is made,
exactly |D1| coefficients (including 0-coefficients) are sent, thus preventing the cloud
to infer query information based on the query size.

3.3 Counting patterns defined by a Boolean formula

We now extend the indicator polynomial based counting technique towards a general
solution for counting patterns defined by any Boolean combination of multiple fields in
the data set. The key technique for defining an indicator polynomial corresponding to an
arbitrary Boolean expression among multiple fields is to transform Boolean operations
to arithmetic operations, which is similar to arithmetization [3, 12].
Conjunctive counting: Assume cloud user U is interested in counting the number of
records that have their m countable fields set to the pattern χ = (χ1, . . . , χm). Here,
χk, 1 ≤ k ≤ m, denotes the queried value in the k-th field. Let ϕ = (x1 = χ1 ∧
. . . ∧ xm = χm) be the conjunction among m fields in the data set. User U can now
construct Pϕ(x) =

∏m
k=1 Pχk

(xk), where x = (x1, . . . , xm) denotes the variables in
the multivariate polynomial Pϕ(x), and Pχk

(xk) is the univariate indicator polynomial
(as defined in Section 3.2) for counting χk in the k-th field. Therewith, Pϕ(x) yields 1
only when χ is matched. Note that the size of the multi-domain D is |D| =

∏m
k=1 |Dk|,

and the degree of Pϕ(x) is
∑m
k=1 (|Dk| − 1).

Disjunctive counting: Assume the data set has 2 countable fields, and U’s objec-
tive is to count the number of records that have value χ1 in D1 or value χ2 in D2.
The multivariate indicator polynomial for this disjunction is Pχ1∨χ2

(x) = Pχ1
(x1) +

Pχ2
(x2) − Pχ1∧χ2

(x), where Pχ1
(x1), Pχ2

(x2) are univariate indicator polynomials
for D1,D2, respectively, and Pχ1∧χ2(x) is a multivariate indicator polynomial for con-
junctive counting between D1 and D2. This method can be easily generalized to design
counting query for disjunctions of m fields.
Complement counting: U can count records that do not satisfy a condition among
fields by “flipping” the satisfying indicator polynomial: P¬ϕ(x) = 1− Pϕ(x).
Integer range counting: Assume U wants to count records having a field Dk lying in
an integer range [a, b], i.e., ϕ = (xk = a ∨ xk = a + 1 ∨ . . . ∨ xk = b). Based on



disjunctive constructing method, we have P[a,b](xk) = Pa(xk) + Pa+1(xk) + . . . +
Pb(xk) − Pa∧a+1 − . . .; Since (xk = u) and (xk = v) are exclusive disjunctions for
any u 6= v ∈ [a, b], P[a,b](xk) reduces to P[a,b](xk) =

∑b
χk=a

Pχk
(xk).

Integer comparison counting: Integer comparisons can be constructed based on inte-
ger range counting, e.g., Pχk≤a(xk) = P[0,a](xk), or Pχk>a(xk) = P[a+1,|Dk|−1](xk).
Privacy: Although the user-defined queries are different in construction, the encrypted
queries Q always have exactly |D| =

∏m
k=1 |Dk| encrypted coefficients as we include

zero coefficients also. As mentioned in Section 3.2, this prevents the cloud to differen-
tiate queries based on query sizes.
Efficiency: The user-side computation involving constructing the query’s coefficients
is carried on plain-text before encryption, hence it introduces much lower computa-
tion cost compared to the computation burden on the cloud. To improve the user-side
performance, one could apply optimizing techniques for reducing complex expres-
sions, but this is out of scope of our work. To improve the cloud’s performance, we
rearrange the order of computations for the sequence of encrypted fields E(Ri) =
(ERi,1 , . . . , ERi,m) and coefficients aj, j = (j1, . . . , jm) ∈ D to achieve EΣ =∑n
i=1 Pχ(E(Ri)) =

∑
j∈D(Eaj ·

∑n
i=1

∏m
k=1(ERi,k

)jk).

3.4 Optimization through arithmetization in GF (2)

EPiC’s efficiency relies on the computations performed by the cloud. As discussed in
Section 3.2, there are no exponentiations required for counting on a binary field. Con-
sequently, we optimize EPiC by converting generic (non-binary) fields into multiple
binary fields, thereby avoiding costly exponentiations. Note that as the conversion pre-
serves Boolean expression output, results shown in Section 3.3 still hold, and protocol
details discussed later in Section 3.6 remain unchanged.

Our idea is to store every generic field Dk as separate binary fields Dk,1, Dk,2, . . .,
Dk,‖Dk‖.

4 Therefore, m generic fields D1, . . . ,Dm become
∑m
k=1 ‖Dk‖ binary fields

D1,1, . . . ,D1,‖D1‖, . . . ,Dm,1, . . . ,Dm,‖Dm‖. The indicator polynomial for counting χk
in fieldDk becomes Pχk,1∧...∧χk,‖Dk‖

(xk,1, . . . , x1,‖Dk‖) =
∏‖Dk‖
l=1 Pχk,l

(xk,l), where
xk,l represents the l-th bit in the generic field Dk, and χk,l denotes the corresponding
queried bit value. Applying arithmetization to “transform” from Boolean to multivariate
polynomials, Boolean expressions of m generic fields can be converted into equivalent
multiple binary fields. For convenience in later sections, we call the conversion to binary
fields “GF(2) arithmetized” (shortly “G”), while the original is “Basic” (shortly “B”).
We note that although the number of coefficients of the GF(2) arithmetized multivariate
indicator polynomial corresponding to each query remains the same as in the generic
case, the (multivariate) degree of the GF(2) arithmetized polynomial is much lower at
deg(P (G)) =

∑m
k=1 ‖Dk‖ =

∑m
k=1dlog2 |Dk|e �

∑m
k=1(|Dk| − 1) = deg(P (B)).

This implies a significant improvement for computational costs on the cloud. We refer
to EPiC’s evaluation in Section 4 for details.

3.5 Encryption
Since EPiC’s indicator polynomial based counting technique involves additions and
multiplications on ciphertexts, a homomorphic encryption scheme is needed as a build-

4 ‖X‖ = dlog2 |X|e denotes size in bits of X



ing block. While there already exist various schemes [5, 8, 11, 16], their computa-
tional complexities are high, rendering their use in current clouds impractical. Although
EPiC can seamlessly integrate related work, we design a new somewhat homomor-
phic encryption scheme derived from the computational Private Information Retrieval
(cPIR) technique of Trostle and Parrish [14]. Our new scheme is a secret key encryption
scheme, where the cloud does not have the secret key to decrypt the data, but instead
blindly performs operations on outsourced data. As we will see, this scheme does not
enjoy the same security properties, i.e., IND-CPA, as related work, but only security
with respect to definitions 3 and 4 as required in the specific context of EPiC. Due to its
weaker security properties, our scheme is especially practical in the settings we target.
Key generation – KEYGEN(s1, s2, n,D): Parameters s1, s2 ∈ N are security param-
eters, n ∈ N is the upper bound for the total number of records in the data set, and
D = D1 × . . . × Dm is the multi-domain of m countable fields. KEYGEN computes
a random prime q, a random prime p, and a random (maybe non-prime) b ∈ Zp. The
secret key, the output of KEYGEN, is defined as K := {p, b}.
Encryption – ENC(P): Selects a random number r, ‖r‖ ≤ s2, and encrypts the plain-
text P to C = ENC(P) := b · (r · q + P) mod p.
Decryption – DEC(C): Decrypts C to P = DEC(C) := b−1 · C mod p mod q.
Arithmetic: The addition and multiplication operations on ciphertexts take place in the
integers. There is no modulo reduction, as the cloud does not know p. One can verify
that this scheme provides additively and multiplicatively homomorphic properties.
Selection of p and q: Since ciphertexts increase for every multiplication and addition,
this scheme requires a careful selection of q and p in advance such that q > n and
‖p‖ ≥ s1 + ‖n‖+ ‖q‖+

∑m
k=1(s2 + ‖q‖) · (|Dk| − 1).

Security: The security of our encryption scheme (cf. Section 3.7) is based on the Hid-
den Modular Group Order hardness assumption and the cPIR protocol in [14]. The
rationale is that, for appropriate security parameters, more than half of the bits of p
are still secret against any PPT adversary; and if a PPT adversary can break the cPIR
protocol, the Hidden Group Order p is also revealed, violating the assumption.

3.6 Detailed Protocol Description

With all ingredients ready, we now describe EPiC using the notation of Section 2.1.
KEYGEN(κ): Based on security parameter κ, cloud user U chooses s1, s2 for the

somewhat homomorphic encryption, determines an upper bound n for the total num-
ber of records that might be stored and the appropriate multi-domain D for the count-
able fields. U generates a secret key K from the somewhat homomorphic encryption
KEYGEN(s1, s2, n,D) and a symmetric key K ′ for a block cipher such as AES used
for non-countable data. The secret key S := {K,K ′} is used throughout EPiC.

ENCRYPT(S,R): Assume U wants to store n records R = {R1, . . . , Rn}. Each
record Ri is encrypted separating the countable values Ri,k from the rest of the record.
Ri,k is encrypted using the somewhat homomorphic encryption mechanism, i.e.,ERi,k

:=
ENC({p, b}, Ri,k). For the rest of the record Ri, a random initialization vector IV is
chosen and the record is AESK −CBC encrypted. In conclusion, a record Ri encrypts
to ERi

:= {ERi,1
, . . . , ERi,m

, IV,AESK − CBC(Ri,rest)}. The output of ENCRYPT
is the sequence of encrypted records. E := {ER1 , . . . , ERn}.



Algorithm 1: PROCESSQUERY

For each Mapper M :

init sj := 0, ∀j ∈ D
forall ERi in InputSplit(M) do

read {ERi,1 , . . . , ERi,m}
forall j = (j1, . . . , jk) ∈ D do

sj := sj +
∏m
k=1 (ERi,k )

jk

end
end
emit {j, sj}, ∀j ∈ D

Reducer R:

init EΣ := 0, Sj := 0, ∀j ∈ D
forall {j, sj} in MappersOutput do

Sj := Sj + sj

end
forall j in D do

EΣ := EΣ + Eaj · Sj

end
write {EΣ}

UPLOAD(E): Upload simply sends all records as one large file to the MapReduce
cloud where the file is automatically split into InputSplits.

PREPAREQUERY(S, χ): To prepare a query for χ, U computes the |D| coefficients
aj, j ∈ D, of the indicator polynomial Pχ(x) as described in Section 3.3. Coefficients aj
are encrypted and sent to the cloud. The cloud will be using these coefficients to perform
the evaluation of Pχ(x). Consequently in EPiC, the output Q of PREPAREQUERY sent
to the cloud is Q := {Eaj , j ∈ D}.

PROCESSQUERY(Q, E): Based on the data set size and the cloud configuration,
the MapReduce framework selects M Mapper nodes and 1 Reducer node. Algorithm 1
depicts the specification of EPiC’s map and reduce functions that will be executed by the
cloud. In the mapping phase, for each input recordRi in their locally stored InputSplits,
the Mappers compute in parallel all monomials

∏m
k=1 (ERi,k

)jk of the countable fields
and add the same-degree monomials together. After the Mappers finish scanning over
all records, the sums sj of monomials are output as key-value pairs. These pairs contain
the multi-degree j as key, and the computed sum sj as value. In MapReduce, output of
the Mappers is then automatically sent (“emitted”) to the Reducer. Based on the sums
received from all Mappers, the Reducer combines them together to obtain the global
sums Sj, i.e., the sums over all records in the data set. In a last step, the Reducer uses
the coefficients Eaj received from U to evaluate the polynomial by computing the inner
product with the global sums. The result EΣ is sent back to U and can be decrypted to
obtain the count value.

DECODE(S, EΣ): U receivesEΣ and computes the counting result σ = DEC(EΣ).

3.7 Privacy Analysis
We now formally prove Storage and Counting privacy for EPiC and its underlying en-
cryption. We stress that, below, we neither target nor prove that our encryption provides
traditional IND-CPA security. Instead, we show that, in combination with other details
of our protocol, it provides security according to definitions 3 and 4.

Lemma 1 (Storage privacy). Based on the security of the cPIR scheme by Trostle and
Parrish [14], EPiC preserves storage privacy.

Proof. cPIR-security by Trostle and Parrish [14] can be summarized as follows. With
a u × u bit database, a user wants to retrieve an y-th row and sends an encrypted PIR



request to the cloud: P = {Ev1 , . . . , Evu}, where Evk = ENC(vk), cf. Section 3.5,
and vk = 1, if k = y, and vk = 0 otherwise. This cPIR protocol is secure iff for
all PPT adversaries A∗, the probability of finding y is negligible more than guessing,
i.e., Pr [A∗(P ) = y] ≤ 1/u + ε∗(κ). We now prove our lemma by reduction from
cPIR security. We show that, for security parameter κ, any PPT (t(κ), ε(κ))-adversary
A breaking EPiC’s storage privacy (Definition 3) in t(κ) steps with non-negligible ad-
vantage ε(κ) can be used to construct a (t∗(κ), ε∗(κ))-adversary A∗ as a subroutine
breaking the cPIR protocol in [14]. We construct A∗ based on the parity of u.
1. u is odd. First, A∗ receives as input the PIR request P and splits P into two halves
E = {Ev1 , . . . , Evbu/2c}, E ′ = {Evbu/2c+1

, . . . , Eu−1}, i.e., treating the PIR request
as two EPiC data sets of the same size (bu/2c records). Since Evk are either encryp-
tions of 0 or 1, E and E ′ are now viewed as single-binary-field data sets, where each
record contains only 1 countable binary field. A∗ randomly selects l1, l2, l′1, l

′
2 ∈ [1, u]

and creates two EPiC counting queries Q = {Evl1 , Evl2}, Q
′ = {Evl′1 , Evl′2}. These

are two valid queries, because for single-binary-field data sets E , E ′, any EPiC query
contains exactly 2 encrypted coefficients of 0 or 1, cf. Section 3.3. Then A∗ runs PRO-
CESSQUERY on E with Q, and E ′ with Q′, thereby obtaining EΣ and E′Σ .A∗ forwards
I = {E , E ′, Q,Q′, EΣ , E′Σ} to A. A∗’s output depends on A’s output as follows.

IfA outputs 0,A∗ outputs u. The intuition is that, sinceA “believes” the two halves
E and E ′ are the same, A′ concludes that the requested element must not belong to ei-
ther E or E ′, i.e., vu = 1. IfA outputs 1,A∗ randomly selects k ∈ [1, u−1] and outputs
k. The intuition is that “A outputs 1” indicates the requested row index is between 1 and
u−1, andA∗ simply makes a random guess for it. The probability forA∗ to output cor-
rectly is Pr [A∗(P ) = y] = Pr [A = 0|y = u] · Pr [y = u]+Pr [A = 1, k = y|y < u] ·
Pr [y < u] =

(
1
2 + ε(κ)

)
· 1u +

(
1
2 + ε(κ)

)
· 1
u−1 ·

u−1
u = 1

u + 2ε(κ)
u . Therewith, A∗

has a non-negligible advantage of ε∗(κ) = 2ε(κ)/u in finding y.
2. u is even. A∗ makes a new PIR request P ′ by removing the last element vu from
P , that is P ′ = {Ev1 , . . . , Evu−1

}. Then A∗ uses the same approach as above for
P ′, i.e., splitting P ′ into 2 halves, feeding both to A. Now, A∗ outputs u − 1, if A
outputs 0, or outputs random k ∈ [1, u − 2] otherwise. It can be observed that A∗
can find y with non-negligible probability, only if y 6= u, i.e., the requested element is
not the last element discarded from P . Otherwise,A∗ cannot find y. More precisely, the
probability of correct guess is Pr [A∗(P ) = y] = Pr [A∗(P ′) = y|y < u]· Pr [y < u]+

Pr [A∗(P ′) = y|y = u] · Pr [y = u] =
(

1
u−1 + 2ε(κ)

u−1

)
· u−1u + 0 · 1

u = 1
u + 2ε(κ)

u .

Therefore, A∗ also has a non-negligible advantage of 2ε(κ)/u in finding y.
Consequently, in both cases, A∗ has a non-negligible advantage ε∗(κ) = 2ε(κ)/u

of breaking the cPIR protocol in t∗(κ) = t(κ) steps, rendering our reduction tight. ut
Lemma 2 (Counting privacy). Based on the security of the cPIR scheme by Trostle
and Parrish [14], EPiC preserves counting privacy.

Proof. We prove our lemma by reduction from cPIR security. Recall the cPIR-security
definition as in Lemma 1’s proof. We assume the existence of a PPT (t(κ), ε(κ))-EPiC-
adversary A breaking EPiC’s counting privacy (Definition 4) in t(κ) steps with non-
negligible advantage ε(κ). In the following, we construct a new (t∗(κ), ε∗(κ))-PIR-
adversary A∗ that breaks this cPIR security.
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A∗ receives as input the PIR request P = {Ev1 , . . . , Evu}, where vy = 1 and
vk = 0,∀k 6= y. The goal of A∗ is to guess y. First,A∗ sets E = E ′ = P and randomly
picks 4 elements El1 , El2 , El′1 , El′2 from P to make two EPiC queries Q = {El1 , El2},
Q′ = {El′1 , El′2}. Note that E , E ′ can be viewed as EPiC’s two identical single-binary-
field data sets, and Q,Q′ are valid queries (corresponding to some patterns χ, χ′) for
E , E ′. Then A∗ runs PROCESSQUERY on E with Q and on E ′ with Q′ to obtain EΣ ,
E′Σ . Now, A∗ forwards I = {E , E ′, Q,Q′, EΣ , E′Σ} to A and observes A’s output.

Let U = {1, . . . , u}, L = {l1, l2, l′1, l′2}. If A returns 1, A∗ concludes that the two
queries Q and Q′ are identical, implying that Evy /∈ Q∪Q′, i.e., y /∈ L. Therewith,A∗
makes a guess for y by selecting a random k ∈ U \L and outputs k. Otherwise, ifA re-
turns 0,A∗ concludes that vy is in eitherQ orQ′, thusA∗ outputs a random k ∈ L. The
probability of the correct guess is Pr [A∗(P ) = y] = Pr [A(I) = 1, k = y|y ∈ U \ L] ·
Pr [y ∈ U \ L]+Pr [A(I) = 0, k = y|y ∈ L] · Pr [y ∈ L] =

(
1
2 + ε(κ)

)
· 1
u−4 ·

u−4
u +(

1
2 + ε(κ)

)
· 14 ·

4
u = 1

u + 2ε(κ)
u . That is A∗ has a non-negligible advantage ε′(κ) =

2ε(κ)/u of breaking the cPIR protocol in t∗(κ) = t(κ) steps. ut

4 Evaluation
To show its real-world applicability, we have implemented EPiC in Hadoop’s MapRe-
duce framework v1.0.3 [2], and evaluated it on Amazon’s public MapReduce cloud [1].
Our EPiC implementation is written in Java, and all cryptographic operations are unop-
timized, relying on Java’s standard BigInteger data type. Still, exponentiation, e.g. Cj ,
with j = 15 and |C| ≈ 4000 takes < 2ms on a 1.8GHz Intel Core i7 laptop, a single



addition is not measurable with < 1µs. Figure 1 shows a benchmark of various opera-
tions on the ciphertexts using our encryption scheme. In our evaluation, we use security
parameters s1 = 400 bits as suggested by Trostle and Parrish [14] for good security,
and s2 = |r| = 160 bits. We have implemented a data generator program to randomly
generate patient records with m countable fields with size between 4 and 10 bits.

We have evaluated the performance of EPiC by comparing our “Basic” and “GF(2)
arithmetized” solutions with a “non-privacy-preserving” solution. Unless otherwise sta-
ted, the single/multi-domain size in both “Basic” and “GF(2) arithmetized” solutions is
always set to the same value |D| for comparison. For brief presentation, we use subscript
“B” for Basic, and “G” for GF(2) arithmetized approach, e.g., ‖pB‖, ‖pG‖ indicate
the size in bits of p in Basic, GF(2) arithmetized approach respectively. We also set
u = s1 + ‖n‖+ ‖q‖, v = s2 + ‖q‖ as fixed parameters (with respect to |D|).

Size of prime p As discussed in Section 3.5, prime q depends only on the number of
records n, while prime p also depends on |D|. We show the benefit of the GF(2) arith-
metized approach (m = ‖D‖, |Dk| = 2) by demonstrating that a conversion to multiple
binary fields reduces ‖p‖ significantly to ‖pG‖ = u+‖D‖·v, while the Basic approach
(m = 1, |D1| = |D|) requires that ‖pB‖ = u + (|D| − 1) · v. Figure 2 shows ‖p‖’s
logarithmic increase with GF(2) arithmetized and linear increase with Basic approach.

Storage cost The storage cost depends on the size of the data stored on the cloud,
which is determined by the size of p. In Basic approach, a generic field of domain
D requires a storage of SB = ‖pB‖ = u + (|D| − 1) · v bits. In GF(2) arithmetized
approach, the equivalent multiple binary fields requires a storage of SG = ‖D‖·‖pG‖ =
‖D‖·(u+‖D‖·v) bits. Again, in Figure 3, we see a linear increase of storage in Basic,
and logarithmic increase in GF(2) arithmetized approach.

User computation cost U prepares the query in plaintext, which incurs very low com-
putation cost compared to ciphertext operations performed on the cloud. Encrypting
one coefficient takes about 1 ms (Figure 1), resulting in roughly |D| ms for encrypting
all |D| coefficients of the query, regardless of using Basic or GF(2) arithmetized.

Communication cost Due to oblivious counting, user U prepares and sends all |D|
coefficients corresponding to all monomials to the cloud. The total size of the encrypted
coefficients is |D|·‖p‖. In Basic approach, the query size isQB = |D|·‖pB‖ = |D|·(u+
(|D|−1)·v). In contrast, the GF(2) arithmetized approach reduces toQG = |D|·‖pG‖ =
|D|·(u+‖D‖·v). For example of a data set containing n = 106 records with a countable
field of domain size |D| = 1024 (i.e., ‖D‖ = 10), the corresponding query size in each
approach is QB = 22.5 MBytes, and QG = 280 KBytes, respectively.

The answer size (size in bits of the received ciphertext as final sum) depends on the
maximum size of the multivariate monomial. The monomial size is determined by the
ciphertext size (i.e., ‖p‖) and the number of performed multiplications, i.e., its multi-
degree. Let d denote the maximum multi-degree of monomials, then, d = |D| in the
Basic approach, and d = ‖D‖ in the GF(2) arithmetized approach. We haveAB = |D| ·
‖pB‖ = |D|·(u+(|D|−1)·v) andAG = ‖D‖·‖pG‖ = ‖D‖·(u+‖D‖·v). For example
of a data set of n = 106 records with a countable field of |D| = 1024, the answer size
in each approach is AB = 22.5 Mbytes, and AG = 2.7 KBytes, respectively.
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Total transfer cost: The total communication cost,C = Q+A, as shown in Figure 4,
is much less in GF(2) arithmetized approach than in Basic approach:CB = QB+AB =
2 · |D| · (u+ (|D| − 1) · v), CG = QG +AG = (|D|+ ‖D‖) · (u+ ‖D‖ · v).
Cloud computation We have evaluated the cloud computation cost for large-scale data
sets on Amazon’s public cloud. As Amazon imposes an (initial) limit of 20 instances
per job, we restrict ourselves to 20 Standard Large On-Demand instances [1]. Each
instance comprises 4 2.27GHz Intel Xeon CPUs and a total of 7.5 GB RAM.

Variable data set size: First, we fix the size of each record to 1 MB. The data set size
(x-axis) is varied from 100 GB to 1 TB. We query a countable field of size |D| = 16.
Figure 5 shows the average counting time for a MapReduce job on the whole data set
of different sizes. The y-axis shows the total time for MapReduce to evaluate the user’s
query. This is the time that a user has to pay for to Amazon. To put our results into per-
spective, we not only show the time for both Basic and GF(2) arithmetized approaches,
but as well the time a “non-privacy-preserving” counting would take, i.e., the countable
field is not encrypted and directly counted. Moreover, we also show the overhead ra-
tio between EPiC’s two approaches and non-private counting. The additional overhead
introduced by EPiC over non-private counting is less than 20%. We conjecture that
only 20% overhead/additional cost over non-privacy-preserving counting is acceptable
in many real-world situations, rendering EPiC practical.

Variable record size: To also evaluate the effect of the size of the records on the
general performance, we run the system with a fixed data set size of 50 GB. The record
size is changed from 100 KB to 1 MB. Figure 6 shows that, while IO time remains



unchanged, a higher number of records increases counting time in EPiC. However, the
overhead of EPiC is still under 20% even for small record sizes such as 100 KB com-
pared to non-private counting. That is, EPiC is efficient even for small patient records.

Effect of multiple fields: To study the efficiency of transforming a single countable
fieldD into multiple fields of different size, we conduct an experiment on a data set size
of 100GB. The total domain size is set to |D| = 1024 (10 bits). We compare three cases:
(a) transform D into 10 single binary fields; (b) transform D into 5 quaternary fields
each of 2 bits; (c) transform D into 3 fields of 3 bits, 3 bits, and 4 bits, respectively. In
Figure 7, we can see that the GF(2) arithmetized approach yields the best performance.

Query types: Finally, to evaluate the effects of different query types on the perfor-
mance, we run EPiC with a fixed data set of 100 GB. Total domain size is |D| = 1024.
We make 3 different queries: (a) query for a specific value; (b) query for the MSB of
the field equal to 0; (c) query for the LSB of the field equal to 0. Figure 8 demonstrates
that there is no significant difference in counting time between different queries.

5 Related Work

Protecting privacy of outsourced data and delegated operations in a cloud computing
environment is the perfect setting for fully homomorphic encryption. While there is cer-
tainly a lot of ongoing research in fully homomorphic encryption (see Vaikuntanathan
[15] for an overview), current implementations indicate high storage and computational
overhead [9], rendering fully homomorphic encryption impractical for the cloud.

Similar to EPiC, Lauter et al. [11] observe that often weaker “somewhat” homomor-
phic encryption might be sufficient. Lauter et al. [11]’s scheme is based on a protocol
for lattice-based cryptography by Brakerski and Vaikuntanathan [5]. However, for the
specific application scenario considered in this paper, EPiC’s somewhat homomorphic
encryption scheme allows for much faster exponentiation. Superficially, our work bears
similarity with the work of Kamara and Raykova [10] that protect polynomial evalua-
tion by randomized reduction techniques. With q being the degree of a polynomial, the
user splits each data record into 2 · q + 1 shares, each of size 2 · q + 1. Shares are then
uploaded and evaluated in parallel, and results are aggregated. However, storage expan-
sion, even for modest values of q, the approach quickly becomes impractical. Also, for
different polynomials, the user would need to upload the data multiple times.

Searching on encrypted data has received a lot of attention recently, cf. seminal pa-
pers [4, 13]. While closely related, it is far from straightforward to adopt these schemes
to perform efficient counting in a highly parallel cloud computing, e.g., MapReduce
environment. Also notice that, e.g., Boneh et al. [4] rely on the computation of very
expensive bilinear pairings for each element of a data set, rendering this approach im-
practical in a cloud setting. Much research has been done to compute statistics in a
privacy-preserving manner using differential privacy, see the seminal paper by Dwork
[7]. Contrary to the threat model considered in this paper, the adversary in differential
privacy research is not the cloud infrastructure, but a curious user querying statistics
to learn information about individual entries in a data set. EPiC addresses the opposite
problem, where a user does not trust the cloud infrastructure.



6 Conclusion
In this paper, we present EPiC to address a fundamental problem of statistics com-
putation on outsourced data: privacy-preserving pattern counting. EPiC’s main idea
is to count occurrences of patterns in outsourced data through a privacy-preserving
summation of the pattern’s indicator-polynomial evaluations over the encrypted dataset
records. Using a “somewhat homomorphic” encryption mechanism, the cloud neither
learns any information about outsourced data nor about the queries performed. Our im-
plementation and evaluation results for MapReduce running on Amazon’s cloud with
up to 1 TByte of data show only modest overhead compared to non-privacy-preserving
counting. This makes EPiC practical in a real-world cloud computing setting today.
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