
OnionBots: Subverting Privacy Infrastructure
for Cyber Attacks

Amirali Sanatinia, Guevara Noubir
College of Computer and Information Science

Northeastern University, Boston, USA
{amirali,noubir}@ccs.neu.edu

Abstract—Over the last decade botnets survived by adopting
a sequence of increasingly sophisticated strategies to evade
detection and take overs, and to monetize their infrastructure.
At the same time, the success of privacy infrastructures such
as Tor opened the door to illegal activities, including botnets,
ransomware, and a marketplace for drugs and contraband. We
contend that the next waves of botnets will extensively attempt
to subvert privacy infrastructure and cryptographic mechanisms.
In this work we propose to preemptively investigate the design
and mitigation of such botnets. We first, introduce OnionBots,
what we believe will be the next generation of resilient, stealthy
botnets. OnionBots use privacy infrastructures for cyber attacks
by completely decoupling their operation from the infected host
IP address and by carrying traffic that does not leak information
about its source, destination, and nature. Such bots live sym-
biotically within the privacy infrastructures to evade detection,
measurement, scale estimation, observation, and in general all IP-
based current mitigation techniques. Furthermore, we show that
with an adequate self-healing network maintenance scheme, that
is simple to implement, OnionBots can achieve a low diameter and
a low degree and be robust to partitioning under node deletions.
We develop a mitigation technique, called SOAP, that neutralizes
the nodes of the basic OnionBots. We also outline and discuss
a set of techniques that can enable subsequent waves of Super
OnionBots. In light of the potential of such botnets, we believe
that the research community should proactively develop detection
and mitigation methods to thwart OnionBots, potentially making
adjustments to privacy infrastructure.

I. INTRODUCTION

Over the last decade botnets rose to be a serious security
threat. They are routinely used for denial of service attacks,
spam, click frauds, and other malicious activities [1]. Both
the research and industry communities invested a significant
effort analysing, developing countermeasures, and products
to effectively detect, cripple, and neutralize botnets. While
some countermeasures operate on user computers, most are
deployed at the ISP and enterprise levels. Many botnets
were successfully neutralized by shutting down or hijacking
their Command and Control (C&C) servers, communications
channels (e.g., IRC), reverse engineering the algorithm used
for the domain name generation (DGA) and preemptively
blocking the access to these domains [2]. Such mitigation
techniques exploit the fact that most current botnets rely on
primitive communication architectures and C&C mechanisms.
This forced botnet developers to continuously adapt raising
the level of sophistication of their design from the early static
and centralized IRC or fixed servers’ IP addresses to more
sophisticated fast-fluxing [3] and even straightforward use of
Tor hidden services [4], [5].

In this paper, we are interested in investigating the next
level of this arm-race. We contend that the next wave of bot-
nets’ sophistication will rely on subverting privacy infrastruc-
ture and a non-trivial use of cryptographic mechanisms. The
Tor project was very successful in building an infrastructure
that protects users identity over the Internet and allowing one to
host Internet servers without revealing her or his location using
the Tor hidden services feature. Evidence of our predictions
can be found in the malicious use of hidden services for
hosting the infamous silk road [6], instances of the Zeus [4]
botnet, and the hosting of the CryptoLocker ransomware C&C
server [7]. Interestingly, CryptoLocker combines Tor with the
use of another privacy “infrastructure”, bitcoin the crypto
currency, for the ransom payment. The combination of Tor
and bitcoin make it possible today to blackmail Internet users,
anonymously be paid, and get away with it.

The current use of Tor and crypto-mechanisms in botnets
is still in its infancy stages. Only hosting the C&C server
as a hidden service still allows the detection, identification,
and crippling of the communication between the bots. Recent
research demonstrated that it is possible to successfully deny
access to a single or few .onion server [8]. To assess
the threat of crypto-based botnets, we advocate a preemptive
analysis, understanding of their potential and limitations, and
the development of mitigation techniques.

In this paper, we present the design of a first generation of
non-trivial OnionBots. In this Basic OnionBot, communication
is exclusively carried out through hidden services. No bot (not
even the C&C) knows the IP address of any of the other bots.
At any instant, a given bot is only aware of the temporary
.onion address of a very small (constant) number of bots.
Bots relay packets but cannot distinguish the traffic based on
their source, destination, or nature. At the same time, the bot
master is able to access and control any bot, anytime, without
revealing his identity. We show that this design is resilient
to current mitigations and analysis techniques from botnet
mapping, hijacking, to even assessing the size of the botnet.
We also show that the proposed Neighbors-of-Neighbor graph
maintenance algorithm achieves a low diameter, degree, and
high resiliency and repair in the event of a take-down (e.g., Tor
DoSing or node capture/cleanup) of a significant fraction of the
botnet nodes. Since our goal is to preemptively prevent the
emergence of OnionBots, we also propose a novel mitigation
technique against the Basic OnionBots. This technique exploits
the same stealthy features of the OnionBot (namely peers not
knowing each other’s identities) to neutralize the bots. The
technique called SOAP, gradually surrounds the bots by clones

(or sybils) until the whole botnet is fully contained. Our goal
is to draw the attention of the community to the potential of
OnionBots and develop preemptive measures to contain them
and ideally prevent their occurence.

Our contributions are summarized as follows:

• A novel reference design for a OnionBotnet whose
command, communication, and management are fully
anonymized within the Tor privacy infrastructure.

• A communication topology with repair mechanisms
that minimizes the nodes’ degree, graph diameter, and
maximizes resiliency.

• A performance evaluation and discussion of resiliency
to various takedown attacks such as simultaneous
denial of service attacks against multiple .onion
botnet nodes.

• A Sybil mitigation technique, SOAP, that neutralizes
each bot by surrounding it by clones.

We first survey the current state of botnet design and
mitigation techniques in Section II, followed by a review of
the key features of the Tor privacy infrastructure in Section III.
In Section IV, we present our proposed reference design for
an OnionBotnet. We evaluate the resiliency and performance
of the OnionBotnet, using several metrics in Section V. We
finally investigate potential mechanisms to prevent the rise of
such botnets in Section VI.

II. CURRENT BOTNETS & MITIGATIONS

We first review the evolution of botnets and why we
believe the next generation of botnets would subvert privacy
infrastructures to evade detection and mitigation. Currently,
bots are monitored and controlled by a botmaster, who issues
commands. The transmission of theses commands, which are
known as C&C messages, can be centralized, peer-to-peer or
hybrid [9]. In the centralized architecture the bots contact the
C&C servers to receive instructions from the botmaster. In this
construction the message propagation speed and convergence
is faster, compared to the other architectures. It is easy to
implement, maintain and monitor. However, it is limited by a
single point of failure. Such botnets can be disrupted by taking
down or blocking access to the C&C server. Many centralized
botnets use IRC or HTTP as their communication channel. GT-
Bots, Agobot/Phatbot [10], and clickbot.a [11] are examples
of such botnets. A significant amount of research focused on
detecting and blocking them [12], [13], [14], [15], [16], [17].
To evade detection and mitigation, attackers developed more
sophisticated techniques to dynamically change the C&C
servers, such as: Domain Generation Algorithm (DGA) and
fast-fluxing (single flux, double flux).

Single-fluxing is a special case of fast-flux method. It maps
multiple (hundreds or even thousands) IP addresses to a do-
main name. These IP addresses are registered and de-registered
at rapid speed, therefore the name fast-flux. These IPs are
mapped to particular domain names (e.g., DNS A records) with
very short TTL values in a round robin fashion [3]. Double-
fluxing is an evolution of single-flux technique, it fluxes both
IP addresses of the associated fully qualified domain names
(FQDN) and the IP addresses of the responsible DNS servers

(NS records). These DNS servers are then used to translate the
FQDNs to their corresponding IP addresses. This technique
provides an additional level of protection and redundancy [3].
Domain Generation Algorithms (DGA), are the algorithms
used to generate a list of domains for botnets to contact their
C&C. The large number of possible domain names makes it
difficult for law enforcements to shut them down. Torpig [18]
and Conficker [19] are famous examples of such botnets.

A significant amount of research focuses on the de-
tection of malicious activities from the network perspec-
tive, since the traffic is not anonymized. For exam-
ple [20], [21], [22], [23], [24], [25] inspect the DNS traffic and
use machine learning clustering and classification algorithms.
BotFinder [26] uses the high-level properties of the bot’s
network traffic and employs machine learning to identify the
key features of C&C communications. DISCLOSURE [27]
uses features from NetFlow data (e.g., flow sizes, client access
patterns, and temporal behavior) to distinguish C&C channels.
Other work [28], [29] focus on endpoints’ static metadata
properties and the order of the high-level system events for
threat classification.

The next step in the arms race between attackers and
defenders was moving from a centralized scheme to a peer-
to-peer C&C. Storm [30], Nugache [31], Walowdac [32] and
Gameover Zeus [33] are examples of such botnets. Some of
these botnets use an already existing peer-to-peer protocol,
while others use customized protocols. For example, earlier
versions of Storm used Overnet, and the new versions use a
customized version of Overnet, called Stormnet [30]. Mean-
while other botnets such as Walowdac and Gameover Zeus
organize their communication channels in different layers.

Previous work studied specific mitigations against peer-
to-peer botnets. For example, BotGrep [34] uses the unique
communication patterns in a botnet to localize its members by
employing structured graph analysis. Zhang et al. [35] propose
a technique to detect botnet P2P communication by finger-
printing the malicious and benign traffic. Yen and Reiter [36]
use three features (peer churn, traffic volume and differences
between human-driven and bot-driven behavior) in network
flow to detect malicious activity. Coskun et al. [37] propose a
method to detect the local members of an unstructured botnet
by using the mutual contacts. As we can see, some of these
techniques rely on observing the unencrypted traffic, therefore
by using a privacy infrastructure such as Tor they can be
evaded.

Very recently the use of Tor received more attention from
malware and botnet authors. For example, the new 64-bit
Zeus employs Tor anonymity network in its botnet infras-
tructure [4]. It creates a Tor hidden service on the infected
host and the C&C can reach these infected hosts using their
unique .onion address through Tor. Another example is
ChewBacca [5], which uses Tor, and logs the keystrokes of
the infected host and reports them back to the botmaster. The
C&C is an HTTP server that is hosted as a hidden service.
Although using Tor and hidden services makes the detection
and mitigation more difficult, these bots are still using the basic
client-server model. This leaves them open to single point of
failure.

Fig. 1: Tor hidden service structure

III. PRIVACY INFRASTRUCTURE: TOR

We envision OnionBots to rely on Tor for their operation.
To better understand their potential and limitations, we briefly
review the structure of Tor and hidden services. Tor [38] is the
most widely used distributed low-latency anonymity-network.
It helps users to resist censorship, and protects their personal
privacy. Furthermore, it allows users to hide their activities
and location from government agencies and corporations.
Clients establish anonymous communication by relaying
their traffic through other Tor relays, called Onion Routers
(OR). A client builds a circuit with the relays by negotiating
symmetric keys with them. After building the circuit, the
client sends the data in fixed sized cells and encrypts
them in multiple layers, using the previously negotiated keys.
Besides providing anonymous communication for clients,
current implementation of Tor also offers anonymity for
servers through hidden services.

The Tor hidden service architecture is composed of the
following components:

• Server, that runs a service (e.g., a web server).

• Client, that wishes to access the server.

• Introduction Points (IP), a set of Tor relays, chosen by
the hidden service, that forward the initial messages
between the server and the client’s Rendezvous Point.

• Rendezvous Point (RP), a Tor relay randomly chosen
by the client that forwards the data between the client
and the hidden service.

• Hidden Service Directories (HSDir), a set of Tor relays
chosen by the server to store its descriptors.

In order to make a service available via Tor, Bob (the
service provider) generates an RSA key pair. The first 10
bytes of the SHA-1 digest of the generated RSA public
key becomes the Identifier of the hidden service. The
.onion hostname, is the base-32 encoding representation
of the public key. As Figure 1 illustrates the following steps
take place, in order to connect to a hidden service. Bob’s
Onion Proxy (OP) chooses a set of Tor relays to serve as
his Introduction Points and establishes a circuit with them
(step 1). After making the circuits, he computes two different
service descriptors that determine which Tor relays should
be chosen as its HSDirs (step 2). HSDirs are responsible
for storing the hidden service descriptors, which change
periodically every 24 hours and are chosen from the Tor

Fig. 2: Tor hidden service Directories (HSDir) Fingerprint

relays that have the HSDir flag. This flag is obtained by
relays that have been active for at least 25 hours. Later, in
section VI we discuss the critical role that HSDirs can paly
in mitigating OnionBots.

descriptor-id = H(Identifier || secret-id-part)
secret-id-part = H(time-period || descriptor-cookie
|| replica)
time-period = (current-time +
permanent-id-byte * 86400 / 256) / 86400

H denotes the SHA-1 hash digest. Identifier is the 80
bit fingerprint (truncated SHA-1 digest of the public key) of the
hidden service. Descriptor-cookie is an optional 128 bit
field. It can be used to provide authorization at the Tor network
level, and it prevents unauthorized clients from accessing the
hidden service. Time-period is used to periodically change
the responsible HSDirs, and making the system more resilient.
The permanent-id-byte prevents the descriptors from
changing all at the same time. Replica takes values of 0 or 1.
It is used to compute two different sets of descriptor IDs for a
hidden service. The current implementation of Tor distributes
each set of descriptor IDs in 3 different HSDirs. Therefore,
for each hidden service there are a total of 6 responsible
HSDirs. The list of Tor relays, which is called the consensus
document, is published and updated every hour by the Tor
authorities. If we consider the circle of the fingerprint of Tor
relays as depicted in Figure 2, then if the descriptor ID of the
hidden service falls between the fingerprint of HSDirk−1 and
HSDirk, it will be stored on HSDirk, HSDirk+1 and HSDirk+2.

When a client (Alice) wants to contact a hidden service, she
first needs the hostname of the service. Then from the .onion
hostname, she computes the Descriptor ID of the hidden
service and the list of its responsible HSDirs (step 3). To
communicate with the hidden service, Alice first randomly
chooses a Tor relay as her Rendezvous Point and makes a
circuit to it (step 4). She then builds a new circuit to one
of Bob’s Introduction Points, and sends it a message. This
message includes the Rendezvous Point’s info and the hash
of the public key of the hidden service (step 5). If the public
key (sent by Alice) is recognized by the Introduction Point,
it will forward the information to the hidden service’s OP
(step 6). When Bob’s OP receives the message it extracts the
Rendezvous Point information and establishes a circuit with it

(step 7).

This approach protects client’s (Alice) IP address from
Bob, and hides hidden service’s (Bob) IP address from Alice,
thus providing mutual anonymity for both the client and the
server.

IV. ONIONBOT: A CRYPTOGRAPHIC P2P BOTNET

In this section, we look at the details of the proposed
OnionBot, a novel non IP based construction that is immune
to the current mitigation techniques. We explore different
bootstrapping approaches and a distributed, self-healing, low-
degree, low-diameter overlay peer-to-peer network formation.

A. Overview

OnionBot retains the life cycle of a typical peer-to-peer
bot [39]. However, each stage has unique characteristics that
make OnionBots different from current peer-to-peer botnets.
As a result, existing solutions are not applicable to them. For
example, in the infection stage, each bot creates a .onion
address and generates a key to indistinguishably encrypt the
messages. In the rally stage, the bots dynamically peer with
other bots that are the foundation of a self-healing network.
Furthermore, while at the waiting stage, bots periodically
change their address to avoid detection and mitigation. These
new .onion addresses are generated from the key that is
shared with the botmaster. This allows the botmaster to access
and control any bot through the shared key, anytime, without
revealing his identity.

Infection: is the first step in recruiting new bots. It can
happen through traditional attack vectors such as phishing,
spam, remote exploits, drive-by-download or zero-day vul-
nerabilities [40]. A great body of literature have focused on
different spread mechanisms [41], [42], [43]. In this work we
focus on the remaining stages of a bot’s life cycle.

Rally: in order to join a botnet, the newly infected bots
need to find the already existing members of the network.
In peer-to-peer network this process is called bootstrapping.
For clarity reasons we use the same terminology in describing
OnionBots. Based on the requirements of the network, the
complexity and flexibility of bootstrapping techniques varies
significantly. OnionBots necessitate a distributed mechanism to
maintain a low-degree, low-diameter network. Such require-
ments, demands a bootstrapping mechanism that is able to
evolve with the network. In section IV-B we discuss different
techniques and their ramifications in more detail.

Waiting: in this state, a bot is waiting for commands from
the botmaster. Generally the command transmissions can be
pull-based (bots make periodic queries to the C&C) or push-
based (botmaster sends the commands to the bots), and there
are trade-offs in each mechanism. For example, in the pull-
based approach, if bots aggressively make queries for the C&C
messages, it allows faster propagation of commands. However,
it results in easier detection of C&C and the bots. In the
push-based approach, it is important to be able to reach to
each bot, within a reasonable number of steps. Furthermore,
to prevent leakage of information about the botnet operation
and topology, it should not be feasible for an adversary to
distinguish the source, destination and the nature of the mes-
sages. Meanwhile, satisfying such requirements is not trivial

in self-healing networks. Later in section IV-D we discuss how
in OnionBots, the botmaster is able to access and control any
bot.

Execution: at this stage the bots execute the commands
given by the botmaster (e.g., bitcoin mining, sending spam [44]
or DDoS attack [45], [46]), after authenticating them. Recently,
botmasters started offering botnet-as-a-service [47] as it was
previously predicted by researchers in 2008 [48]. Considering
that the OnionBots make use of cryptographic block beyond
the basic, trivial encryption/decryption of payloads, it allows
them to offer the botnet for rent. In section IV-E, we explain
how this can be done, in a distributed way, and without further
intervention of the botmaster.

In the next sections we will focus on describing the key
mechanisms of OnionBots.

B. Bootstrap

As mentioned previously the bootstrapping is an essential
part of network formation in peer-to-peer networks. Addition-
ally, in OnionBots, it provides the foundation for the self-
healing graph construction. In the following, we study different
approaches and their trade-offs. We discuss how these concepts
should be adapted to the context of a privacy infrastructure
such as Tor. Note that, the address of a peer list in our
protocol refers to the .onion address of the peers, unless
stated otherwise.

• Hardcoded peer list: in this setting each bot has a list
of other bots to contact at the beginning. Since the
infections can be carried out by the bots, the new peer
lists can be updated. Each peer upon infecting another
host sends a subset of its peer list. Each node in the
original peer list will be included in the subset with
probability p. In the conventional botnets this scheme
is vulnerable to detection and blacklisting. However,
in OnionBots, the .onion address is decoupled form
IP address, and changes periodically as it is described
in section IV-D. Therefore, the current mitigations are
not applicable.

• Hotlists (webcache): this is conceptually similar to
the hardcoded peer list. However each bot has a list
of peers to query for the other peers. In this setting,
the adversary (defenders) will only have access to a
subset of servers, since each bot only has a subset of
the addresses, and these subsets can be updated upon
infection or later in the waiting stage.

• Random probing: in this scheme a bot randomly
queries the list of all possible addresses, until it finds
a bot listening on that address. Although it can be
used in IPv4 and IPv6 [49] networks, it is not feasible
in the context of Tor .onion addresses. Since the
address space is intractable (to craft an address with
specific first 8 letters, it takes about 25 days [50]);
Randomly querying all possible .onion addresses,
requires probing an address space of size 3216.

• Out-of-band communication: the peer list can be trans-
mitted through another infrastructure. For example, by
using a peer-to-peer network such as BitTorrent and
Mainline DHT to store and retrieve peer lists, or by

using social networks, such as Twitter, Facebook or
YouTube.

We envision that OnionBots would use a customized ap-
proach based on hardcoded peer list and hotlists. As mentioned
earlier, in OnionBots the blacklisting of nodes is not practical,
since their addresses change periodically. In the following
section we describe how OnionBots address the bootstrapping
and recruitment during network formation and maintenance.

C. Maintenance of the OnionBot Communication Graph

OnionBots form a peer-to-peer, self-healing network that
maintains a low degree and a low diameter with other bots
to relay messages. Peer-to-peer networks are broadly cat-
egorized as structured and unstructured [51], where both
categories are used by botnets, and are studied in previous
work [31], [30], [52]. However, the already existing peer-
to-peer networks are generic in terms of their operations.
Therefore, their design and resiliency is based on different
assumptions and requirements. In the following, we propose
a Dynamic Distributed Self Repairing (DDSR) graph, a new
peer-to-peer construction that is simple, stealthy and resilient.
Furthermore, it is an overlay network, formed over a privacy
infrastructure such as Tor.

Neighbors of Neighbor Graph: In this section, we in-
troduce DDSR graph construct that is used in the network
formation of OnionBots. The proposed construct is inspired
by the knowledge of Neighbors-of-Neighbor (NoN). Previous
work [53] studied the NoN greedy routing in peer-to-peer
networks, where it can diminish route-lengths, and is asymp-
totically optimal. In this work we discuss how NoN concepts
can be used to create a self-healing network.

Consider graph G with n nodes (V), where each node
ui ∈ V , 0 ≤ i < n, is connected to a set of nodes. The
neighbors of ui, are denoted as N(ui). Furthermore, ui has the
knowledge of nodes that are connected to N(ui). Meaning that
each node also knows the identity of its neighbor’s neighbors.
In the context of our work the identity is the .onion address.

Repairing: When a node ui is deleted, each pair of its
neighbors uj , uk will form an edge (uj , uk) if (uj , uk) /∈ E,
where E is the set of existing edges. Figure 3 depicts the
node removal and the self repairing process in a 3-regular
graph with 12 nodes. The dashed red lines indicate the newly
established links between the nodes. For example, as we can
see if we remove one of the nodes (7), its neighbors (0, 1, 4)
start to find a substitute for the deleted node (7), to maintain
the aforementioned requirements. In this case the following
edges are created: (0, 1), (1, 4), and (1, 4).

The basic DDSR graph outlined in the previous paragraph
does not deal with the growth in the connectivity degree
of each node, denoted by d(u); after multiple deletions the
degree of some nodes can increase significantly. Such increase
of the nodes’ degree is not desirable for the resiliency and
the stealthy operation of the botnet. Therefore, we introduce
a pruning mechanism to keep the nodes’ degree in the range
[dmin, dmax]. Note that dmin is only applicable as long as
there are enough surviving nodes in the network.

Pruning: Consider the graph G, when a node ui is deleted,
each one of its neighbors, starts the repairing process. However
this scheme causes the degree of the neighbors of node ui,
to increase significantly after t steps (deletions). To maintain
the degree in the aforementioned range([dmin, dmax]), each
neighboring node of the deleted node (ui), deletes the highest
degree node from its peer list. If there is more than one such
candidate, it randomly selects one among those for deletion,
until its degree is in the desired range. Removing the nodes
with the highest degree, maintains the reachability of all nodes,
and the connectivity of the graph.

Forgetting: In the proposed OnionBot, nodes forget the
.onion address of the pruned nodes. Additionally, to avoid
discovery, mapping and further blocking, each bot can peri-
odically change his .onion address and announce the new
address to his current peer list. The new .onion address is
generated based on a secret key and time. This periodic change
is possible because of the decoupling between IP address and
the bots, which is provided by Tor. Later, in section IV-D we
explain how the C&C is able to directly reach each bot, even
after they change their address.

D. Command and Control Communication

In this section, we show how Tor enables a stealthy, and
resilient communication channel with C&C. As mentioned
before, OnionBot is a non IP address based construction, there-
fore current techniques to detect and disable the C&C (e.g., IP
blacklisting and DNS traffic monitoring) are ineffective against
it.

In OnionBot we assume two classes of messages: 1)
messages from C&C to the bots and 2) messages from bots to
C&C. The messages from C&C can be either directed to an
individual node(s) (e.g., a maintenance message telling a bot
to change it peers) or directed to all bots (e.g., DDoS attack
on example.com). Furthermore, the botmaster can setup group
keys to send encrypted messages to a group of bots. While a
bot can tell the difference between a broadcast message and
messages directed to an individual bot(s), it is not able to
identify the source, the destination and the nature of these
messages. Therefore the authorities are not able to detect
different messages and drop harmful message and only allow
the maintenance message to pass through. As a result they can
not create the illusion that the botnet is operational, when it is
actually neutralized.

In OnionBot, the bots report their address to C&C, and
establish a unique key to be shared with the botmaster at the
infection/rally stage. This allows C&C to have direct access
to the bots, even after they change their .onion address.
Each bot generates a symmetric key, KB , and reports it
to the C&C. KB is encrypted with the hard coded public
key of the C&C ({KB}PKCC

). After establishing the key,
bots can periodically change their .onion address based
on a new private key generated using the following recipe,
generateKey(PKCC, H(KB, ip)). Where, H is a hash
function, and ip is the index of period (e.g., day). All messages
are of the same fixed size, as they are in Tor. Furthermore,
to achieve indistinguishability between all messages, we use
constructions that generate indistinguishable encodings from
uniform random strings, such as Elligator [54]. As a result no
information is leaked to the relaying bots.

4

5

7

6

0

1

2

11
9

8

3

10

4

5

6

0

1

2

11
9

8

3

10

4

5

6

0

1

2

9

8

3

10

4

5

6

0

1

2

9

3

10

4

5

6

0

1

2

9

3

4

5

6

0

1

23

4

5

6

0

23

5

6

0

23

(1) (2) (3) (4)

(5) (6) (7) (8)

7

11

8

10

9
1

4

Fig. 3: Node removal and the self repairing process in a 3-regular graph with 12 nodes. The dashed red lines, indicate the newly
established links between the nodes.

Botnet Crypto Signing Replay
Miner none none yes
Storm XOR none yes

ZeroAccess v1 RC4 RSA 512 yes
Zeus chained XOR RSA 2048 yes

TABLE I: Cryptographic use in different botnets.

E. Operation

While many current botnets lack adequate secure commu-
nications [55] (e.g., sending messages in plaintext) that leaves
them open to hijacking, the OnionBot’s communication is
completely encrypted since it uses Tor and SSL. Note that the
the encryption keys are unique to each link. Table I summarizes
a number of botnet families and their lack of adequate crypto
blocks [55]. Furthermore, we introduce new cryptographic
blocks that enable the OnionBot to offer new services, such as
a botnet-for-rent [48] and a distributed computation platform
for rent.

To achieve the aforementioned services, we need to account
for three aspects of the messages: 1) authenticity, 2) expiration
time, and 3) legitimacy. Public key encryption and certificates
that are based on the chain of trust, are suitable candidates
to solve the authenticity and the legitimacy of the messages,
and the expiration of the message (rental contract term) can be
addressed by using timestamps. In the following we describe
the details of such operation.

Imagine Trudy wishes to rent the botnet from Mallory, and
every bot has the public key of Mallory hardcoded. Trudy
sends her public key PKT to Mallory, to be signed by the
private key of Mallory SKM . The signed message (TT) acts
as a token containing PKT , an expiration time, and a list of

whitelisted commands. When Trudy wants to issue a command
to her rented bots, she signs her command by using her private
key SKT and includes TT . This way, the bots are able to verify
the legitimacy of such commands, by looking at the token and
the signature of the message.

As a bussiness operation, Trudy pays Mallory using Bit-
coin, where the whole transaction can be carried out over Silk
Road 2.0. Furthermore Mallory can instruct her bots to install
computation platforms such as Java Virtual Machine (JVM).
By doing so, she can also offer a cross-platform distributed
computation infrastructure to carry out CPU intensive tasks,
such as bitcoin mining or password cracking.

V. ONIONBOTS EVALUATION

To evaluate the envisioned OnionBots, we look at two
aspects: the self-healing network formation resilience perfor-
mance and the resilience to analysis techniques, such as botnet
mapping, hijacking, or even assessing the size of the botnet.
The NoN look-ahead routing is proven to be asymptotically
optimal, however such claims have not been studied in the
context of self-healing networks. Although it is desirable to
rigorously prove properties of such networks, in this work we
use empirical data and simulations for evaluation.

A. Mapping OnionBot

OnionBots provide a more resilient structure by using
features available in the Tor network that previous botnets
lack. All OnionBot nodes are directly accessible, even those
running behind NAT, compared to previous work [56]. If a bot
is captured and the address (.onion) of other bots is revealed,
it is still not practical to block the bots. Additionally, bots can
periodically change their .onion addresses, and share it only
with their operational peers. Therefore, limiting the exposure

0 200 400 600 800 1000 1200 1400
Nodes Deleted

0.0

0.2

0.4

0.6

0.8

1.0
Cl

os
en

es
s

Ce
nt

ra
lit

y
deg = 5
deg = 10
deg = 15

(a) without pruning

0 200 400 600 800 1000 1200 1400
Nodes Deleted

0.0

0.2

0.4

0.6

0.8

1.0

Cl
os

en
es

s
Ce

nt
ra

lit
y

deg = 5
deg = 10
deg = 15

(b) with pruning

0 200 400 600 800 1000 1200 1400
Nodes Deleted

0.0

0.2

0.4

0.6

0.8

1.0

De
gr

ee
 C

en
tr

al
ity

deg = 5
deg = 10
deg = 15

(c) without pruning

0 200 400 600 800 1000 1200 1400
Nodes Deleted

0.000

0.002

0.004

0.006

0.008

0.010

De
gr

ee
 C

en
tr

al
ity

deg = 5
deg = 10
deg = 15

(d) with pruning

Fig. 4: The average closeness centrality (4a, 4b) and degree centrality (4c, 4d) of nodes in a k-regular graph, (k = 5, 10, 15)
with 5000 nodes after 30% node deletions, with and without pruning.

of the bot’s address. As a result, one single .onion could be
blocked, as we later discuss in section VI, but it is not feasible
to block all of them.

B. OnionBot Network Resilience

To evaluate the resiliency and performance of the self
repairing construction we use some of the metrics that are
used in graph theory, such as the changes in graph centrality
after node deletions. Centrality metrics examined in previous
studies [57], [58] include closeness centrality and degree
centrality.

The closeness centrality of node u, is the inverse of sum
of the shortest paths between node u to all n− 1 other nodes.
Since the sum of distances depends on the number of nodes,
it is normalized.

C(u) =
n− 1∑

v 6=u d(u, v)

Where n is the number of nodes, and d(u, v) is the shortest
path between nodes u and v. It is an indication of how fast
messages can propagate in the network, from a node, v, to all
other nodes sequentially.

The degree centrality of a node u is the number of its
neighbors. The degree centrality values are normalized by the
maximum possible degree in graph G. Therefore it is the
fraction of nodes that u is connected to. It is an indication
of immediate chance of receiving whatever is flowing through
the network (e.g., messages).

Another metric that we explore and is overlooked by
previous work, is the diameter of the graph. The diameter
of a graph is defined as the longest shortest path (geodesic
distance) in the graph. It is formally defined as the maximum
of d(u, v), ∀u, v, and provides a lower bound on worst case
delay.

While a theoretical analysis is more desirable, it is also
much harder. In the following, we resort to simulation to get
a good sense of the properties of OnionBot. We simulate the
node deletion process in a k-regular graph, (k = 5, 10, 15)
of 5000 nodes, with up to 30% (1500) node deletions. Fig-
ure 4 illustrates the average closeness centrality with pruning

(Figure 4b) and without pruning (Figure 4a). As we can see
in Figure 4a, closeness centrality of the nodes is stable, and
even after node deletion, it does not decrease. Furthermore we
measure the degree centrality of the nodes in the aforemen-
tioned graph, with pruning (Figure 4d) and without pruning
(Figure 4c). As we can see, the degree of nodes increases
significantly after node deletions without pruning. Low degree
centrality is desirable in advanced persistent attacks (APT).
Additionally, it decreases the chances of detection and take
down, because of maintaining a low profile and avoiding to
raise the alarm. For example, Stuxnet only infected maximum
of three other nodes [59], to slow down its spread and avoiding
detection.

To better understand the effect of size, we simulate a small
botnet of size 5000 [57] and a medium botnet of size 15000.
Figure 5 depicts the aforementioned metrics. As we can see in
Figures 5a and 5b, the self-repairing graph remains connected
even when a large portion (90%-95%) of the nodes are deleted,
compared to a normal graph (a graph with no self-repairing
mechanism). Note that, in a normal graph after 60% node
deletion, the number of partitions increases sharply. As we
can see in Figures 5c and 5d, the degree centrality slightly
increases in the DDSR compared to a normal graph, since
the healing process ensures that the degree of the nodes stays
within a specified range. However, as we remove the nodes
in a normal graph, the diameter increases until the graph is
partitioned, where the diameter is infinite. In OnionBot, as
the nodes are deleted and the number of nodes decreases, the
diameter of the graph also decreases accordingly (Figures 5e
and 5f).

VI. MITIGATION OF BASIC ONIONBOTS

In this section, we look at different mitigation strategies
against OnionBots. Mitigation and detection can take place at
different levels, such as host level or network level. Host level
remediation techniques include the use of anti-virus software
and frameworks such as the Security Behavior Observatory
(SBO) [60]. Because of the scaling limitation of such tech-
niques, and the fact that the compromised hosts are rarely
updated or patched, we focus on the network level strategies.

Many of the current detection and mitigation mechanisms
are IP-based, and rely on the network traffic patterns or DNS
queries to distinguish legitimate traffic from malicious traffic.
However, current solutions do not work with OnionBots, since

0 1000 2000 3000 4000 5000
Nodes Deleted

0

50

100

150

200

250

C
o
n
n
e
ct

e
d
 C

o
m

p
o
n
e
n
ts

DDSR
Normal

(a)

0 2000 4000 6000 8000 10000 12000 14000
Nodes Deleted

0

100

200

300

400

500

600

700

C
on

ne
ct

ed
 C

om
po

ne
nt

s

DDSR
Normal

(b)

0 1000 2000 3000 4000 5000
Nodes Deleted

0.00

0.01

0.02

0.03

0.04

0.05

D
e
g
re

e
 C

e
n
tr

a
lit

y

DDSR
Normal

(c)

0 2000 4000 6000 8000 10000 12000 14000
Nodes Deleted

0.00

0.01

0.02

0.03

0.04

0.05

D
eg

re
e

C
en

tra
lit

y

DDSR
Normal

(d)

0 1000 2000 3000 4000 5000
Nodes Deleted

0

2

4

6

8

10

12

D
ia

m
e
te

r

DDSR
Normal

(e)

0 2000 4000 6000 8000 10000 12000 14000
Nodes Deleted

0

2

4

6

8

10

12

D
ia

m
et

er

DDSR
Normal

(f)

Fig. 5: Graphs depicting the number of connected components, average degree centrality, and graph diameter, after incremental
node deletions, in a 10-regular graph of 5000 (left side) and 15000 (right side) nodes.

0 2000 4000 6000 8000 10000 12000 14000
Nodes

0

1000

2000

3000

4000

5000

6000

N
o
d
e
s

D
e
le

te
d

Graph
f(x)=0.4*x

Fig. 6: Partitioning of graphs after removing nodes. The
network becomes partitioned after removing on average about
40% of the nodes, in 10-regular graphs of size n=1000, to
n=15000.

the Tor traffic is encrypted, non IP-based, and there are no
conventional DNS queries to resolve the .onion addresses.
Furthermore, even if an adversary captures a bot sample (e.g.,
by using honeypots or other similar techniques), and recovers
the .onion address of its peers, he is still unable to directly

map these addressees to their corresponding IP addresses and
take down the infected hosts. Since the proposed construction
offers a self-repairing low-degree, low-diameter network, even
after taking over a large portion of the bots, the botnet remains
functional. As Figure 6 shows, an adversary needs to take down
about 40% of the bots simultaneously, to even partition the
network into two subgraphs. Note that, it means there is not
enough time for the graph to self-repair. As we can see, the
conventional solutions that ignore the privacy infrastructure
construction of OnionBots are not effective. Therefore, we
need to adapt our detection and mitigation methods, and
integrate them into the foundation of such infrastructures. In
this section we divide the network level mitigations into two
categories; techniques that are generic to Tor, and schemes
that are specific to OnionBots. In particular, we propose a
new OnionBot specific mitigation method, called Sybil Onion
Attack Protocol (SOAP).

A. Targeting OnionBots Through Privacy Infrastructures

Generic mitigations targeting Tor are based on denying
access to the bots through the HSDirs. As described be-
fore, the list of HSDirs can be calculated by any en-
tity who knows the .onion address (in case there is no
descriptor-cookie). Hence, an adversary can inject her
relay into the Tor network such that it becomes the relay re-
sponsible for storing the bot’s descriptors. Since the fingerprint
of relays is calculated from their public keys, this translates

Fig. 7: Soaping attack: node T is under attack by the compromised node C and its clones. In each step one of the clones
initiates the peering process with the T, until it is contained. After several iterations, the network is partitioned, and the botnet
is neutralized.

into finding the right public key [8]. Nevertheless, it should be
noted that an adversary needs to position herself at the right
position in the ring at least 25 hours before (it takes 25 hours
to get the HSDir flag). It is difficult to mitigate against many
bots, since the adversary requires the computation power, and
a prior knowledge of the .onion addresses. Furthermore, it
disrupts the operation and user experience of the Tor network.

A more long term approach involves making changes to the
Tor, such as use of CAPTACHAs, throttling entry guards and
reusing failed partial circuits, as described in [61]. Having said
that, these mitigations are limited in their preventive power,
open the door to censorship, degrade Tor’s user experience, and
are not effective against advanced botnets such as OnionBot.

B. Sybil Onion Attack Protocol (SOAP)

We devised a mitigation mechanism that uses OnionBots’
very own capabilities (e.g., the decoupling of IP address and
the host) against them. We first overview the attack here, and
then provide a step by step explanation as depicted in Figure 7.
To attack the botnet and neutralize it, we first need to find the
bots’ .onion addresses. This can be done either by detecting
and reverse engineering an already infected host, or by using

a set of honeypots. Although this is not a trivial task, and
requires a significant amount of effort, it allows us to infiltrate
the botnet, traverse its network, and identify the other bots.
After identifying the bots’ .onion address, we run many
hidden services, disclosing a subset of these as neighbors to
each peer we encounter, so gradually over time our clone nodes
dominate the neighborhood of each bot and contain it. Note
that, we can run all of the clones on the same machine because
of the decoupling between the IP address and the host.

Figure 7 depicts the soaping attack in different steps.
Node T is the target of the soaping attack, nodes Ni, are its
neighboring bot nodes, and nodes C are the adversary (e.g.,
the authorities), and his clones, which are represented with
small black circles. In step 1, the botnet is operating normally,
and none of T ’s neighbors are compromised. In step 2, one
of its peers, N4, is compromised. Then, N4 (now depicted as
C), makes a set of clones (the small black circles). In step
3, a subset of C’s clones, start the peering process with T ,
and declare their degree to be a small random number, which
changes to avoid detection (e.g., d=2). Doing so increases
the chances of being accepted as a new peer, and replacing
an existing peer of T . In step 4, T forgets about one of its
neighbors with the highest degree, N3, and peers with one the

clones. The clones repeat this process until T has no more
benign neighbors (steps 5-8). As a result, T is surrounded by
clones and is contained (step 9). As we can see after many
iterations the adversary can partition the network into a set of
contained nodes, and neutralizing the botnet.

VII. RELATED WORK

In this section, we look at other work that examine alterna-
tive botnet constructions. However, they still rely on traditional
models, which makes them vulnerable to the current detection
and mitigation techniques, once their design is known.

Kartaltepe et al. [62], investigate a new generation of
botnets that use online social networks, such as Twitter as their
C&C infrastructure. An instance of such malware, Naz, gets
its commands by making GET requests to the RSS feed of its
botmaster on Twitter. The tweets contain the base64 encoding
of shortened URLs (e.g., bit.ly) that redirect the bot to the
compressed malicious payload.

Nagaraja et al. [63], propose Stegobot, a botnet that
communicates over probabilistic communication channels. It
spreads via social networks, and steals information from its
victims.

Stranerger et al. [52], introduce a botnet communication
protocol, called Overbot. Their design leverages Kademila
peer-to-peer protocol, a distributed hash table (DHT) used by
many peer-to-peer applications. They investigate the possibil-
ities of using the existing protocol to design stealth C&C
channels. The bot uses the 160-bit hash values in a search
request to announce it’s sequence number, which is encrypted
with the public key of the botmaster. Later, this sequence
number is used to send commands to the bot.

Nappa et al. [64], propose a parasitic botnet protocol
that exploits Skype’s overlay network. Skype provides a
widespread resilient network with a large install base for C&C
infrastructure. The communications between the master and
the bots are encrypted using adhoc schemes. The protocol
broadcasts messages to all peers in the network, similar to
the algorithms used in Gnutella. Once each peer receives a
new message it passes it to all of its neighbors.

Vogt et al. [65], examine the possibility of creating a super-
botnet by splitting a large botnet into many smaller botnets.
Each smaller botnet in the super-botnet network, stores some
routing information on how to communicate with the rest of the
network. They use a tree-structured infection process, where
each new zombie learns how many additional host it should
infect and add to its botnet. This design results in a connected
graph, with many densely connected cliques.

Lee and Kim [66], explore the design and mitigation
of botnets that use URL shortening services (USSes) for
alias fluxing. A botmaster uses the USSes to hide and
obfuscate IP address of the C&C by using a dictionary
of 256 words for each part of an IPv4. For example,
10.15.43.89 can be mapped to “Brown.Fox.Jumps.Over.” Then
this expression is transformed into a search query, such
as google.com/q?=Brown+Fox+Jumps+Over. Using the URL
shortening service, bots can find the corresponding IP address
by using the same dictionary.

Wang et al. [56], design a hybrid peer-to-peer botnet,
which is composed of servant and client bots. Their botnet
communicates with a fixed number of peers contained in each
bot to limit the node exposure. The botmaster can control,
monitor and update the bots by sending the messages through
servant bots, and getting the reports from a sensor host. These
messages are encrypted using individualized predefined or
dynamically generated keys.

Xu et al. [67] study the use of DNS for C&C using two
communication modes to piggyback messages over the DNS
messages, codeword and tunneled. In the codeword mode,
the bot makes a query (e.g., codeword.example.com) and
the server replies with an appropriate answer (e.g., the IP
address of a victim for DoS attack). In the tunneled mode the
client encodes its data using a base32 encoding and sends a
CNAME query. After receiving the query, the server uses base32
encoding to construct the corresponding CNAME reply.

VIII. CONCLUSION

Privacy infrastructures such as Tor had a tremendous im-
pact on society, protecting users anonymity and rights to access
information in the face of censorship. It also opened the door
to abuse and illegal activities, such as ransomware [7], and a
marketplace for drugs and contraband [68], [6]. In this work we
envisioned OnionBots, and investigated the potential of sub-
verting privacy infrastructures (e.g., Tor hidden services) for
cyber attacks. We presented the design of a robust and stealthy
botnet that lives symbiotically within these infrastructures to
evade detection, measurement, scale estimation and observa-
tion. It is impossible for Internet Service Providers (ISP) to
effectively detect and mitigate such botnet, without blocking
all Tor access. Additionally, OnionBots rely on a resilient self-
healing network formation that is simple to implement, yet it
has desirable features such as low diameter and low degree.
Such botnets are robust to partitioning, even if a large fraction
of the bots are simultaneously taken down. In the scenario of
a gradual take down of nodes, the network is also able to self-
repair, even after up to 90% node deletions. More importantly,
we developed soaping, a novel mitigation attack that neutral-
izes the OnionBots. We also suggested mitigations that act at
the Tor level. There are still many challenges that need to be
preemptively addressed by the security community, such as
the byzantine behavior of OnionBots [69], [70]. We hope that
this work ignites new ideas to proactively design mitigations
against the new generations of crypto-based botnets.

REFERENCES

[1] R. A. Rodrı́guez-Gómez, G. Maciá-Fernández, and P. Garcı́a-Teodoro,
“Survey and taxonomy of botnet research through life-cycle,” ACM
Computing Surveys (CSUR), vol. 45, no. 4, August 2013.

[2] S. S. Silva, R. M. Silva, R. C. Pinto, and R. M. Salles, “Botnets: A
survey,” Computer Networks, vol. 57, 2013.

[3] “Know your enemy: Fast-flux service networks,” http://www.honeynet.
org/papers/ff/, July 2007.

[4] “The inevitable move - 64-bit zeus enhanced
with tor,” http://securelist.com/blog/events/58184/
the-inevitable-move-64-bit-zeus-enhanced-with-tor/, December
2013.

[5] “Chewbacca - a new episode of tor-based mal-
ware,” http://securelist.com/blog/incidents/58192/
chewbacca-a-new-episode-of-tor-based-malware/, December 2013.

[6] N. Christin, “Traveling the silk road: A measurement analysis of a
large anonymous online marketplace,” in Proceedings of the 22Nd
International Conference on World Wide Web, ser. WWW, 2013.

[7] “Cryptolocker ransomware,” http://www.secureworks.com/
cyber-threat-intelligence/threats/cryptolocker-ransomware/, December
2013.

[8] A. Biryukov, I. Pustogarov, and R. Weinmann, “Trawling for tor hidden
services: Detection, measurement, deanonymization,” in Security and
Privacy (SP), 2013 IEEE Symposium on, 2013.

[9] M. Bailey, E. Cooke, F. Jahanian, Y. Xu, and M. Karir, “A survey of
botnet technology and defenses,” in Proceedings of the 2009 Cyberse-
curity Applications & Technology Conference for Homeland Security,
ser. CATCH, 2009.

[10] J. Liu, Y. Xiao, K. Ghaboosi, H. Deng, and J. Zhang, “Botnet:
Classification, attacks, detection, tracing, and preventive measures,”
EURASIP J. Wirel. Commun. Netw., 2009.

[11] N. Daswani, T. G. C. Quality, S. Teams, and G. Inc, “The anatomy of
clickbot.a,” in In USENIX Hotbots, 2007.

[12] G. Gu, R. Perdisci, J. Zhang, W. Lee et al., “Botminer: Clustering
analysis of network traffic for protocol-and structure-independent botnet
detection.” in USENIX Security Symposium, 2008.

[13] E. Cooke, F. Jahanian, and D. McPherson, “The zombie roundup:
Understanding, detecting, and disrupting botnets,” in Proceedings of the
Steps to Reducing Unwanted Traffic on the Internet on Steps to Reducing
Unwanted Traffic on the Internet Workshop, ser. SRUTI, 2005.

[14] F. C. Freiling, T. Holz, and G. Wicherski, “Botnet tracking: Explor-
ing a root-cause methodology to prevent distributed denial-of-service
attacks,” in Proceedings of 10 th European Symposium on Research in
Computer Security, ESORICS, 2005.

[15] M. Abu Rajab, J. Zarfoss, F. Monrose, and A. Terzis, “A multifaceted
approach to understanding the botnet phenomenon,” in Proceedings of
the 6th ACM SIGCOMM Conference on Internet Measurement, ser.
IMC, 2006.

[16] J. P. John, A. Moshchuk, S. D. Gribble, and A. Krishnamurthy,
“Studying spamming botnets using botlab,” in Proceedings of the 6th
USENIX Symposium on Networked Systems Design and Implementation,
ser. NSDI, 2009.

[17] R. Perdisci, W. Lee, and N. Feamster, “Behavioral clustering of
http-based malware and signature generation using malicious network
traces,” in Proceedings of the 7th USENIX Conference on Networked
Systems Design and Implementation, ser. NSDI, 2010.

[18] B. Stone-Gross, M. Cova, L. Cavallaro, B. Gilbert, M. Szydlowski,
R. Kemmerer, C. Kruegel, and G. Vigna, “Your botnet is my botnet:
Analysis of a botnet takeover,” in Proceedings of the 16th ACM
Conference on Computer and Communications Security, ser. CCS,
2009.

[19] P. Porras, H. Saı̈di, and V. Yegneswaran, “A foray into conficker’s
logic and rendezvous points,” in Proceedings of the 2Nd USENIX
Conference on Large-scale Exploits and Emergent Threats: Botnets,
Spyware, Worms, and More, ser. LEET, 2009.

[20] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, S. Abu-Nimeh,
W. Lee, and D. Dagon, “From throw-away traffic to bots: Detecting the
rise of DGA-based malware,” in Presented as part of the 21st USENIX
Security Symposium (USENIX Security), 2012.

[21] S. Yadav, A. K. K. Reddy, A. Reddy, and S. Ranjan, “Detecting
algorithmically generated malicious domain names,” in Proceedings of
the 10th ACM SIGCOMM conference on Internet measurement, 2010.

[22] S. Yadav, A. Reddy, A. Reddy, and S. Ranjan, “Detecting algo-
rithmically generated domain-flux attacks with DNS traffic analysis,”
Networking, IEEE/ACM Transactions on, 2012.

[23] M. Antonakakis, R. Perdisci, W. Lee, N. Vasiloglou, II, and D. Dagon,
“Detecting malware domains at the upper DNS hierarchy,” in Proceed-
ings of the 20th USENIX Conference on Security, ser. SEC, 2011.

[24] M. Antonakakis, R. Perdisci, D. Dagon, W. Lee, and N. Feamster,
“Building a dynamic reputation system for DNS,” in Proceedings of
the 19th USENIX Conference on Security, 2010.

[25] L. Bilge, E. Kirda, C. Kruegel, and M. Balduzzi, “EXPOSURE : Finding
malicious domains using passive DNS analysis,” in NDSS, 18th Annual
Network and Distributed System Security Symposium, 2011.

[26] F. Tegeler, X. Fu, G. Vigna, and C. Kruegel, “Botfinder: Finding bots
in network traffic without deep packet inspection,” in Proceedings of
the 8th International Conference on Emerging Networking Experiments
and Technologies, ser. CoNEXT, 2012.

[27] L. Bilge, D. Balzarotti, W. Robertson, E. Kirda, and C. Kruegel, “Dis-
closure: Detecting botnet command and control servers through large-
scale netflow analysis,” in Proceedings of the 28th Annual Computer
Security Applications Conference, ser. ACSAC, 2012.

[28] A. Mohaisen, O. Alrawi, A. G. West, and A. Mankin, “Babble:
Identifying malware by its dialects,” in IEEE Communications and
Network Security, 2013.

[29] A. G. West and A. Mohaisen, “Metadata-driven threat classification
of network endpoints appearing in malware,” DIMVA: Proceedings
of the 11th Conference on Detection of Intrusions and Malware &
Vulnerability Assessment, 2014.

[30] T. Holz, M. Steiner, F. Dahl, E. Biersack, and F. Freiling, “Measure-
ments and mitigation of peer-to-peer-based botnets: A case study on
storm worm,” in Proceedings of the 1st Usenix Workshop on Large-
Scale Exploits and Emergent Threats, ser. LEET, 2008.

[31] S. Stover, D. Dittrich, J. Hernandez, and S. Dietrich, “Analysis of the
storm and nugache trojans: P2P is here,” in ;login, 2007.

[32] B. Stock, J. Göbel, M. Engelberth, F. C. Freiling, and T. Holz,
“Walowdac - analysis of a peer-to-peer botnet,” in Proceedings of the
European Conference on Computer Network Defense, ser. EC2ND,
2009.

[33] D. Andriesse, C. Rossow, B. Stone-Gross, D. Plohmann, and H. Bos,
“Highly resilient peer-to-peer botnets are here: An analysis of Gameover
Zeus,” in Malicious and Unwanted Software: ”The Americas” (MAL-
WARE), 8th International Conference on, 2013.

[34] S. Nagaraja, P. Mittal, C.-Y. Hong, M. Caesar, and N. Borisov, “Botgrep:
Finding P2P bots with structured graph analysis,” in Proceedings of the
19th USENIX Conference on Security, ser. USENIX Security, 2010.

[35] J. Zhang, R. Perdisci, W. Lee, U. Sarfraz, and X. Luo, “Detecting
stealthy P2P botnets using statistical traffic fingerprints,” in Dependable
Systems Networks (DSN), IEEE/IFIP 41st International Conference on,
2011.

[36] T.-F. Yen and M. Reiter, “Are your hosts trading or plotting? telling P2P
file-sharing and bots apart,” in Distributed Computing Systems (ICDCS),
IEEE 30th International Conference on, 2010.

[37] B. Coskun, S. Dietrich, and N. Memon, “Friends of an enemy: Identi-
fying local members of peer-to-peer botnets using mutual contacts,”
in Proceedings of the 26th Annual Computer Security Applications
Conference, ser. ACSAC, 2010.

[38] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The second-
generation onion router,” in Proceedings of the 13th Conference on
USENIX Security Symposium, 2004.

[39] P. Narang, S. Ray, C. Hota, and V. Venkatakrishnan, “Peershark: De-
tecting peer-to-peer botnets by tracking conversations,” in International
Workshop on Cyber Crime (IWCC), 2014.

[40] “2012 data breach investigation report,” http://www.verizonenterprise.
com/resources/reports/rp data-breach-investigations-report-2012-ebk
en xg.pdf, December 2012.

[41] C. Rossow, C. Dietrich, and H. Bos, “Large-scale analysis of malware
downloaders,” in Detection of Intrusions and Malware, and Vulnerabil-
ity Assessment. Springer Berlin Heidelberg, 2013.

[42] R. Potharaju, E. Hoque, C. Nita-Rotaru, S. Sarkar, and S. Venkatesh,
“Closing the pandora’s box: Defenses for thwarting epidemic outbreaks
in mobile adhoc networks,” in IEEE 9th International Conference on
Mobile Adhoc and Sensor Systems (MASS), 2012.

[43] A. Sanatinia, S. Narain, and G. Noubir, “Wireless spreading of wifi aps
infections using wps flaws: an epidemiological and experimental study,”
Communications and Network Security (CNS), 2013.

[44] O. Thonnard and M. Dacier, “A strategic analysis of spam botnets
operations,” in Proceedings of the 8th Annual Collaboration, Electronic
Messaging, Anti-Abuse and Spam Conference, ser. CEAS, 2011.

[45] M. Marchetti, M. Colajanni, M. Messori, L. Aniello, and Y. Vigfusson,
“Cyber attacks on financial critical infrastructures,” in Collaborative
financial infrastructure protection: Tools, abstractions and middleware,
R. Baldoni and G. Chockler, Eds. Springer, January 2012, ch. 3, pp.
53–81.

[46] W. Chang, A. Mohaisen, A. Wang, and S. Chen, “Measuring botnets
in the wild: Some new trends,” in ACM Symposium on Information,
Computer and Communications Security, ser. ASIACCS, 2015.

[47] “Microsoft: Kelihos ring sold ’botnet-as-a-
service’,” http://www.darkreading.com/risk-management/
microsoft-kelihos-ring-sold-botnet-as-a-service/d/d-id/1100470,
September 2011.

[48] R. Hund, M. Hamann, and T. Holz, “Towards next-generation botnets,”
in European Conference on Computer Network Defense, EC2ND, 2008.

[49] R. Bless, O. P. Waldhorst, C. P. Mayer, and H. Wippel, “Decentralized
and autonomous bootstrapping for ipv6-based peer-to-peer networks,”
in Winning Entry of the IPv6 Contest 2009 by IPv6 Council, 2009.

[50] “Shallot,” https://github.com/katmagic/Shallot, June 2012.
[51] E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, and S. Lim, “A survey and

comparison of peer-to-peer overlay network schemes,” Communications
Surveys Tutorials, IEEE, 2005.

[52] G. Starnberger, C. Kruegel, and E. Kirda, “Overbot: A botnet pro-
tocol based on kademlia,” in Proceedings of the 4th International
Conference on Security and Privacy in Communication Netowrks, ser.
SecureComm, 2008.

[53] G. Singh Manku, M. Naor, and U. Wieder, “Know thy neighbor’s
neighbor: the power of lookahead in randomized p2p networks,” in
Proceedings of the thirty-sixth annual ACM symposium on Theory
(STOC), 2004.

[54] D. J. Bernstein, M. Hamburg, A. Krasnova, and T. Lange, “Elligator:
Elliptic-curve points indistinguishable from uniform random strings,”
in Proceedings of the ACM SIGSAC Conference on Computer and
Communications Security, ser. CCS, 2013.

[55] C. Rossow, D. Andriesse, T. Werner, B. Stone-Gross, D. Plohmann,
C. J. Dietrich, and H. Bos, “Sok: P2pwned - modeling and evaluating
the resilience of peer-to-peer botnets,” in Proceedings of the 2013 IEEE
Symposium on Security and Privacy, ser. SP, 2013.

[56] P. Wang, S. Sparks, and C. Zou, “An advanced hybrid peer-to-peer
botnet,” IEEE Transactions on Dependable and Secure Computing
(DSN), 2010.

[57] T.-F. Yen and M. K. Reiter, “Revisiting botnet models and their implica-
tions for takedown strategies,” in Proceedings of the First International
Conference on Principles of Security and Trust, ser. POST, 2012.

[58] C. Davis, S. Neville, J. Fernandez, J.-M. Robert, and J. McHugh,
“Structured peer-to-peer overlay networks: Ideal botnets command and

control infrastructures?” in Computer Security - ESORICS 2008, ser.
Lecture Notes in Computer Science, 2008.

[59] “W32.stuxnet,” http://www.symantec.com/security response/writeup.
jsp?docid=2010-071400-3123-99, February 2013.

[60] A. Forget, S. Komanduri, A. Acquisti, N. Christin, L. F. Cranor, and
R. Telang, “Security behavior observatory: Infrastructure for long-term
monitoring of client machines,” 2014.

[61] N. Hopper, “Challenges in protecting tor hidden services from botnet
abuse,” in Proceedings of the Financial Cryptography and Data Secu-
rity, ser. FC, 2014.

[62] E. J. Kartaltepe, J. A. Morales, S. Xu, and R. Sandhu, “Social network-
based botnet command-and-control: Emerging threats and countermea-
sures,” in Proceedings of the 8th International Conference on Applied
Cryptography and Network Security, ser. ACNS, 2010.

[63] S. Nagaraja, A. Houmansadr, P. Piyawongwisal, V. Singh, P. Agarwal,
and N. Borisov, “Stegobot: a covert social network botnet,” in Informa-
tion Hiding. Springer, 2011.

[64] A. Nappa, A. Fattori, M. Balduzzi, M. Dell’Amico, and L. Cavallaro,
“Take a deep breath: A stealthy, resilient and cost-effective botnet using
skype,” in Proceedings of the 7th International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, ser. DIMVA,
2010.

[65] R. Vogt, J. Aycock, and M. J. Jacobson, “Army of botnets,” in Proceed-
ings of Annual Network and Distributed System Security Symposium
(NDSS), 2007.

[66] S. Lee and J. Kim, “Fluxing botnet command and control channels with
url shortening services,” Comput. Commun., 2013.

[67] K. Xu, P. Butler, S. Saha, and D. Yao, “DNS for massive-scale command
and control,” Dependable and Secure Computing, IEEE Transactions
on, 2013.

[68] A. Biryukov, I. Pustogarov, and R.-P. Weinmann, “Content and popu-
larity analysis of tor hidden services,” arXiv preprint arXiv:1308.6768,
2013.

[69] Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Prime: Byzantine replication
under attack,” Dependable and Secure Computing, IEEE Transactions
on, vol. 8, no. 4, pp. 564–577, July 2011.

[70] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens, “An on-
demand secure routing protocol resilient to byzantine failures,” in
Proceedings of the 1st ACM Workshop on Wireless Security, ser. WiSE,

2002.

