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Abstract—RF emissions’ detection, classification, and spectro-temporal localization are essential not only for understanding,
managing, and protecting the radio frequency resources, but also for countering today’s security threats such as jammers. Achieving
this goal for wideband, real-time operation remains challenging. In this paper, we present WRIST, a Wideband, Real-time,
Spectro-Temporal RF Identification system. WRIST can detect, classify, and precisely locate RF emissions in time and frequency using
RF samples of 100 MHz spectrum in real-time. The system leverages an one-stage object detection Deep Learning framework, and
transfer learning to a multi-channel visual-based spectral representation. Towards developing WRIST, we devised an iterative training
approach which leverages synthesized and augmented RF data to efficiently build a large dataset with high-quality labels. WRIST
achieves over 99% class detection accuracy, 94% emission precision and recall, with less than 0.08 bandwidth and time offset ratios in
a large anechoic chamber over-the-air environment. In the extremely congested in-the-wild environment, WRIST still achieves over 80%
precision and recall. WRIST currently supports five 2.4 GHz technologies (Bluetooth, Lightbridge, Wi-Fi, XPD, and ZigBee) and is
easily extendable to others. We are making our curated dataset available to the whole community. It comprises over 10 million labelled

RF emissions from off-the-shelf wireless radios spanning the five classes of technologies.

Index Terms—Spectro-temporal RF Identification, Deep Learning, Wideband and Real-time System, Dataset

1 INTRODUCTION

OBILE technologies, fueled by advances in wireless
Mcommunications, revolutionized our society beyond
the pioneers dreams. It enables a ubiquitous access to in-
formation, and connects people to each other, and to a
rapidly increasing number of services. However, a plethora
of emerging applications, such as Massive IoT (MIoT), au-
tonomous cars, robotics, and augmented reality are driving
the demand for spectrum to new heights. Spectrum scarcity
is becoming a critical issue. At the same time, wireless
systems are increasingly softwarized, and SDR platforms
are highly capable, with small form factor and low cost.
For instance, the XTRX SDR platform is capable of 2x2
120MSps in a mini PCle form factor and costs few hundreds
of dollars [1]. This is both a blessing for developing new
sophisticated communications techniques (that are agile and
flexible, exploiting every pocket of the spectrum), and a
curse as it calls for new mechanisms for spectrum man-
agement and it lowered the barrier for attacks from smart
jammers to compromised wireless chips [2], or weaponizing
drones [3], [4]. While the DHS, FAA, and FCC have regu-
lations against such threats [5], [6], [7], [8], [9], [10], they
unfortunately, still lack the necessary technology to enforce
them. This confluence of trends raises challenging research
questions as to the development of scalable techniques for
understanding, managing, and protecting the RF spectrum,
in particular in dynamic mobile environments. Some of
the traditional areas that will benefit from such techniques
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Fig. 1: Wideband, real-time identification of RF emissions.

include spectrum management, as dynamic and fine-grain
spectrum sharing is becoming a necessity even for 5G mo-
bile systems [11], [12]. Crucial to all these applications is the
ability to understand the spectrum, both in real-time and a-
posteriori, detect, classify, and predict the time and frequency
information of the communications. Traditional spectrum
sensing techniques are insufficient as they cannot classify
emissions, detect collisions, and adequately summarize the
view of wideband spectrum.

Towards this objective, we propose systematic and general-
izable approaches to detect and classify RF emissions with two
key unmet requirements: real-time and wideband spectrum
processing. These techniques are based on our team (Sprite)
solution in the Spectrum Collaboration Challenge (SC2)
organized by DARPA [13]. Sprite was a winning team in
2017, 2018 and a finalist in 2019 (a total of $2M prizes). To
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Fig. 2: A detection bounding box located at center frequency
2. and time y. identifies a present Wi-Fi emission in the
wide spectrum.

the best of our knowledge, previous work only focused on
a subset of these objectives. We systematically develop RF-
Centric ML models and techniques to detect and classify
a wide variety of existing wireless standards, to be easily
extensible to new and unknown RF emissions (We refer
to “RF emissions” as electromagnetic waves emitted from
RF devices. Henceforth, the terms “RF emissions” and “RF
signals” are used interchangeably). Our approach is inspired
by the success achieved by computer vision in several ways.
For the real-time spectro-temporal detection and classifica-
tion of RF emissions, our approach is inspired by YOLO [14],
[15]. In this paper, we generalize and extend the principles
underlying YOLO’s success to the RF domain. These include
(1) analyzing a multi-channel image-like representation of
RF emissions with a single forward propagation neural
network (unlike prior work that iterates through sliding
and resizing, or complex multi-stage pipelines) by creating
a grid and detecting/classifying objects per cell, (2) direct
spectro-temporal location prediction combined with a small
number of bounding boxes bootstrapped with anchor train-
ing and specialized to learn typical RF emission patterns,
and (3) fine-grain features detection through passthrough
network design and multiscaling. Moreover, we improve the
speed and accuracy of the core DL network simultaneously
by optimizing the layers and anchor boxes based on special
characteristics of RF emissions.

Towards building the deep learning models, and in the
absence of an initial labelled dataset, we developed a set
of techniques to maximize labelling automation. We first
reused some of YOLO existing layers and weights (transfer
learning). On the other hand, we developed an approach to
bootstrap an iterative process of using synthetic intermedi-
ate data, building increasingly large datasets and accurate
DL models. Our final DL model achieves over 99% of class
detection accuracy in various over-the-air environments,
including the extremely congested in-the-wild spectrum.
Moreover, to highlight our system’s capabilities of locating
the emissions in time and frequency in the wide spectrum
and to better evaluate these capabilities, we devised new
evaluation metrics for the evaluated locations. We empha-
size that prior work only focuses on class accuracy metric,
and does not consider metrics to evaluate the time and fre-
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quency locations of emissions in the wide spectrum, because
of the lack of spectro-temporal identification capabilities.
Therefore, we address this with new emission detection
metrics including emission precision, recall, F1-score, and
time/bandwidth offset ratios (described in Section 3.2), and
show that our DL model achieves very good performance.

We believe that sharing a large and curated dataset with
the wireless community will spur the creation of novel
RFML models and techniques. Towards this goal, we de-
veloped a dataset of over 800,000 RF images containing
over 10 millions fully-labelled emissions (corresponding to
over 13 Terabytes of raw RF samples collected from the 100
MHz-wide spectrum) from a variety of radios that operate
in the 2.4GHz ISM band including Wi-Fi, Bluetooth, ZigBee,
Lightbridge, XPD. The dataset is the result of the efficient
data collection process with the automatic labeling and RF
augmentation techniques. The emission data is annotated
with time and frequency information, and with correspond-
ing RF technologies. The dataset is complemented with
the API that supports expansion of training data with RF
augmentation, and serves as the building block to develop
new models supporting other RF technologies (Section 5).
Our contributions include:

e An extensible DL framework for real-time RF iden-
tification inspired by and leveraging state-of-the-art
deep learning detection network, and a visual-based
RF signal representation to enable the learning. We
optimized the DL network and algorithm with RF-
centric techniques for anchor bounding boxes and
CNN layers, achieving better and faster RF identifi-
cation (Section 2).

e An efficient iterative learning approach to develop
DL models consisting of two stages: (1) Transfer
learning from a dataset of synthesized and aug-
mented RF data, and (2) Refining the DL model using
a large dataset of over-the-air RF emissions acquired
by the initial model (Sections 3 and 4). This two-
step process can be iterated to support increasingly
larger datasets and types of wireless technologies by
minimizing manual efforts for annotating data.

e DL architecture and models for real-time, wideband
RF emissions detection (anywhere in a 100 MHz
band), classification, and spectro-temporal analysis
achieving over 99% class detection accuracy even in
extremely congested environment in the wild for five
classes of RF technologies: Wi-Fi, Bluetooth, ZigBee,
Lightbridge [27] and XPD [28].

e New evaluation metrics for spectro-temporal RF
identification that assess the DL model’s capabilities
on the single-emission level. Our DL model achieves
very high emission precision (up to 0.99), recall (up
to 0.97), Fl-score (up to 0.98) and low bandwidth
and time offset ratios (less than 0.1).

e A curated dataset of over 10 million labelled emis-
sions spanning five 2.4 GHz RF technologies, along
with the API to generate synthetic data and expand
the dataset by using RF data augmentation. The API
provides an efficient and systematic way to extend
the RF identification approach to new RF technolo-
gies, serving as a building block for RFML research
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TABLE 1: Comparison with prior work in RF emission identification. Our work is the first in the literature that successfully
and adequately addresses the requirements for spectro-temporal RF identification, real-time and wideband processing, and
sufficient real RF training data. We emphasize that the wideband processing refers to the ability to cover the whole 80
MHz-wide 2.4 GHz ISM band in real-time, which is only present in our work (WRIST implemented with Ettus USRP X310

can cover a 100 MHz bandwidth), while the other systems only support up to 25 MHz (as in [

D1

] provides evaluation

for over-100MHz signal classification of eight technologies (DECT, Bluetooth, ATSC, LTE, UAS, Vulos, ADSB, and Wi-Fi),
however, only synthetic RF signals are considered, and the approach is not evaluated in real-time.

RF Identification Real-time Processing Dataset

Detection & Spectro-temporal . Real RF Number of

Classification L(IJDCation Pregiction Narrowband ~ Wideband Emissions Open Data Technologies
This work v v v v v v 5
Schmidt et al. [18] v v 3
Bitar et al. [19] v v 3
Baset et al. [16] v v v 3
Q’shea et al. [20] v N/A
Loetal. [21] v v v 1
Fonseca et al. [22] v v v 2
Prasad et al. [23] v v 3
Vagollari et al. [24] v v N/A
Franco et al. [17] v v 8
ModRec! [25], [26] v v v N/A

and applications (Section 5).

2 SPECTRO-TEMPORAL RF IDENTIFICATION

Aiming to build a practical and efficient RF identification
framework, we design WRIST with the following objectives:
accurate classification and spectro-temporal characteriza-
tion, real-time processing and wideband spectrum support.
To the best of our knowledge, prior work only addressed
a subset of these objectives, as shown in Table 1. In this
section, we identify the challenges towards developing such
system and present our approach.

2.1 Challenges and Elements of Approach

Wideband RF Identification. As today’s wireless systems
are required to flexibly operate in a shared, wide RF spec-
trum (e.g., 2.4GHz ISM band is 80MHz wide and is home to
various communication standards), wideband operation is
critical for practical RF emission identification applications.
Conventional approaches rely on sensing specific, small
frequency bands, and classifying the RF signal within that
band, without considering other emissions present in other
parts of a much larger spectrum [18], [25]. Authors in [19]
attempted to cover the whole 2.4 GHz ISM band with
multiple co-operating neural networks classifying based on
sensed data collected in much narrower bands. While such
approach is theoretically feasible, it is very challenging to
deploy in practice due to computation overhead as well as
synchronization requirements for the classifiers. Moreover,
we emphasize that RF classifiers used in those systems are
unable to provide the spectro-temporal locations (time pe-
riod and frequency information) of emissions. Our solution
to these problems leverages techniques from object detection
approaches of computer vision. We transform wideband RF
samples into a 2D time-frequency image (Section 2.2) and
develop RF-centric Deep Learning (DL) models to identify
all individual and overlapping emissions with their RF

1. Existing works on classification of different modulation schemes.

categories and 2D positions (cf. an example of Wi-Fi packet
detection in Figure 2).

Real-time Capability. As seen in Table 1, most of existing
work lacks the real-time processing capability and analysis,
despite its importance for practical RF recognition systems.
We incorporated two features into the DL framework to
solve this problem. In essence, we first designed and de-
ployed a RF-centric compression first layer (cf. Section 2.4) of
the neural network to reduce the computational load for the
rest of the network, while selectively preserving important
RF data features. Second, we optimized the state-of-the-art
deep learning detection network (discussed in Section 2.3)
with RF-centric techniques and eventually achieved faster
processing speed and better performance.

Efficient Data Collection and Training. Effective super-
vised Machine Learning and Deep Learning frameworks
require a lot of training data, which takes significant effort
to carefully label. Building a good RF dataset has even more
challenges due to the massive I/Q data of the wide spec-
trum requiring expert knowledge to collect and annotate.
For instance, a 100 MHz wideband receiver can generate
800 Mbytes of data every second. In consequence, building
a large labelled RF dataset is very time-consuming and
costly. To reduce the manual efforts for building the dataset
and extending it for future use, we employ an iterative
training process. First, we collected and labelled a small set
of individual RF emissions. Then, we converted them to 2D
image-like spectrum snapshots, and applied various RF emis-
sion augmentations on the snapshots (e.g., shifting emission
locations, or adjusting the SNR) to obtain a Synthetic Labelled
Dataset to train the first model, called supporting model. Next,
we collected a much larger dataset of RF samples from
over-the-air transmissions and used the supporting model
for the initial annotations which are manually corrected
afterwards. Furthermore, this dataset was processed by
our RF compression algorithm, and expanded by our RF
sample augmentations (e.g., generating additional emission
collisions) to obtain an Extended Labelled Dataset. Using this
dataset, the real-time models were trained and evaluated



leading to WRIST’s final model. The overall workflow of
our system is depicted in Figure 3. It is emphasized that the
RF-centric compression layer is only present in the real-time
model. In the next sections, we describe the core components
of our system. We leave the description and evaluation of
the supporting model in Section 3 and the real-time model
in Section 4.

2.2 Spectral Representation

Our first step of designing the Deep Learning framework
is defining the representation of RF signals as the input
layer. While investigating the characteristics of different RF
emissions, we observed and were motivated by the unique
features characterizing various RF technologies, such as
bandwidth, frequency range, frame format, modulation
and coding schemes. For example, IEEE 802.15.1 standard
(or Bluetooth) operates on 1 MHz channels using GPSK,
DQPSK and DPSK modulation; while Wi-Fi signals (IEEE
801.11a/g/n/ac) use OFDM modulation for channels of 20—
160 MHz. Such features are recognizable by visual analy-
sis of frequency and/or time domain of the RF samples.
Motivated by that, we use a image-like spectral repre-
sentation towards designing WRIST, enabling the use of
numerous cutting-edge DL solutions specially designed for
images [15], [29], [30].

Our process of transforming raw RF samples to visual
data is described as follows. We divide the I/Q data stream
into equal chunks, and transform the data of each chunk
into the frequency domain with an N-point Fast Fourier
Transform (FFT) algorithm. The FFT outputs of M chunks
are grouped to form a M x NN matrix of complex samples.
Then, a 2D grayscale image representing the 2D view of
frequency spectrum (called spectrum snapshot) is created
from the matrix by mapping each element m , (in column
2 and row ) to the corresponding integer value p,, ,, of pixel
at coordinate (z,y):

Pay = f(Azy)

:= 7 (min (max (Az,y, Amin)s Amaz) — Amin) M

where A, , = 20 * logyq|ms,| — No representing the
SNR (in dB) of received emission at frequency bin x of
the y-th chunk with respect to the noise floor Ny, while
Apin = —10,Apee = 50 are the pre-calculated mini-
mum/maximum SNR values that we consider for each
spectrum snapshot. Lastly, v = 255/(Amaez — Amin) is the
scaling factor of the SNR-pixel mapping.

Figure 4 shows the examples of visualized Wi-Fi, Blue-
tooth, and ZigBee emissions using our described transfor-
mation technique. We emphasize that, while only the magni-
tudes of complex samples m , are used in the transforma-
tion formula and the phases are omitted, the distinguishing
RF features of different RF technologies, such as bandwidth
or emission texture, are clearly visible. It should be noted
that we used the representation in Equation (1) only for the
supporting model (Section 3), where all RGB color channels
receive the same value (grayscale mapping). For the real-time
model (Section 4), we used the RF-centric compression scheme
(described in section 2.4) to map each color channel to a
different value, which results in full RGB spectrum snapshot
as the input data for the final system.

2.3 Optimized Deep Learning Identification Network

The Deep Learning module of WRIST is inspired by YOLO
[15], which is a popular one-stage object detection method to
detect different objects in an image. YOLO is currently the
fastest detection solution [31] with the capability of end-to-
end processing using a single neural network. Because of
that, this approach is much faster than the two-stage object
detection methods relying on slow and complex pipelines
[32], [33]. Towards achieving real-time RF identification, we
optimized the DL architecture and algorithm to achieve
better, faster RF identification results. Our optimizations are
based on the observation that visualized RF emissions have
distinctive characteristics such as size or texture, compared
to real-life objects. We note that while YOLO was considered
in a small number of prior work [20], [21], [22], the mecha-
nisms for real-time, wideband identification of multiple RF
technologies, as well as efficient data collection for large
dataset compliant with DL operation requirements, are still
lacking. Our techniques for the development of WRIST
make significant enhancement to YOLO and adequately
address the aforementioned problems.

First Optimization: RF-centric Anchor Boxes. Our neural
network identifies emissions by outputting a set of bounding
boxes, each for a potential emission in the input spectrum
snapshot. All features, including emissions and noise, in
every time and frequency slot need to be considered for
detection. To achieve this, the network splits the input into
a S x § grid, where each grid cell generates B bounding
boxes predicting the emissions whose centers are located
within that cell. The YOLO algorithm predicts using a set of
pre-defined bounding boxes of specific sizes for each grid
cell (called anchor boxes) as the references for the predicted
objects. The anchor boxes are fundamental in many ad-
vanced detection methods [15], [31], [33], enabling the capa-
bility to capture objects of different aspect ratios. Therefore,
it is essential for the anchor boxes to be suitable to the target
objects that the DL model learns and predicts. A big ob-
servable difference between typical real-life objects (which
are the learning targets of the original YOLO framework)
and RF emissions is that the latter typically have highly-
varying sizes (due to the variations of packet duration and
bandwidth), instead of fixed sizes for the former. Hence,
using RF-centric anchor boxes can enhance the learning, and
provide more precise detection information for RF emis-
sions. It is noted that the original anchor boxes in YOLO are
the result of K-means clustering on the ImageNet dataset
[34] used for computer vision tasks. Because the ImageNet
dataset only contains data of real-life objects, the original
anchor boxes of YOLO are not optimized for the task of
RF identification. For that reason, we replaced the original
anchor boxes in YOLO with our RF-centric anchor boxes
generated by using K-means clustering algorithm on the
RF training dataset. The later evaluation shows that using
RF-centric anchor boxes achieves performance improvement
compared to the unmodified YOLO algorithm.

An output bounding box has a confidence score to de-
termine its relation with an RF emission, which is cal-
culated as the product of the predicted emission pres-
ence (P(FE) € {0,1}) and the Intersection-over-Union (IoU)
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Fig. 3: The spectro-temporal RF identification workflow of WRIST.

(a) Wi-Fi

(b) Bluetooth

(c) ZigBee

Fig. 4: Different RF emissions are clearly distinguishable
with the spectral representation.
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Fig. 5: RF-centric compression mechanism.

score:

IoU = — (2)

where S; is the overlapping area and Sy is the combining
area of the detection box and the ground truth. The confi-
dence score is equal to the IoU if there is an emission in the
cell, otherwise is zero. A bounding box is predicted with

the conditional probabilities (P(RFclass)|E),l € [1...C))
for all C different RF technologies (classes). The position
of the box (spectro-temporal information) is described by
four predicted variables: the center coordinates of the box
(%, ye) relative to the cell position, the width w and the
height h relative to the size of input image.

Second Optimizations: Neural Network Layers. YOLO
uses a deep convolutional neural network that incorpo-
rates three detection layers that split the input image into
grids of three different scales. Prediction at larger scales
utilizes the combination of upsampled feature maps from
predictions at smaller scales, and the feature maps from
the first layers of the network. This flexibility makes the
network predict better the RF emissions whose visualized
object sizes are significantly different (e.g., small Bluetooth
vs. long and wide Wi-Fi emissions). The YOLO network
can achieve real-time processing in computer vision [31].
However, utilizing the off-the-shelf YOLO network for
wideband, real-time RF identification remains a challenge.
We addressed this and achieved high accuracy of real-
time identification by optimizing the original convolutional
layers, along with utilizing an RF compression algorithm (to
be presented in Section 2.4). We selectively reduced the vol-
ume of convolutional filters, based on an observation that
visualized RF emissions are sharp and simpler than real-
life objects (which are the initial targets for YOLO design).
Therefore, there are less useful features needed to extract,
and equivalently, smaller volume of convolutional filters
is sufficient to identify such emissions. The filter reduction
was performed step-by-step until we observed a significant
increase in the validation error, using the following formula:



6

(a) Wi-Fi (b) Bluetooth

(c) ZigBee

(d) Lightbridge (e) XPD

Fig. 6: Spectrum snapshots of different RF emissions resulting from RF-centric compression.

Complex 1&Q.
samples —

RFC

Fig. 7: SYL-4 real-time model comprises the RF-centric com-
pression layer (RFC) and the optimized version of YOLOv4.

Ui = U;_1 x (1 — o) where ¢ = 0.5 and U; is the filter
volume at the i*" step. In our experiments, we stopped the
filter reduction after ¢ = 2, resulting in the total reduction
of 62.5%. Our optimized model is now more than 2.2 times
faster while preserving detection performance.

Our neural network is trained by optimizing a loss
function consisting of three components, each penalizes
the error in one of the three categories: Box coordinates,
confidence score, and class probabilities. The mean squared
error loss is used for box coordinates error, while the cross-
entropy loss is used for the other errors. The total loss
is the sum of the losses calculated at the three detection
layers of the neural network. During the network forward
propagation, the i*" detection layer outputs a 3D tensor of
size S; x S; x [B x (144 + C)] where S; x S, is the grid
size of the i-th scale; B is the number of anchor boxes,
fixed at 3; and C is the number of prediction classes.
Also, there are cases when large RF emissions (e.g., Wi-Fi)
spanning multiple cells result in redundant prediction boxes
for the same object. We used non-maximal suppression
algorithm introduced in [14] to remove these unnecessary
boxes, which have IoU with the main prediction bounding
box (i.e. one with the highest confidence score) exceeding
0.5, if they predict the same RF category.

2.4 RF-centric Compression

Utilizing the one-stage object detection can improve the de-
tection speed, however, is insufficient for the real-time RF
identification of wideband spectrum. Our initial model for
RF emission identification required tens of milliseconds to
process 100 MHz I/Q samples that span only a few millisec-
onds. If we increase the duration of input data, the spatial

size of data passing through the network will subsequently
increase, which makes the identification even slower. We
explored several approaches and converged on a RF-centric
compression layer as the first layer of the real-time model. This
layer compresses multiple input spectrum snapshots into
one that retains important features of the original data. The
compression consists of two steps, illustrated in Figure 5. In
the first step, the layer combines M; FFT outputs into one
average chunk, i.e., for every group of M; chunks of FFT
output {mg 4, }, where 0 < z < N and 0 < y; < Mj, the
layer computes the signal energy average ﬁl >y My, 12
on each individual frequency bin x across the time dimen-
sion.

In the second step, the layer processes the outputs from
the first step to provide the mappings to RGB color chan-
nels of the final output. Let E, ,, denote the first step’s
results, where y, is the first step’s output chunk index.
Here, the layer again compresses M, chunks of {E, ,,},
where 0 < y» < My, into one average chunk and obtain
EZY = J\% >y, By, for this second step’s y-th output
chunk. In addition to the average, the layers also com-
putes the maximum and minimum value per frequency bin:
EPsr = maxy,(E,y,) and EP" = miny,(E,,,). Each
output chunk provided by the second compression is a
row of the final 2D spectrum snapshot, where the SNR of a
frequency bin is mapped to corresponding pixel values of
RGB image channels with the mapping equations:

R, , = f(10 x log, E;ﬂji — No)
Gy = f(10 x logyg E;n;n — No) 3)
B, , = f(10 x log, ng’yq — No)

where f(z) mapping function is defined in Equation (1).
We emphasize that the mapping to create different RGB
channels in this step is important to distinguish between
different wireless technologies and improve the correctness
of the predictions. We compare the model using our RGB
transformation with one using only the averaging operation
to create a grayscale transformation and discuss the advan-
tages of our method in Section 4.1.

Although the compression discards some information
in the original data, it still preserves important properties
in the final spectrum snapshot such as the high and low
peaks of RF emissions or signal strength variations over time
in the wideband spectrum. The preserved properties are
useful to distinguish different RF technologies. The resulting
images in Figure 6 show how “compressed” RF emissions
are clearly distinguishable. Towards developing this layer,



(a) Changing spectro-temporal positions

(b) Altering emission lengths

(c) Varying emission SNRs

(d) Simulating RF collisions

Fig. 8: Synthetic spectrum snapshots generated by image
augmentation techniques.

we are inspired by the pooling method in image processing
neural networks which filters the most important features
of the data and reduces the computation for the succeeding
layers of the network.

We also considered dropping I/Q samples as an alter-
native approach for the real-time processing problem. How-
ever, simply discarding a large number of samples results in
a high possibility of missing essential RF features to recog-
nize RF emissions. As the extreme case, very short transmis-
sions (e.g., Wi-Fi ACK packets) can be frequently missed.
We concluded that the selective, RF-centric compression is a
better choice. Figure 7 illustrates our finalized real-time model
SYL-4 where the RF-centric compression layer is integrated
into the optimized YOLOvV4 [31] (YOLO-version 4) model.

3 THE SUPPORTING MODEL

In this section, we present the development of the supporting
model, an important step towards building a high-quality
training dataset for practical Deep Learning models. The
supporting model was trained on a large synthetic dataset,
which was built using efficient data augmentation tech-
niques on a small labelled dataset. Because of the efficiency
of training, this model was utilized to support automatic
labelling of a much larger dataset of real RF emissions. We
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Fig. 9: Evaluation of class detection accuracy pgq (Left) and
emission precision pr. (Right) of the supporting model.

also refer to this model as offline or non-realtime model. We
note that since the supporting model is only used to assist
the training of real-time models, the real-time requirement
is relaxed and the RF-centric compression layer is disabled.

3.1 Dataset of Synthetic RF Emissions

To train the supporting model, we created a Synthetic Labelled
Dataset using efficient data generation process described as
follows. We collected a small amount of RF data, generated
and labelled the RF images. Then, we cropped the RF
emissions out of the images and saved them to separated
files, called the prototypes of the emissions. In the next
step, we used those prototypes to generate new RF images
by using various image augmentations: (1) adjusting the
emission SNR resulting in the change of object brightness
in the image, (2) changing the length of object by crop-
ping or concatenating to vary the transmitted duration,
(3) moving the object to different locations of an image to
vary the spectro-temporal positions of emission (Note that
the positions are selected following the frequency bands
specified in the standard protocols), and (4) making different
emissions overlap with each other to synthesize real-life
wireless collisions (Augmentation results are depicted in
Figure 8). These techniques allow us to efficiently generate
sufficient training data mimicking real RF data. We note
that while doing these augmentations, we systematically
generated the annotations (including the category and four
coordinates) for all emissions without manual efforts.

Consequently, we created a dataset of 99,067 RF images
(47,672 images of single emission and 51,395 of colliding
emissions) of size 512 x 512, where each image captures the
view of a 100 MHz spectrum over 2.62ms time span with
resolution of N = 512 frequency bins and M = 512 time
slots. In total, the synthetic dataset contains 150,830 fully
labelled synthetic emissions of five RF technologies: Wi-
Fi, Bluetooth, ZigBee, Lightbridge (DJI protocol for robust
aerial communications [27]), and XPD (Samson’s cordless
microphones [28]). The dataset is split into the training,
validation, and test sets with the ratio 0.64 : 0.16 : 0.2
correspondingly.

We reused the open-source YOLOv4 implementa-
tion [35], where Batch Normalization [36] is utilized to
significantly improve the convergence and remove the re-
quirements for regularization. We used the training batch
size of 64 and learning rate v = 0.001. We utilized Stochastic
Gradient Descent optimizer with momentum § = 0.9 and
weight decay A = 0.0005. The neural network was trained
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Fig. 10: Evaluation results of emission recall re, (Upper row) and Fl-score F'1. (Lower row) for the supporting model with
regards to RF classes, SNRs, and emission properties (Single (SSE)/Collision (SCE))

TABLE 2: Evaluation results of the supporting model on the
synthetic dataset.

Single emissions | Colliding emissions Total
Pa 99.99% 99.46% 99.72%
pre 1.0 1.0 1.0
Tee 1.0 0.987 0.991
Fl. 1.0 0.993 0.995
TABW 0.033 0.04 0.038
TAL 0.015 0.027 0.023

on a NVIDIA GeForce GTX 1080 GPU with the first 53 con-
volutional layers pre-trained on the ImageNet [34] dataset to
reuse the visual feature maps learned from various real-life
objects.

3.2 Evaluation Metrics

There is a lack of standard evaluation metrics for spectro-
temporal RF identification. In our previous work [37], we
only used mean average precision to evaluate the deep
learning models. This is a popular metric in computer
vision and is able to assess both the classification and the
spectro-temporal information of the prediction. However,
this metric does not explicitly provide important evaluation
information for the classification and localization in the RF
domain, such as the precision and recall of the emissions,
or the error of the predicted bandwidths and time periods.
Therefore, we use a set of fine-grain evaluation metrics to
fully assess the proposed techniques:

Class Detection Accuracy pg: This metric evaluates how
well the model can recognize the presence of specific RF
classes in the wideband spectrum. If an RF class has at
least one emission in a spectrum snapshot, then that class
is labelled 1 for this snapshot, otherwise 0. Meanwhile, the

identification model classifies 1 for a class if it detects at
least one emission of that class in the spectrum snapshot,
otherwise 0. pq is then calculated for every class as follows:

N,
pdzﬁgixﬂm% 4)

tot

with N_,, and Ny,; are the number of correct classification,
and the total number of spectrum snapshots, respectively.
The total accuracy is the average accuracy of all classes.
Emission Detection Metrics: We define a set of metrics
to evaluate the detection capability on the emission level.
To calculate these metrics, each output detection box is
required to be mapped to the corresponding ground-truth
emission that has the same RF class and the highest non-zero
Intersection-over-Union score (calculated by Equation (2)). A
detection is a true positive (TP) if it is mapped successfully,
otherwise a false positive (FP). Also, any ground-truth emis-
sion not mapped to a detection is counted as a false negative
(FN).

e DPrecision pr.: This metric evaluates the correctness
of an output detection and is calculated by:

TP

= 5

TP+ FP ©)

e Recall re.: This metric evaluates the ability to recog-
nize all ground-truth emissions:
TP

e = Fmp L v 6

T TPYFN ©)

e Fl-score I'1.: This is a popular metric that is es-

pecially effective against unbalanced data [38]. The
calculation combines precision and recall as follows:

@)

bre

Pre X Treée

Fl,=2x
pre + ree
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Fig. 11: Evaluation of BW offset ratio 7apw (upper row) and time offset ratio ra; (lower row) of the supporting model on
the synthetic dataset regarding two cases - Single emissions (SSE) and Collision emissions (SCE), and the real-time model on

the real dataset of compressed emissions (RCE).

o Bandwidth (BW) offset ratio ra gw: Inspired by the
F1-score, we introduce this metric to simultaneously
capture the correctness of the predicted center fre-
quency and bandwidth in a single number. It is
calculated for each detection-emission mapping by:

|10 — Z1o| + |Thi — Thil
Thi — T10

TABW =

®)

where x;,, Z;, are the smaller x-values and x;;, Tn;
are the bigger x-values (in the x-axis of the spectrum
snapshot, as shown in fig. 2) of the detection and
the ground truth, respectively. We calculated the final
rapw by taking the average of rApw from all the
mappings.

o Time offset ratio ra; : Similarly, this metric simul-
taneously captures the correctness of the predicted
start time and duration of emissions in a single
number:

Yo = Giol + [yni — il
Uni — Yo
where y1,, 1o are the respective smaller y-values
and yn;, Un; are the respective bigger y-values (in
the y-axis of the spectrum snapshot) of the detection
and the ground truth. We calculated the final ra; by
taking the average of A from all the mappings.

TAt

)

3.3 Experimental Results

The overall test result of the supporting model on the synthetic
dataset is shown in Table 2. It is clear that our model can
achieve over 99% of class detection accuracy in both cases
of single emissions and colliding emissions. Furthermore,
it also achieves the maximum score of 1.0 for emission
precision pr.. Meanwhile, the recall and Fl-score slightly
decrease in the collision case (re. and F'1. drops by 0.013
and 0.007 respectively, compared to the maximum score in
single emission data). As a result, the offsets of predicted

bandwidth and time period increase in the collision case,
yet still remain very small (up to 0.04 for raA g, and 0.027
for ra¢.

Figure 9 shows the variations of class detection accuracy
and emission detection precision across the RF classes. It is
evident that the supporting model achieves over 99% accuracy
and maximum precision for all classes. Interestingly, classes
with larger bandwidths like Wi-Fi and Lightbridge gain
higher accuracy compared to others. Bluetooth emissions
which have smallest bandwidths, has the lowest accuracy
of 99.25%.

Figure 10 presents more details on how the model per-
formance on re. and F'1, changes regarding different SNRs
in cases of Synthetic Single Emissions (SSE) and Synthetic
Colliding Emission (SCE). Emission SNRs are categorized
into three groups: Low (5-14 dB), Mid (15-24 dB), and High
(25 dB and above). We note that we do not focus on emis-
sions with very low SNRs (significantly below decodability)
in this work. As the minimum recommended SNR for data
network is around 20 dB [39], such emissions do not pose an
issue to existing RF communications. From the results, we
see that the supporting model achieves maximum re. and F'1.
in the SSE case across all classes and SNR levels. Meanwhile,
both re. and F'1, slightly decreases in the SCE case, with the
most significant drops observed by Bluetooth (re. drops by
0.051 and F'1. drops by 0.026) and XPD (re. drops by 0.024
and F'1. drops by 0.012) classes in low SNR. For all other
cases, the model can provide the emission recall and F1-
score higher than 0.98. The evaluation results of bandwidth
and time offset ratios are shown in Figure 11, where we
can see again that the model performs worse in the SCE
case compared to the SSE case. Additionally, Bluetooth has
the biggest prediction offsets, with rapw = 0.85 for SCE
and 0.06 for SSE, along with ra; = 0.058, all with low
SNR level. For the other cases, the offset ratios of emission
detections are negligible, below 0.08. Moreover, it is clear
that the bandwidth offset ratios are generally higher than



Fig. 12: Example of an RF property of real emissions that
causes confusion for the supporting model. A saturated Blue-
tooth emission (Left) with leakage can be misclassified as a
Zigbee emission (Right), and vice versa.

. + . .

Fig. 13: The I/Q samples are combined in the time domain
to generate new data patterns of the wideband spectrum,
assuming the Additive White Gaussian Noise environment.

the time offset ratios across all classes and SNR levels.

4 THE REAL-TIME MODEL AND SYSTEM

In this section, we present the process of developing WRIST,
which is centered around the real-time model. The real-time
deep learning model is trained on the extended dataset
of recorded RF emissions from various types of wireless
radios, which was built by utilizing the labelling automation
with the supporting model. Moreover, using our techniques
of combining recorded RF samples, the training data can
be scaled efficiently. We show in our evaluation that WRIST
achieves real-time, wideband operation. Table 1 indicates
that WRIST is the first Deep Learning-based approach capa-
ble of real-time, wideband spectro-temporal identification of
RF emissions from commercial wireless radios.

4.1 Training and Evaluating Real-time Models

In this section, we evaluate and compare the performance of
a minimally modified YOLO retrained on RF data (rfYOLO)
and our optimized models to determine the best option
for the real-time model. The optimized models are faster
than the minimally modified models 7fYOLO, and also
provide better predictions. The ability to quickly generate
predictions allows the system to either handle more data
(i.e., by increasing the sample rate which can cover a larger
bandwidth) or preserve more features to predict more pre-
cisely (i.e., by reducing the compression factor of the RF-
centric compression layer). For this purpose, we reduced
the volume of the convolutional filters, due to the fact that
RF emissions are coarse and have significantly less features
than real-life objects. Furthermore, the optimized models are
more RF-centric with the anchor boxes derived (using k-
means clustering) from the RF dataset instead of computer
vision-based dataset of real-life objects (e.g., ImageNet [34]),
as in YOLO models. Using the anchor boxes that better
reflect the shape variations of RF emissions provides bet-
ter precision in the detection. We applied our RF-centric
optimizations (Section 2.3) to both YOLOv3 and YOLOv4,
and retrained on RF data to generate two optimized models:
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TABLE 3: 2.4 GHz RF transmitters used for this work.

Technology Device model Frequency range
Wi-Fi TP-LINK TL-WN722N | 2412 - 2.462 GHz
Bluetooth Avantree DG60 2.402 - 2.480 GHz
ZigBee TI CC2430EM 2.400 - 2.483 GHz
Lightbridge DJI Phantom 4 2.404 - 2.470 GHz
XPD Samson XPD2 Lavalier | 2.404 - 2.476 GHz

SYL-3 and SYL-4, respectively. The impact of optimizations
is analyzed and discussed below, through comparison be-
tween the models and their performance.

It is widely acknowledged that having a high quality
dataset is essential to train a good Deep Learning model.
Although a model trained on synthetic RF data can learn
certain RF features, it is still incapable of capturing specific
RF variations from over-the-air wireless emissions, as well
as recovering from incorrect assumptions in the synthetic
data. Upon testing the supporting model on several recorded
RF emissions, the most common error was misclassification
due to unexpected RF-related factors in the synthetic data
such as out-of-band leakage (Figure 12). Fortunately, such
errors presented patterns which could easily be corrected
using automated tools. Because of that, the supporting model
was utilized for automatic labelling to produce a large
dataset of recorded over-the-air RF emissions. The process
of building a training dataset for the real-time models is
illustrated in Step 2 of Figure 3. We collected RF emis-
sions from five radio technologies: Wi-Fi, Bluetooth, ZigBee,
Lightbridge and XPD. We adjusted the transmission SNR in
three ranges (measured in dB units): Low (5-14), Mid (15-
24), and High (25 and above). Again, we emphasize that
recognition of RF emissions with very low SNR levels that
have minimal impact to coexisting communications is not
the focus of this work. Firstly, for our goal of obtaining clean
recordings with minimal interference in the 2.4 GHz ISM
band, we recorded different RF emission types separately.
Secondly, we generated uncompressed RF images and used
the supporting model to automatically labelled the images.
Then, we manually corrected and adjusted the annotation
boxes. In the next step, we expanded the dataset to avoid
overfitting and enhance the generalization for the trained
models. To do that, we combined the separate recordings’
I/Q samples in the time domain to produce a much larger
dataset with coexisting and overlapping patterns of dif-
ferent types of RF emissions without incurring additional
effort in labeling, by re-using the corrected and curated
annotations from the first step (Figure 13). We note that,
in contrast to the synthetic dataset used for the supporting
model, the dataset for the real-time model was built from the
recorded emissions from real RF radios, and was extended
using RF combining manipulations.

The final step before training the real-time model is the
RF-centric compression. We chose the two compression
parameters based on two criteria: First, the product of two
parameters (i.e., the total compression factor) is sufficient
to extend the duration of each spectrum snapshot to meet
the detection time of the models. Second, the two integer-
valued parameters are roughly equal to balance the effects
of the two levels of compression. Consequently, we used
parameters M; = My = 5 to allow real-time capabilities
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Fig. 14: Performance comparison between a model using RF-centric compression with our RGB transformation and a model

using fully grayscale compression with averaging operation.

for the original models rfYOLO and generated a dataset of
253, 397 compressed RF images of size 512 x 512 containing
over 4 million labelled RF emissions. Meanwhile, our opti-
mized models SYL-3 and SYL-4 have faster detection speeds
(shown in Table 4) that allow us to reduce the compression
with My = 3,M; = 4 in the new dataset. We split
the datasets with ratio 0.64 : 0.16 : 0.2 for the training,
validation, and test sets, respectively. The same training
hyperparameters were used for the supporting model. We
emphasize that the real-time model was trained from scratch,
in contrast to the supporting model which used transfer
learning with pre-trained preceding layers.

Evaluation for RF Transformation. We validate our de-
sign of RF-centric compression by comparing two models:
One uses our RGB transformation (with three different
mapping functions in the second step of the compression)
described in Section 2.4 and the other uses the grayscale
transformation with the same averaging operation for both
three image channels. We used our optimized YOLOv3
architecture (SYL-3) and trained the models using the same
settings, compression factor, and hyper-parameters. The re-
sults in Figure 14 show that our method outperforms the
grayscale compression. Our model has generally higher pre-
cision and F1-score, achieves up to 4.4% better for precision
and 2.3% better for F1 (in Zigbee). Moreover, our predictions
are more aligned with the ground truths. WRIST’s predic-
tions have lower time and bandwidth offset ratio, with the
most significant difference seen in Wi-Fi (nearly 4% lower
for time offset). The results confirm the effectiveness of our
REF-centric compression design.

TABLE 4: Detection time of different real-time models.

Model YOLOvV3 SYL-3 YOLOv4 SYL-4

Detection time | 44.19ms | 1723 ms | 51.35ms | 22.96 ms

Evaluation for Model Optimization. Figure 15 compares
the performance of the optimized and original real-time
models using the test datasets. It is clear that SYL-3 achieves
significant improvement for Wi-Fi compared to the corre-
sponding original model fYOLOv3 with re. of 0.93 com-
pared to 0.85 and F'1. of 0.96 compared to 0.92. Similarly,
SYL-4 also gain an improvement compared to rfYOLOv4
with re. of 0.06 higher and F'1. of 0.02 higher. While
there are no significant changes for other classes, the big
improvement for Wi-Fi emissions observed in both SYL-
3 and SYL-4 justifies the effectiveness of RF-centric opti-
mizations. More importantly, besides having competitive

performance, SYL-3 and SYL-4 models are more than 2.2x
faster than the corresponding original models, as shown in
Table 4. Consequently, we chose SYL-4 trained with lower-
compressed data as our final real-time model for WRIST.

Evaluation for Different SNRs and Classes. Using the final
model, we achieve over 99% of class detection accuracy p,
and over 0.99 of emission detection precision pr. for all
classes, as shown in Figure 16. Figure 17 provides more de-
tails on how the final real-time model performs with regards
to different classes as well as SNR levels. It is clear that our
model gets over 0.99 of pr. regardless of SNR levels and
RF classes. Furthermore, we achieve over 0.94 of emission
recall re. for most of the cases except high SNR Wi-Fi,
where the emissions start to create confusing visual patterns
such as the RF leakage. Meanwhile, F1-score maintains very
high values, over 0.96 in all cases. Furthermore, in this
real dataset, XPD is the most recognizable category with
over 0.997 for both precision, recall, and F1-score regardless
of SNR levels. We also observe significant improvements
between Low and Mid SNR levels with Zigbee class (re.
increases from 0.961 to 0.998) and between Mid and High
SNRs with Bluetooth (re. increases from 0.947 to 0.993).

The evaluation of bandwidth (BW) and time offset ratios
for the real-time model (with Real Compressed Emissions -
RCE) with regards to RF classes and SNR levels is illustrated
in Figure 11. Is it easy to see that compared to the model
trained on uncompressed data (in SSE and SCE cases),
the real-time model trained on compressed data exhibits
higher offset ratios for both bandwidth and time period.
This is expected because we need to reduce the amount
of processed information (by RF-centric compression) to
enable the real-time capabilities for our model and system.
Nonetheless, we are still able to maintain ra gy below 0.14
and ra; below 0.12 for all cases. Furtheremore, while Wi-
Fi and XPD have the lowest rA gy in all three SNR levels,
XPD and Lightbridge provide better time offset ratios, with
rar = 0.029 and 0.041 for Low SNR Lightbridge, and XPD
in Mid and High SNR, respectively.

4.2 WRIST System

Implementation. Our hardware setup consists of an Ettus
USRP X310 connected with a host computer via the 10G Eth-
ernet interface. The host computer is equipped with a 6-core
Intel Core i7-8700@3.2GHz processor, a NVIDIA GeForce
GTX 1080 Graphics Card, and 32 GB RAM. The integrated
implementation of WRIST has two main parts: The first part,
written in C++, comprises (1) the module for RF sample



[rfyoLovs
] sys
[ rfyoLova
B svis

T T T I

1 0.99.99-1 .99

0.940.98
091‘]_970‘9&)'97 0.98) o7

T€e

T T T
Wi-Fi Bluetooth Zigbee

RF Classes

Lightbridge XPD

[ rryoLovs
[ svis
[IrfYoLova
B svia

T T T 1

1.1 _10.99

9%.98  0:99 9-90.99

' ¥
WiFi Bluetooth Zigbee

RF Classes

Lightbridge XPD

Fig. 15: Results of SYL-3, SYL-4 compared with the orig-
inal models. rfYOLOv3 and rfYOLOv4 use higher com-
pression parameters M; = My = 5 to enable real-time
WRIST, while SYL-3 and SYL-4 use lower compression with
M; = 3, M, = 4 to exploit the speed improvement after
model optimizations.

collection from the USRP and (2) the RF-centric compression
module. The RF compression algorithm is optimized and
implemented with the help of GNU Radio VOLK Library
[40]. Also, it is noted that the FFT computation is handled on
the host CPU instead of the GPU. The second part includes
the detection module, which is written in Python based on
the SYL-4 framework and utilizes the GPU. We handle the
data communications between the two parts by a custom
message passing protocol using Google Protobuf and the
ZeroMQ messaging library.

Real-time Microbenchmarks. We ran our implemented
WRIST numerous times over extended period of time (over
100 times, each time for at least 5 minutes each) validat-
ing the real-time capability and without experiencing any
overflows (which would indicate if the system is slower
than the incoming rate of RF samples, resulting in sample
drops). Therefore, WRIST achieves real-time performance.
To provide more fine-grained details of the system pipeline,
we benchmarked each of WRIST’s modules of the pipeline.
The requirement of real-time processing for a 100MHz
monitored spectrum is that the processing rate of each
module needs to exceed 100 Msamps/s (Million samples
per second). The throughput of the modules was measured
on the host computer to evaluate the real-time capability of
WRIST, shown in Table 5. We emphasize that the detection
module, along with the FFT and RF-centric compression
modules, are parallelized in our system. It is clear that
the RF detection module is the bottleneck in the system.
Nonetheless, this module still sustains the incoming sample
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TABLE 5: WRIST’s real-time microbenchmarks.

Module Throughput
Detection 130.8 Msamps/s
FFT 182.14 Msamps/s
RF-centric compression | 3679.04 Msamps/s
WRIST 130.8 Msamps/s
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Fig. 16: Evaluation of class detection accuracy py (Left) and
emission precision pr. (Right) of the final real-time model
SYL-4 on the test dataset.

rate of 100 Msamps/s, ensuring the real-time operation of
WRIST.

Performance in anechoic chamber. To validate the practical-
ity of WRIST’s RF identification in different over-the-air en-
vironments, we evaluate with data collected in a 60 x 60 x 30
ft anechoic chamber (Figure 18). To create a crowded spec-
trum environment which is common in real life scenarios,
we positioned the RF devices Figure 19 in different locations
inside the chamber and set up their transmissions in differ-
ent bands. We recorded and evaluated on 89,281 labeled
RF emissions. The results are shown in Table 6, where we
can see that WRIST’s model still achieves over 99% class
detection accuracy. The performance slightly declines with
respect to some metrics evaluating fine-grained emission
detections compared to the previous evaluation on test
dataset, due to the complex patterns introduced by the
crowded spectrum. Nonetheless, our system still maintains
very high score of pr. (0.969) , re. (0.94) and F'1. (0.954),
while only exhibit very small BW and time offset ratios
(0.055 and 0.062, respectively). Figure 20a illustrates the
spectro-temporal identifications of Wi-Fi, Bluetooth, ZigBee,
Lightbridge and XPD emissions with the respective green,
yellow, red, blue and purple rectangular boxes correctly po-
sitioned at the corresponding emissions. These illustrations
show that WRIST accurately detects, classifies and precisely
identifies the spectro-temporal position for every single RF
emission under various transmission and collision patterns.

Performance in the wild. We evaluated WRIST’s capabilities
in the extreme case when operating in the congested spec-
trum in the wild. We collected and labelled 1, 101 emissions
in this environment. The results shown in Table 6 indicate
that in this scenario, the performance of WRIST further
degrades compared to previous evaluation settings. This
is understandable because the task difficulty also increases
due to the greater volume of emissions and more complex
collision patterns, which make the task challenging even for
human vision (examples shown in Figure 20b). However, it
is interesting that we achieve pq = 100%. The reason might
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Fig. 17: Evaluation results for the real-time model (with SYL-4 as our final choice) with regards to RF classes and SNRs.

Fig. 19: Wireless devices

Fig. 18: Anechoic chamber. used in this work.

seem to be because there are many emissions of different RF
classes within a spectrum snapshot, and therefore one can
achieve high prediction accuracy by just always returning
1. However, it is not the fundamental reason of WRIST’s
good performance. WRIST can infer the category, time and
frequency information of every single emission in the busy
spectrum, and therefore can recognize the presence of RF
technologies. Thanks to that, both the offset ratios rApw
and ra+ are below 0.06. These results are comparable to the
previous settings, indicate that our system can predict cor-
rectly the spectro-temporal information of emissions even in
the extremely congested frequency spectrum. The results of
pre, ree and F'1, degrade compared to previous over-the-
air environments, however, still maintain the high scores of
0.87, 0.83 and 0.849, respectively.

5 SPREAD DATASET

Sharing a large, labelled datasets of RF emissions is critical
to scientific research. It allows researchers to collaborate,
enables access to valuable data to people who are unable
to acquire the necessary equipment, and stimulates the
development of new techniques, models, and DL architec-
tures for RF research. In the absence of a large, curated
dataset for spectro-temporal identification of different RF
technologies, we are making our dataset SPREAD  available
to the research community. SPREAD is complemented with
the supporting API for the reproduction of the iterative
learning approach, as well as the expansion of the dataset
with new RF technologies. In the following, we present
the elements of the dataset and how it is structured, then
provide important details of the APIL.

5.1

SPREAD currently supports five RF categories: Wi-Fi, Blue-
tooth, Zigbee. Lightbridge (Wireless communication proto-
col of DJI drones [27]), and XPD (Samson’s wireless micro-
phone [28]). The device models of the transmitters that we
collected data from are shown in Table 3. The top level of
SPREAD contains the following components:

Data and Format

Emission
shared at

2. Abbreviated from Spectro-temporal RF
Analysis Dataset. The dataset and API are
https:/ /sprite.ccs.neu.edu/datasets/SPREAD/.
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Fig. 20: WRIST’s detections in congested environments

Off-the-shelf Datasets. This includes the datasets that we
used for the training, validation, and evaluation of the DL
models, described in the previous sections. Each dataset
consists of the spectrum snapshots/images and annotations
of emissions present in each image. The datasets contain
both synthetic data (that we generated to train the supporting
model) as well as the real, compressed data of emissions
collected in different over-the-air environments. It is noted
that in-the-wild data and labels are not made publicly
available for privacy reasons, while the rest of the recordings
were carefully collected using randomly generated data,
streamed music or generic video footage. In total, SPREAD
provides 99,067 images for synthetic data and 780,664
images for real emission data (The latter corresponds to
over 10 million labelled emissions in over 13 Terabytes of
RF samples). We emphasize that, while the datasets can be
used as-is for training and testing of new models, users can
utilize our supporting API (described later in Section 5.2) to
expand to an even larger dataset based on their needs.

The RF images are stored in JPG format, while
the annotations are stored in an accompanying
TXT file of the image. An emission annotation (a
bounding box exampled in Figure 2) is represented
as one line in the TXT file with the format
<class_No> <x_center> <y_center> <width> <height> .
The class index number class_No for each RF
category is defined beforehand in the global metadata.
It should be noted that the positions and sizes of
the annotated boxes are relative to image sizes. The
images and annotation files are named similarly, where
<class_name>_<image_No_in_class> format is used for
synthetic data. Meanwhile, the real compressed data uses
the format
where rec_type is syn if the recording results from RF
combining of recorded samples, otherwise rec (implies
recorded emissions from devices).

<rec_type>_<rec_No>_pic_<pic_No_in_rec>,

Recorded Samples. The raw I/Q samples collected from RF
devices using software-defined radios are stored in binary
files with the 64-bit complex format (Real and imaginary
parts are 32 bits each). Each sample file is named with
format rec_<rec_No>. We note that the raw RF samples
resulting from RF combining transformation do not need to
be published, as they can be regenerated by combining the
recorded raw samples using our APIL

TABLE 6: Performance evaluation of WRIST in different
realistic environments.

Dataset recording | Anechoic chamber | In-the-wild
Pd 99.74% 99.87% 100%
Pre 0.996 0.969 0.87
ree 0.977 0.94 0.83
Fle 0.986 0.954 0.849
TABW 0.078 0.055 0.056
TAt 0.058 0.062 0.054

Metadata. SPREAD provides the metadata for both the
image datasets and the sample recordings. The metadata
is important to describe the datasets, as well as to allow
different tools to operate on the datasets. An image dataset
is associated with a global metadata file that specifies the
following;:

o RF properties: The number of RF categories as well as
the mapping between the categories and indexes.

o Image properties: The type of the dataset (synthetic
or compressed), the number of images and image
sizes (width and height), and the compression fac-
tors My, M5 (the values are nu11 if the dataset is
synthetic).

o Others: Auxiliary information such as the date when
the dataset is generated, or the environment and
author of the dataset.

Additionally, each RF samples file is represented by a corre-
sponding recording metadata file with the following fields:

o Information of RF emissions: This includes the RF
categories present in the recording, as well as the
corresponding SNR levels, channel numbers and
transmitting devices.

e Recording condition: The parameters of the receiving
radios, such as sample rate, center frequency, and
device model, as well as the physical recording envi-
ronment and measured noise floor power (in dB).

o Auxiliary information: The name, duration, date and
the author of the recording.

All the metadata is structured and stored in JSON files.
Figure 21 illustrates the example contents of the metadata
files.

5.2 Supporting API

SPREAD also provides a Python API to support the use and
manipulation of data. Here, we emphasize the functionality



needed to reproduce the iterative learning process and ex-
pand the dataset with more categories, devices supported,
and data.

Creating Synthetic Data. In our API, the func-
tion gen_synthetic_data() is responsible for gen-
erating synthetic RF images towards the training

of supporting model. This function sequentially calls
to generate single
emission data and gen_synthetic_colliding_emission ()
to generate colliding emission data. Those two functions,
which users can use independently, take the list of RF cat-
egories and their corresponding emission prototypes, and
apply image augmentations to create synthetic spectrum
snapshots with different emission characterictics, such as
pattern, SNR and spectro-temporal position (described in
Section 3.1). The ranges of SNR and positions can be spec-
ified by users and passed to those functions as the input
parameters.

gen_synthetic_single_emission ()

RF Combining Transformation. Combining recorded I/Q
samples is an important step of our iterative learning
process, as it enriches the training data and improves
data diversity with new patterns without requiring extra
manual effort for labelling. We implemented the function
combine_recordings () to combine raw I/Q sample files
(recordings) recorded from emissions of different RF cate-
gories and output new sample files in the directory specified
by the users. This functions adds the samples together in
the time domain using GNURadio flowgraphs [40]. Further-
more, the metadata information and annotations of the orig-
inal recordings are selectively copied over the new metadata
and annotation files of the combined recording. We note that
the original annotations for the recorded samples (provided
by automatic labeling process using the supporting model and
corrected manually afterwards) are made for the uncom-
pressed RF emissions.

RF Compression. Training the real-time model requires a
dataset of real, compressed RF emissions. We provide
the function gen_compressed_data() that processes RF
recordings to generate RGB spectrum snapshots using the
compression algorithm described in Section 2.4. The user
specifies the compression parameters and the input/output
directories, and this function will go through each recording,
map SNRs to corresponding image pixel values, and gener-
ate compressed RF images from pixel matrices. Moreover,
the original annotations of each recording are adjusted to
account for the compression.

Finally, we provide several helper functions such as
to create the metadata files necessary for the training of
RF identification models and the expansion of dataset. By
making the API available along with the dataset, we hope
SPREAD will serve as a building block of new DL models
and techniques for wideband spectro-temporal RF identifi-
cation in the future.

6 DiscussiON AND RELATED WORK

In this paper, we propose an RF data transformation tech-
nique to represent RF data in images. Our technique uses
Fast Fourier Transform (FFT) to convert RF signal to fre-
quency domain, and makes it clearly visible in the im-
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Fig. 21: Example metadata of image dataset (Left) and
recording (Right).

age representing the wideband 100 MHz spectrum. This
design is specific to our system that support wideband,
real-time RF identification. For other systems that support
very narrow bandwidth, we would recommend Short-Time
Fourier Transform (STFT) as an alternative approach for RF
representation. Similarly, signals with very short durations
(in the order of a microsecond) would also benefit from
using an STFT.

As we mentioned in previous sections, we do not focus
on signals with very low SNRs in this work. Nonetheless,
identifying such signals would also be helpful for some
wireless systems, for example, systems that monitor long-
range, low-SNR IoT communications. Therefore, it is an
interesting direction for our future work, where we will
incorporate more features specifically observed in RF signals
(e.g., phase component or cyclostationary features) into the
identification mechanism to improve the performance and
support more scenarios.

RF Detection and Classification. RF detection and clas-
sification problems have attracted significant attention in
the research community over the past decades. There has
been significant effort investigating the performance of var-
ious expert features for the task of recognizing unique RF
signal characteristics, such as higher order signal statis-
tics (e.g., cumulants [41], moments [42]), or cyclostationary
signatures [43]. However, these methods require domain
knowledge, and moreover, new RF technologies are prolif-
erating nowadays requiring the redesign of fingerprinting
algorithms developed for old standards. Therefore, auto-
matic feature extraction and learning have been increasingly
important. Deep neural networks have the capabilities to
learn distinguishing features from captured RF samples, and
were investigated recently in RF classification tasks, such
as modulation recognition [25], [44], radar detection [45],
collision detection [46], or RF fingerprinting of ZigBee [47],
LoRa [48], and Wi-Fi devices [49]. Recently, Deep Learning
is also utilized for universal beamforming system [50]. The
rapid development of new DL techniques and architectures
such as Convolutional Neural Networks, Recurrent Neu-
ral Networks, and Generative Adversarial Networks and
their success across application domains have spurred the
progress and achievement of DL-based RF detection and
classification. Nonetheless, the main drawback of aforemen-
tioned works is the absence of real-time, wideband capa-
bilities to detect, classify, and spectro-temporally localize
multiple multi-channel emissions.



Effective wideband RF detection and classification neces-
sitate various information about coexisting RF radio tech-
nologies instead of a single signal property as modulation
scheme. As a matter of fact, different RF technologies can
share a common communication technique, with an exam-
ple where Bluetooth Low Energy and WirelessHART stan-
dards both use spread spectrum modulation (DSSS/FHSS).
This leads to the increasing interest for detection and
classification of RF technologies in the wide, congesting,
unlicensed bands. Previous work [18], [19] classifies three
popular 2.4 GHz technologies: Wi-Fi b/g, Bluetooth, and
ZigBee. The authors used ResNet [29] and CLDNN [51]
models to classify either raw [19] or FFI-transformed [18]
I/Q samples. Authors in [16] classifies similar RF categories
in real-time, leveraging a sample-dropping algorithm. How-
ever, those works do not classify separate emissions, lack the
real-time wideband processing capabilities, and do not infer
emission’s spectro-temporal information. Recently, there are
several works that utilizes deep object detection networks
to predict spectro-temporal locations of RF signals in the
spectrum. In [21], [22], authors leverage YOLO network
to infer the information for recorded RF signals. Authors
in [24] also uses YOLO to detect and classify RF signals
of different modulations in MATLAB simulations. Mean-
while, [23] instead uses R-CNN to predict time-frequency
locations of MATLAB-simulated signals. In [17], authors
also apply R-CNN to predict RF-signals of eight technolo-
gies (DECT, Bluetooth, ATSC, LTE, UAS, Vulos, ADSB, and
Wi-Fi) produced by a synthetic data generation process.
However, none of those works address the problem of real-
time processing for either narrowband or wideband data.
Compared to those works, our model and system achieve
wideband, real-time spectro-temporal RF identification, and
moreover, make considerable performance improvements
on the original YOLO models in our task. The iterative
learning approach, architectures, and final models, will
provide a solid basis for the critical tasks of automatic
non-cooperative spectrum management mechanisms in the
future, as well as other applications such as the detection of
malicious drones, and jammers.

Furthermore, large and curated datasets are crucial for
training deep neural networks. It is even more important to
make the data available to the research community to spur
the development of new RFML techniques, architectures,
and models. Authors in [52] published a dataset including
both simulated and recorded over-the-air signals of different
modulations for the modulation recognition task, where
the RF technology information is not available. Authors in
[18] built a dataset consisting of Wi-Fi, Bluetooth and Zig-
bee signals transmitted from a signal generator instead of
commercial RF devices. These datasets have other common
critical limitations, that are, the data samples in cases of
concurrent and/or colliding transmissions, collected with
a sample rate much higher than the standard bandwidth
of considered RF technologies. Our developed dataset ad-
dresses these limitations allowing to develop DL solutions
for practical real-time, wideband RF detection, classification,
and spectro-temporal location prediction.

Deep Detection Networks. In one of the first efforts for DL-
based object detection, Girshick et al. introduced the R-CNN
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detection framework that operates in two phases: Identi-
fying possible regions where an object could be present
(region selection process) and classifying objects in those
regions using deep neural network. This two-stages method
can provide very precise detections, but incurs an expensive
computation cost. Following works improve the speed of R-
CNN with the new region selection algorithms (the bottle-
neck of R-CNN) using a separately-trained network [53] or
a sub-network sharing the feature maps with the detection
network [33]. However, these approaches still lack the neces-
sary real-time capability. Meanwhile, one-stage methods like
YOLO [14], [15] prioritize the prediction speed. YOLO detect
objects in a small set of regions obtained by gridding the
image, instead of making excessive region selections. This
mechanism of YOLO results in fairly accurate detections
of distinguishing objects from the image background with
very little amount of time. Later one-stage object detection
methods such as RetinaNet [54] and EfficientDet [55] tried
to improve the detection accuracy with new DL techniques
including Focal Loss and Feature Pyramid Networks, at
the expense of substantial loss of prediction speed. The
latest YOLOvV4 [31] incorporated various advanced DL tech-
niques to enhance the previous versions, and consequently
achieved considerable performance improvement with a
minimal decrease of the speed. Based on that, we designed
the SYL-4 framework for spectro-temporal RF identification
with further enhancement in prediction speed, that allows
faster, and better predictions of RF emissions.

7 CONCLUSION

Understanding RF emissions in real-time is a crucial capa-
bility. We presented WRIST, a wideband, real-time spectro-
temporal RF identification system. The system provides
high accuracy, low latency detection, classification, and
localization of RF emissions. It relies on optimized one-
stage object detection mechanisms integrated with a RF-centric
compression. Our iterative learning approach consisting of
training and leveraging a supporting model and a real-time
model allowed us to create a curated and labeled dataset
of over-the-air RF emissions. The deep learning models
evaluation on commercial SDR peripherals proved that
real-time, wideband identification is not only feasible, but
also achieves over 99% of class detection accuracy even
in the congested in-the-wild environment. Furthermore, the
spectro-temporal emission detections provided by our sys-
tem can achieve very high precision (up to 0.99), recall (up
to 0.97), Fl-score (up to 0.98) and low bandwidth and time
offset ratios (less than 0.1). We also introduce SPREAD, a
large, curated, and labelled dataset that we will open to
the community for REML research. Our iterative process
developed within WRIST can be applied to new waveforms
and RF emission patterns to expand the dataset.
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