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Abstract—Leakage of user location and traffic patterns is a
serious security threat with significant implications on privacy
as reported by recent surveys and identified by the US Congress
Location Privacy Protection Act of 2014. While mobile phones
can restrict the explicit access to location information to appli-
cations authorized by the user, they are ill-equipped to protect
against side-channel attacks. In this paper, we show that a zero-
permissions Android app can infer vehicular users’ location
and traveled routes, with high accuracy and without the users’
knowledge, using gyroscope, accelerometer, and magnetometer
information. We modeled this problem as a maximum likelihood
route identification on a graph. The graph is generated from
the OpenStreetMap publicly available database of roads. Our
route identification algorithms output both a ranked list of
potential routes as well a ranked list of route-clusters. Through
extensive simulations over 11 cities, we show that for most cities
with probability higher than 50% it is possible to output a
short list of 10 routes containing the traveled route. In real
driving experiments (over 980 Km) in the cities of Boston (resp.
Waltham), Massachusetts, we report a probability of 30% (resp.
60%) of inferring a list of 10 routes containing the true route.

I. INTRODUCTION

The mobile revolution has profoundly changed how we
share information and access services. Despite its immense
benefits, it opened the door to a variety of privacy-invasion
attacks. Leakage of location information is a major concern
as it enables more sophisticated threats such as tracking users,
identity discovery, and identification of home and work loca-
tions. Furthermore, discovery of behaviors, habits, preferences
and one’s social network are at risk, and can potentially lead
to effective physical and targeted social engineering.

The topic of location privacy has been extensively studied
since the early days of mobile phones. Cellular communication
systems, as early as GSM, attempted to protect users’ identity.
Sensitivity to location privacy influenced the use of temporary
identifiers (e.g., TMSI) which increased the difficulty of track-
ing users. In recent years, the attack surface of location privacy
significantly expanded with the pervasiveness of mobile and
sensing devices, open mobile platforms (running untrusted
code) and ubiquitous connectivity. Users are also increasingly
aware and concerned about the implications of disclosure of
location information as reported in recent surveys [1], and the
US Congress Location Privacy Protection Act of 2014 [2].

This material is based upon work partially supported by the National
Science Foundation under Grants No. CNS-1409453, and CNS-1218197.

One user tracking threat example involves extracting the
MAC address of probe packets that are periodically transmitted
by Wi-Fi cards. This is known to be exploited by marketing
companies and location analytics firms. In shopping malls
for instance, companies such as Euclid Analytics state on
their website that they collect “the presence of the device,
its signal strength, its manufacturer, and a unique identifier
known as its Media Access Control (MAC) address” [3]. This
is used to analyze large spatio-temporal user traffic patterns.
Another example is by the startup Renew, which installed a
large number of recycling bins in London with the capability
to track users. This allows Renew to identify not only if the
person walking by is the same one from yesterday, but also her
specific route and walking speed [4, 5]. The threats to privacy,
as a result of exploiting MAC address tracking, triggered
Apple to include a MAC address randomization feature in its
iOS 8 release, receiving praises from privacy advocates [6].

While attacks based on the physical and link layer infor-
mation are a serious concern [7], their practicality remains
limited to adversaries with a physical presence in the vicinity
of the user or requires access to the ISP infrastructure. Attacks
that exploit the open nature of mobile platforms, including
application stores, raise more concerns as they can be remotely
triggered (e.g., from distant countries beyond the jurisdiction
of a victim’s country’s courts of law), and require virtually
no deployment of physical infrastructure. The simplest way
to obtain a user’s location is by accessing the mobile device
location services which typically rely on GPS, Wi-Fi, or
Cellular signals. To mitigate breaches of location privacy,
mobile phones operating systems such as Android provide
mechanisms for users to manage permissions and control
access to sensitive resources and information. For instance,
an Android mobile app needs to request a permission to
access location information, allowing the user to decline.
This is a good start despite the fact that many users are
still careless about checking such permissions as illustrated
by recent charges by the Federal Trade Commission against
‘Brightest Flashlight’ app for deceiving consumers and sharing
the location information without their knowledge [8]. This app
with 4.7 stars rating and over one million users is an example
of seemingly innocuous applications that deceive users.

While a careful user can easily detect that a Flashlight
app should not access his/her location information, a harder
problem is how to protect users’ location privacy against



side channel attacks, when the app does not request any
permissions. Mobile phones are embedded with a variety of
sensors including a gyroscope, accelerometer, and magnetome-
ter. This expanding attack surface is an attractive target for
those seeking to exploit privacy information [9, 10], especially
when users are becoming more aware of location tracking
systems and attempt to minimize their exposure by disabling,
limiting usage of, or removing tracking apps.

We investigate the threat and potential of tracking users’
mobility without explicitly requesting permissions to access
the phone sensors or location services. Currently, any Android
application can access the gyroscope, accelerometer, and mag-
netometer without requiring the user permission or oversight.
Even security aware users tend to underestimate the risks
associated with installing an application that does not request
access to sensitive permissions such as location. We focus on
the scenario of a user traveling in a vehicle moving along
roads with publicly available characteristics. We model a user
trajectory as a route on a graph G = (V,E), where the vertices
represent road segments and the edges represent intersections.
We formulate the identification of a user trajectory as the
problem of finding the maximum likelihood route on G given
the sensors’ samples. Using techniques similar to trellis codes
decoding, we developed an algorithm that identifies the most
likely routes by minimizing a route scoring metric. Each of
the vertices/edges is tagged with information such as turn
angle, segment curvature and speed limit and can be extended
to incorporate additional information such as vibration or
magnetic signatures. In order to assess the potential of this
approach in realistic environments, we developed a location
tracking framework. The framework consists of six building
blocks: (1) road graph construction from the OpenStreetMap
project publicly available data, (2) processing sensor data and
generating a compact sequence of tags that match the semantic
of a graph route, (3) maximum likelihood route identification
algorithm, (4) simulation tool, (5) mobile app to record sensor
data, and (6) a trajectory inference for real mobility traces. We
carried out extensive simulation on 11 cities around the world
with varying population and road densities and topologies
(including Atlanta, Boston, London, Manhattan, Paris, Rome),
and preliminary real measurements in Boston and Waltham,
MA (spanning over 980Km), on four Android phones, with
four drivers. In the simulations, we show that for most cities
with probability higher than 50% it is possible to output
a short list of 10 routes containing the traveled route. In
real experiments in the cities of Boston (resp. Waltham),
Massachusetts, we report a probability of 30% (resp. 60%)
of inferring a list of 10 routes containing the true route. Our
contributions can be summarized as follows:
• A graph theoretic model for reasoning about location and

trajectory inference in zero-permissions apps.
• A framework for processing sensors data, simulat-

ing/experimenting and evaluating location/trajectory in-
ference algorithms on real city road networks.

• An efficient location/trajectory inference algorithm, that
incorporates road segments curvature, travel time, turn

angles, magnetometer information, and speed limits.
• A comprehensive simulated evaluation of the proposed

algorithm’s effectiveness on 11 cities and a preliminary
real-world evaluation on 2 cities, demonstrating the fea-
sibility of the attacks and efficiency of the algorithm.

While this paper focuses on how an adversary can infer a
driving trajectory with a seemingly innocuous Android app
that does not request any permissions from the user, this can
easily lead to inferring the home and workplace of the victim.
Further information about a user’s identity can be derived by
inspecting the town’s public database. This work motivates
the question of understanding the implications of mobile phone
sensors on users’ privacy in general. Enabling access to sensor
information is critical for feature-rich applications and for
their usability. However, preventing malicious exploitation and
abuse of this information is critical.

II. PROBLEM STATEMENT

A. Motivating Scenario

The victim is engaged in the act of driving a vehicle
where she and an active smartphone are co-located within
the aforementioned vehicle. The adversary’s goal is to track
the victim without the use of traditional position determining
services such as GPS, cell tower pings, or Wi-Fi/Bluetooth
address harvesting. To prepare for an attack, the adversary
uploads a seemingly innocuous mobile app to a publicly
accessible Application Store. The app is subsequently down-
loaded and installed by the victim on her smartphone. While
providing the victim with its advertised features, this malicious
app additionally collects sensor data from the accelerometer,
gyroscope and magnetometer. This data is readily available as
today’s mobile operating systems such as Android and iOS do
not yet limit access to these resources1.

The attack is triggered when the app detects that a victim
is starting to drive. Sensor data is recorded, without visible
indication of the recording activity, and uploaded to a col-
luding server whenever Internet access is available. Based on
the sensor data, the adversary can derive driving information
such as turn angles, route curvatures, accelerations, headings
and timestamps. Combined with publicly available geographic
area attributes, the adversary can learn the actual route taken
without the need of any location services/information.

B. Location Privacy Leakage from Sensor Data

We introduce our terminology and notations used to de-
scribe the problem space. Consider a geographic area repre-
sented by a set of roads. Each road is either straight or has
curvature that is detectable by the smartphone’s sensors. When
a road bisects, furcates, joins with other roads, or turns into
a different direction, a connection is created (cf. Figure 1a).
These connections divide roads into multiple so-called atomic
parts, which only connect with other atomic parts at their

1As of Feb. 2016 (Android 6), access to accelerometer, gyroscope, and
magnetometer is automatically granted during app installation without any
user warnings or explicit permission requests.
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(a) Connections are created when a road bisects (B), furcates (F), joins (J) with
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(b) Graph construction: every one-way road segment s1, s3, s4, s5 is represented
by one vertex, while two vertices s2,NS and s2,SN are created for the north-south
(NS) and south-north (SN) directions of the road segment s2, respectively.

Fig. 1: Example of a geographic area and its mapping to a graph.

end points. Therefore, a geographic area G can be uniquely
described as G = (B, C, θ, ϑ), where B is a set of atomic
parts, and C = {χ = (r, r′)|r, r′ ∈ B} consists of connections
χ = (r, r′) which is an ordered pair indicating the connection
between two atomic parts r and r′. The turn angle associated
with a connection χ, which captures the real-world travel di-
rection from r to r′, is given by the function θ. A positive angle
θ(χ) > 0 indicates a left turn, and a negative value θ(χ) < 0
indicates a right turn. Finally, the atomic parts preserve the
road curvature determined by ϑ(r). The computation of θ and
ϑ functions is based on the public map information.

We define a route taken by the driver as a sequence R of
connected atomic parts, R = (r1, . . . , rN ), where (ri, ri+1) ∈
C. Two routesR and R̂ are identical if the sequences of atomic
parts have the same size and are component-wise equal, i.e.,
R = R̂ if ri = r̂i for all i. Along the driving trajectory, the
app obtains a set of sensor data D = {(at, gt,mt)} consisting
of the vectors at, gt and mt taken from the accelerometer,
gyroscope and magnetometer respectively. These vectors are
sampled according to discrete time periods t = 0, δ, 2δ, . . .,
where δ is the sampling period. Based on D, an adversary
launches the tracking attack as follows.

Definition 1 (Sensor-based Tracking Attack). Let A be the
attack deployed by the adversary on the received sensor data
D given geographical area G. The outcome of the attack is
a ranked list P of K possible victim routes P = A(G,D) =
{R̂1, . . . , R̂K}, where R̂i has higher probability than R̂j of
matching with the victim’s actual trajectory, if i < j.

Most interesting is whether a small set of results yield a
route list containing the truth route. We aim to design an attack
that satisfies this objective with success probability signifi-
cantly higher than a random guess. In particular, we evaluate
the attack efficiency according to the following metrics.

Definition 2 (Individual Rank). Given the user’s actual tra-
jectory R and the outcome of the attack P = A(G,D), the

individual rank of the attack is k, if R = R̂k. The rank is
uninteresting if R is not found in P .

The individual rank k reflects the attack’s success in esti-
mating that the victim’s route is in top k of the outcome list.
We are interested in the probability of such event happening,
i.e., P idv

k := P (R ∈ {R̂1, . . . , R̂k}), and evaluate the attack
performance based on it (cf. Section V). While P idv

k shows
the possibilities of the victim’s route being in a top k rather
than telling which among the top is the actual route, we note
that if k is reduced to 1, the probability P idv

1 is precisely
the probability of finding the victim’s route. This probability,
though small (e.g., P idv

1 ≈ 13% for Boston and ≈ 38% for
Waltham in our preliminary real-driving experiments), is still
considerably high given the fact that the search space contains
billions of routes. In practice, a top k with small k (e.g.,
k ≤ 5) is a very serious breach. An adversary may collect
such lists through the span of multiple days and refine the lists
to find exactly the victim’s daily commute route. Moreover,
with more resources, the adversary can quickly check every
potential route in the list to learn about the victim.

While the individual rank reflects the performance of the
attack in terms of finding the exact route, in practice a rough
estimation of the victim’s route is usually enough to create
a significant privacy threat. For example, targeted criminal
activity (i.e., robbery and kidnapping) could result from the
physical proximity knowledge derived from the attack. To
justify this threat, we define a cluster of routes as a set {R̂1,
. . . , R̂l}, in which any two routes are similar. The similarity of
routes R̂ and R̂′ is justified by d(Ri,Rj) < ∆, based on the
distance d(R̂, R̂′) and a threshold ∆, where we define d(R̂,
R̂′) =

∑N−1
i=1 ‖Loc(χ̂i) − Loc(χ̂′i)‖ as the sum of distances

between connection points χ̂i = (r̂i, r̂i+1), χ̂′i = (r̂′i, r̂
′
i+1) on

R̂ and R̂′, and Loc(·) denotes the geographic coordinates.
By clustering, the attack now returns the outcome as a

ranked list similar to one in Definition 1. Nevertheless, routes
belonging to the same cluster are removed and only the
best one of the corresponding cluster is included in the list.
Specifically, if Acluster(G,D) = {R̂1, . . . , R̂K}, then d(R̂i,
R̂j) ≥ ∆ for any i, j, and R̂i is a representative route of
cluster i. We now introduce the cluster rank metric as follows.

Definition 3 (Cluster Rank). Given the user’s actual trajectory
R and the outcome of the attack P = Acluster(G,D), the
cluster rank of the attack is k, if d(R, R̂k) < ∆. The rank
is uninteresting if no such k is found.

Similarly to individual rank, we are interested in the
probability of a route being in the top k of clusters, i.e.,
P clt
k := P (R ∈ cluster1 ∪ . . .∪ clusterk). Based on the cluster

rank metric, the adversary may eliminate similar routes and
focus computation power on additional routes to improve the
search results. Clustering is useful when similar roads / turns
are present to effect a nearly identical result. For instance, the
adversary may group routes with the same end points while
ignoring different roads in between, or if they differ only at one
end point (start or end), e.g., roads going from / to residential



Fig. 2: Block diagram of our attack.

complex or office areas. This may give the adversary more
confidence in a certain area than the individual rank.

C. Challenges

There are several challenges to the attack feasibility includ-
ing the geographic area size, impact of sensor noise, driver
behavior, and road similarity.

Area Size: The geographic area’s size has an impact on
the attack’s accuracy. Even in small cities such as Waltham
(Massachusetts, USA), there can be billions of possibilities
for a victim’s route. Moreover, routes with loops may also
significantly increase the search space.

Noisy Sensor Data: The quality of sensor data is key for
high attack accuracy. Unfortunately, today’s smartphones are
equipped with low-cost sensors that do not guarantee high
accuracy. Sensor accuracy is also dependent on the sensor’s
previous state, e.g., the acceleration can immediately increase
due to a street bump, but requires settling time before provid-
ing new useful information. Moreover, the magnetometer is
influenced by nearby magnetic fields from fans, speakers and
other electromagnetic devices.

Driver Behavior: The driving style of a driver also impacts
the estimation of the actual route. For instance, a driver may
frequently speed up or slow down due to traffic conditions or
change lanes to overtake other vehicles. These actions induce
additional noise in the sensor data in the form of spacial
perturbations or distortions.

Road Similarity: Even in ideal scenarios when clean sensor
data is obtained, the similarity of roads impacts the estimation
of the actual route. This is especially true for cities with grid-
like road structures such as Manhattan, New York.

D. Adversarial Model

Mobile Application: We assume that the rogue app collects
sensor data continuously, either actively or in background,
and intermittently transfers the data to the colluding server.
As a typical one hour trip collects approximately 800KB of
uncompressed data (80KB/hour for processed and compressed
data), detection by a user in the form of degraded network
behavior should be negligible in locations with active 3G and
4G networks or nominal Wi-Fi signal strength.

Device Position: We compensate for device orientation at
attack initiation (i.e., the time when the vehicle starts moving).
During travel, the device’s orientation should remain relatively
fixed within the reference frame of the vehicle. This supports
attack efficacy in a variety of realistic phone placements such

(a) Experimental route contains 6 turns
from Start (green) to Stop (red).
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(b) Angle trace contains 6 slopes (turns)
and a few slight variations (curves).

Fig. 3: Experimental route and angle trace derived from gyroscope.

as the phone attached to a mount, residing in a cup holder, in
the driver’s pocket or in her handbag.

Location Information: While the attack described in this
work does not rely on the location information of the victim’s
trajectory at any point (e.g., no known starting point), we
assume a rough knowledge of her living/travel area (e.g.,
known to live in/frequent Manhattan, New York).

III. APPROACH

A. Overview

In its basic form, the system consists of a smartphone that
collects data and a post-processing server that generates a
ranked list of potential routes or clusters of routes. Figure 2
illustrates the design’s main components.
• Preparation: Road information from public map re-

sources are extracted and converted to specific database
structures. This is a one-time initialization step and the
structures can be reused for all subsequent attacks.

• Sensor Data Collection: Sensor data is recorded by the
app and sent to the colluding server. This step uses move-
ment detection based on accelerometer data to trigger
sensor recording exclusively during vehicle movement.

• Data Processing: On receiving the sensor data, the server
analyzes the data to derive the victim’s trace of turn an-
gles, curvatures, heading, accelerations and timestamps.

• Search: The search algorithm is run on the processed data
and a ranked list of matching routes is produced.

Sensor data provides important information about a victim’s
movements. Among the three sensor types (accelerometer,
gyroscope and magnetometer), the gyroscope is the most
useful for this attack because of the following reasons: (a)
The gyroscope provides more accurate data than the others;
(b) The gyroscope reveals turn angles and road curvature
of the undertaken route which are nearly static attributes
and traceable on a public map resource. We heavily weight
the gyroscope data in this attack as the accelerometer and
magnetometer strongly depend on dynamic factors such as
traffic/road conditions or proximate magnetic fields, which
are challenging to predict. Timestamps, accelerometer and
magnetometer readings are used as supporting data to reduce
noise and refine the results.

Data received from the gyroscope is a sequence of three
dimensional vectors reporting the rate of angular change along
the victim’s trajectory. Figure 3 illustrates an example of an ex-
perimental route and corresponding angle sequence (processed



from gyroscope data) relative to initial heading. Here, large
changes in the angle trace indicate turns at intersections. Right
and left turns are represented by negative and positive slopes,
while minor variations (e.g., less than 30◦ in the example) in
between are attributed to road curvature.

We transform the Sensor-based Tracking Attack (Defini-
tion 1) to the problem of matching the angle trace and
curvature with possible routes. The objective is to identify
sequences of intersections and curvatures that match the slope
change found in the angle trace. Our approach consists of
graph construction based on OpenStreetMap [11], a public
map resource, and matching routes on this graph with the
actual angle trace using techniques similar to trellis codes
decoding [12]. Note that in our context, the graph size is
many orders of magnitude larger than typical trellis codes
used in communications. In addition, while trellis codes make
transitions and produce an output at each state, the victim’s
trajectory may traverse any number of atomic parts (transi-
tions) without making a turn (output), rendering the problem
more complex.

B. Graph Construction

Our search is performed on a directed graph structure. For
the sake of clarity, we first introduce some new definitions.
Consider a geographic area G = (B, C, θ, ϑ). We assert that a
connection between two atomic parts is a non-turn connection
if the turn angle at the connection is below a threshold φg3
(e.g., φg3 = 30◦, cf. Section IV-D). In this graph construction,
we are interested in identifying such connections that can
connect atomic parts together to create straight or curvy
roads without including significantly large turns. We call such
sequence of non-turn connected atomic parts a road segment
(or simply segment). Specifically, a sequence s = (r1, . . . ,
rl), where ri ∈ B, is a road segment if θ(ri, ri+1) ≤ φg3 for
i = 1, . . . , l−1. Intuitively, a segment is a route without large
turns at connections between its atomic parts. Additionally,
we call segment s a maximal-length segment2 if no atomic
part can be added to s to form a longer segment while still
preserving the non-turn condition. When a connection between
two atomic parts has a turn angle greater than φg3, it becomes
a connection between two segments, i.e., if r ∈ s, r′ ∈ s′ and
χ = (r, r′) ∈ C, then θ(r, r′) > φg3. In this case, we call χ a
segment connection or simply an intersection.

Our idea for constructing the directed graph G = (V,
E) is to represent each segment s by a vertex v ∈ V and
each segment connection χ by an edge e ∈ E. An example
construction is illustrated in Figure 1b. Intuitively, one will
stay at one vertex on the graph as long as she does not turn into
another segment. A turn at an intersection makes her traverse
to another vertex through an edge connecting them. Based on
the public map resource, we accordingly build our graph for
the whole geographic area. For each edge e corresponding
to segment connection χ, we use θ(χ) as the edge’s weight.

2Maximal-length segment is analogous to a longest route between two
nodes with an additional condition: weight (turn angle) must be small.

The length, speed limit, and curvature of a road segment s
are stored as attributes of the corresponding vertex v. This
information combined with the sensor data is used to match
the victim’s angle trace during the search. We note that for
any two segments s and s′ such that s′ ⊂ s (i.e., one is
a sub-sequence of the another), we simply remove s′ from
the graph, because any atomic part r and connection χ of s′

involved in the route search are also present in s, rendering
s′ redundant. Therefore, graph G essentially contains only
vertices corresponding to maximal-length segments, resulting
in more efficient route search with greatly reduced graph size.

C. Search Algorithm

Our search algorithm evaluates the routes when traversing
the graph and keeps the good routes at the end of each
step. When the search completes, a list of candidates is
returned with their evaluated score. At each step of the search,
outgoing edges from a given vertex are investigated for the
next candidate segment connection. The evaluation uses a
metric that is based on the difference between the edge weights
and the angle trace’s slopes. We improve the performance of
the basic search by incorporating an evaluation of segment
curvatures on the candidate routes. The curvatures of potential
routes are computed from coordinates of points extracted from
the map, while curvatures of the actual route are estimated
based on gyroscope samples collected between the slopes.
These details are discussed in Sections IV-A and IV-B.

D. Refining the Results

As the search based on gyroscope data is unaware of the
absolute orientation of the routes, we refine the results and
reduce the search time by using heading information derived
from the magnetometer to immediately eliminate bad routes
(e.g., east-west routes are filtered out when the actual trace
indicates north-south direction).

In addition, we exploit the accelerometer to identify idle
states and discard samples in such periods for better estima-
tion. We also extract speed information, available from Nokia’s
HERE platform [13], for each road and filter out routes by
comparing the actual travel time between intersections with the
time estimated for the segment under investigation. We provide
the details of this discussion in Sections IV-C and IV-D.

IV. SYSTEM DESIGN

A. Basic Search Algorithm

The search technique includes maintaining a list of scored
candidate victim routes while traversing the graph. Candi-
date routes have higher probability of matching the recorded
mobility trace. For the current discussion, we assume that
the adversary only exploits the gyroscope data to launch the
attack, i.e., we consider only gt from D = {(at, gt,mt)}. Let
α = (α1, . . . , αN ) be the derived sequence of turn angles
at N intersections after processing gyroscope data gt. The
details of sensor data processing are discussed in Section IV-D.
In Sections IV-B and IV-C we refine the algorithm and improve
the performance by adding filtering rules and applying a more



complex scoring method. Our goal at the moment is to find
θ = (θ1, . . . , θN ) ∈ G, the potential sequences of turns that
maximize the probability of matching θ given the observation
of α. This probability, denoted P (θ|α), can be rewritten as:

P (θ|α) =
P (θ,α)

P (α)
=
P (α|θ)P (θ)

P (α)

As P (α) is the probability of a measurement α without
conditioning on θ, it is independent of θ. Thus, maximizing
P (θ|α) is equivalent to maximizing P (α|θ)P (θ). The distri-
bution of a priori probability P (θ) may depend on the driver,
city, and day/time of travel (e.g., home-to-work and work-
to-home routes during weekdays have significantly higher
probability than other routes). Since our goal is to demonstrate
the generality of the attack even if the adversary knows
nothing about the victim’s travel history, we consider P (θ)
to be equiprobable, i.e., any route has the same probability of
being taken by the victim. This presents the worst-case attack
scenario and gives a lower bound on the performance. If the
a priori probability P (θ) is known, we expect the attack to
achieve higher success probability than the performance we
report in this work. Under the assumption of equiprobable
a priori probability, the goal of maximizing P (α|θ)P (θ) is
equivalent to maximizing the probability P (α|θ) alone.

Samples taken from the gyroscope include noise as an
additional unknown amount in the angle trace, yielding the
angle α = θ + n, where n is the random noise vector. We
will show through experimental results in Section V, that the
gyroscope noise can be approximated by a N -dimensional
zero-mean normal distributionN (0, σ) with standard deviation
σ. Accordingly, P (α|θ) can be rewritten as:

P (α|θ) = P (n = α− θ) =
(
2πσ2

)−N
2 exp

(
−‖α− θ‖

2

2σ2

)
where ‖ · ‖ indicates the L2 norm of a vector. As

(
2πσ2

)−N
2

is constant for a fixed N and σ, maximizing P (α|θ) is now
equivalent to minimizing ‖α − θ‖. Therefore, the adversary
obtains the optimal solution as stated in Theorem 1.

Theorem 1. Given graph G and a turn angle trace α with
normally distributed noise, the optimal route tracking solution
is θ∗ = arg maxθ∈G ‖α− θ‖.

Based on Theorem 1, our search algorithm (Algorithm 1)
aims at finding θ that minimizes ‖α−θ‖. The main idea is to
maintain a list of potential vertices (i.e., road segments) from
which we develop the possible routes. The algorithm takes as
input the graph G = (V,E) and a sequence (α1, . . . , αN ).
The search consists of N rounds corresponding to a trace of
N intersections. While the algorithm is similar to trellis codes
decoding techniques in which paths are built up, maintained
or eliminated according to a metric, our search is improved by
filtering routes based on specific selection rules and keeping
only top candidate routes after a number of iterations.

The algorithm starts by considering all vertices of the graph
as potential starting points (initialization U0 ← V ). In each

Input: G = (V,E), α1, . . . , αN
Output: UN

1 Initialization: U0 ← V ; U1 ← ∅; . . . UN ← ∅;
2 for k = 1 to N do
3 for u ∈ Uk−1 do
4 for v ∈ V such that (u, v) ∈ E do
5 if filter(u, v, αk) passed then
6 v.score← u.score+ scoring(u, v, αk);
7 v.prev ← u;
8 Uk ← Uk ∪ {v};
9 end

10 end
11 end
12 Uk ← pick top(Uk);
13 end

Algorithm 1: Search Algorithm

k-th round, we build a new list Uk of potential vertices as
follows. For each vertex u ∈ Uk−1, we explore all its outgoing
edges (u, v). During this traversal (line 4 – 10), filtering is
applied (line 5) to eliminate such vertices/segments whose
corresponding map data deviates too much from the actual
sensor data. In this basic algorithm, the filter checks if the
turn angle (i.e., the edge weight) between the current vertex
u and the candidate vertex v is within a specific range of the
actual turn αk. Specifically, an edge (u, v) passes the filter,
only if |θ(u, v)−αk| ≤ γ, in which case v is put into Uk as a
candidate for the next search iteration (line 8). The threshold
γ depends on the quality of sensor data and is evaluated
in Section V. We note that when a vertex v does not satisfy
the filtering rules, it simply means v is not used as a starting
point in the next iteration, but v may appear again if other
starting points connecting to v satisfy the conditions.

At the same time when filtering is passed, the edge (u, v)
is also evaluated for the likelihood to match the actual trace
by the scoring function (line 6). The score for each k-th turn
is computed by

scoring(u, v, αk) = d(αk, θ(u, v)) = |αk − θ(u, v)|, (1)

where we compute the angle distance based on L1 norm
instead of L2 norm for two main reasons: (a) computing L1

norm requires less overhead; (b) in practice, we observe that
L1-based matching generally outperforms L2-based, because
gyroscope errors are usually small (cf. Section V-A), allowing
L1-based estimation to better overcome sparse large errors,
while L2 norm tends to amplify such errors. The score of every
route is initialized to 0 (line 1) and evolves to

∑N
k=1 d(θ(u,

v), αk) after N iterations. When updating the score, we
additionally store the previous vertex (v.prev) of the candidate
in order to trace back the full route (without storing the whole
route) at the end of the search. We also note that as the list
of candidates is developed through each iteration with non-
negative metric, finding the actual route with loops is possible,
because loops simply increase the score and are treated as
regular routes (i.e., the search will terminate).



Since routes with lower score have higher matching proba-
bility P (α|θ), we only keep the top K candidates at the end
of every iteration by calling pick top function (line 12). It is
noted that depending on attack configuration, pick top may
shorten the list of candidates only after some specific round.
At the end of the search, based on UN and previous vertex
information stored for each candidate, the outcome P = {R̂1,
. . . , R̂K} is appropriately produced and returned.

Effect of Filtering and Top Selection: While scoring
gradually distinguishes routes from each other, filtering can
immediately eliminate a route at early stage, which will not
be recovered later. There is a trade-off when determining the
filtering thresholds. A tight rule can reduce the search time
but may result in pruning more good routes due to early
errors, whereas loose criteria reduces false elimination rate but
increases running time and memory consumption. Similarly,
selecting top candidates after some specific iterations can de-
crease the search time yet potentially removes good candidates
that are bad at early stages. We leave the rigorous analysis of
such parameters as future work. Instead, based on simulations
and real driving experiments, we select appropriate parameters
with respect to both attack performance and computation
constraints such as memory and timing requirements. Using
such parameters, we can verify that filtering and top candidates
selection can actually improve the attack efficiency.

B. Advanced Algorithm & Scoring Metrics

While Algorithm 1 illustrates the main idea of our search
technique, it essentially represents a baseline attack, because
it relies only on the sequence of observed turn angles as the
single input source to the algorithm. We now incorporate, into
the basic search algorithm, the curvature of the undertaken
route and the travel time between turns.

Curve Similarity: We define the curvature of the route
as a sequence of angles between intersections. Consider the
victim’s travel between the k-th and (k + 1)-th intersections
and let Tkδ (δ is the sampling period, and Tk = 1, 2, . . .)
be the victim’s travel time for that distance. The curvature
is then expressed by Ck = (αk,1, . . . , αk,Tk

), where αk,i are
instantaneous directions at sampling time iδ on the k-th curve.

In order to match the sampled curvature with a candidate
curve, we assume that the vehicle movement along the curve is
at constant speed. On one hand, this simplifies the estimation
and greatly decreases the computation burden for each route.
Since on the other hand, no available data can provide suffi-
cient accuracy of the instantaneous vehicular velocity, finding
the best curve fit is challenging. However, our evaluation
shows that curve matching with constant speed assumption
considerably improves the attack performance. Specifically,
we compute the angle sequence on each candidate curve as
follows. For a candidate segment corresponding to a vertex
u (which is either straight or curvy), we divide it into Tk
equal-length sub-segments and consider each sub-segment as
a straight line, then we find the orientations of sub-segments
based on their geographic coordinates. Therewith, we obtain

ϑu = ϑ(u) = (ϑu,1, . . . , ϑu,Tk
) as the curvature of u, where

ϑu,i is the orientation of the i-th sub-segment.
Our goal is to maximize the probability P (ϑu|Ck) of

matching a candidate curve ϑu given the victim’s curve Ck

observed by the adversary. As discussed previously in Sec-
tion IV-A, due to the assumption of victim route equiproba-
bility, we instead search for such ϑu that maximizes

P (Ck|ϑu) = P (n = Ck − ϑu)

=
(
2πσ2

)−Tk
2 exp

(
−‖Ck − ϑu‖2

2σ2

)
where n← N (0, σ) is the normally distributed random vector
approximating the gyroscope noise. We determine the curve
similarity by

d(Ck,ϑu) =
1

Tk

Tk∑
i=1

|αk,i − ϑk,i|.

We note that the curve similarity, different from turn scoring
in Equation (1), is normalized to mitigate the effect of bias
scoring due to error accumulation on long curves (large Tk).

Travel Time Similarity: The tracking of the actual route
based on turn angles and curvature information so far does not
take into account the time scale of the victim’s travel on each
road segment. To incorporate this information in the attack, we
extract from Nokia’s HERE map [13] the maximum allowed
speed for every road in the geographic area G and compute
the minimum time required to travel from one intersection
to another along each road segment. Let tk ∈ D be the
actual time spent by the victim to travel from the k-th to the
(k + 1)-th intersection, and τ(u, v) be the minimum required
time (computed from speed limit) for traveling from the last
intersection to the current intersection (u, v) on the candidate
route. The metric for the travel time similarity is computed by

d(tk, τ(u, v)) = |tk − τ(u, v)|.

Final Scoring Function: By incorporating the likelihood
of the turn angles, the curvature, and the travel time along the
search route, our final scoring function becomes scoring(u, v,
αk, tk,Ck) and is computed as

ωAd(αk, θ(u, v)) + ωT d(tk, τ(u, v)) + ωCd(Ck,ϑu) (2)

where different weights ωA, ωT , ωC can be selected depen-
dently on the geographic area.

C. Filtering Rules

We extend the filtering rules in Algorithm 1 by exploiting
the magnetometer and the phone’s system time to quickly
exclude bad routes during the search.

1) Heading Check: At the time of each turn at an in-
tersection, we extract the heading of the vehicle from the
magnetometer sensor sample and check that the next segment’s
direction should be close to the heading direction after turning.
In practice, we observe that since the magnetometer may be
influenced by an external magnetic field, the heading derived
from the magnetometer is not always accurate.



In order to exploit this information properly, we first verify
the magnetometer data to be reliable based on the magnitude of
the heading vector, which essentially depends3 on the specific
geographic area G. Specifically, the reliability is established
if Ml ≤ ‖mt‖ ≤ Mh, where mt ∈ D is the magnetometer
vector, and Ml,Mh are lower and upper bounds that depend
on G. Only after the reliability is assured, the orientation check
is performed. Specifically, with hk denoting the heading vector
(obtained after calibrating and rotating magnetometer vectors
mt, cf. Section IV-D) of the vehicle after turning at the k-
th intersection between u and v, and ϑv,1 be the orientation
of the first sub-segment of segment v. The heading check is
satisfied, if |hk −ϑv,1| ≤ φm, where φm is the magnetometer
error threshold. Note that in case of unreliable magnetometer
data, the check is not performed but v is not eliminated.

2) Travel Time Check: Due to the maximum speed limit on
each road, the travel time cannot be arbitrarily small. Our idea
for pruning impossible routes is as follows. Given the actual
travel time duration tk ∈ D between the k-th and (k + 1)-th
intersections, the maximum distance traveled by the vehicle is
Lk ≤ Lmax = βVmaxtk, where Vmax is the regulated speed
limit, and β ≥ 1 is the over-speeding ratio that can be reached
by the vehicle. Consequently, during the search we only keep
such candidate routes that are not longer than Lmax. To reduce
the computation overhead, we instead precompute tv = Lv

Vmax

for each candidate road segment v of length Lv , and our
timing rule becomes tk ≥ tv

β , i.e., Lv ≤ Lmax. We emphasize
that in realistic scenarios, since the vehicle may drive at any
speed below the limit or may get stuck in the traffic for an
unpredictable duration, the travel distance can be arbitrarily
small. Therefore, no non-zero lower bound on segment length
is established.

D. Sensor Data Processing
A big challenge in implementing this attack is extracting

accurate route information from noisy sensor data. Along with
the external factors discussed before (e.g., potholes, bumps,
road slopes, magnetic field and driver behavior), some internal
misconfiguration may also introduce errors in the data.

Axis Misalignment: Sensor x, y and z axes may not have
perfect orthogonal alignment. This causes a bias in the sensor
values which can be defined as the deviation from the expected
x, y and z values when the device is at rest. The bias can
typically be removed by subtracting them from the reported
x, y and z sensor values.

Thermal Noise: The sensor’s x, y and z axes values may
also vary with the device/sensor temperature. Some Operating
Systems compensate for this noise by pre-filtering the data,
but at the cost of reduced accuracy.

Given these errors, we decompose the sensor data process-
ing into error compensation and trace extraction tasks.

1) Error Compensation: Error compensation consists of a
calibration phase followed by rotation of the data. Note that
while our discussion focuses on gyroscope data, similar tasks
can be performed for accelerometer.

3Heading vector’s magnitude is higher for Temperate than Tropical cities.
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Fig. 4: Error compensation steps for gyroscope data.

Calibration: The gyroscope sensor bias and vehicle vibra-
tion result in angle drift, i.e., the values change linearly4 in
time even at idle. An example of experimental route is shown
in Figure 4a. As gyroscope data is reported as a sequence
of angle change between sampling periods, we integrate them
over time to obtain the relative (with respect to the initial
recording) angle sequence in x, y, z axes depicted in Figure 4b,
which shows a large positive drift in the y axis. To compensate
for the drift, we assume the vehicle is at parked state in
the calibration phase (we note that this is only required
once for subsequent attacks). The drift vector is estimated
as ∆α = E[∆α/∆t], the expected angle change rate. The
calibration is then performed by subtracting ∆α from the angle
sequence (Figure 4c). Note that complete removal of drift is a
difficult task and would require more computation-expensive
mechanisms, e.g., Sensor Fusion algorithms.

Rotation: Recall that a victim can place her smartphone
in any orientation in the vehicle. To simplify the attack com-
putation, we rotate the sensor data to a reference coordinate
system, where the x axis points from left to right of the driver,
the y axis aligns with the heading direction of the vehicle, and
the z axis points upward perpendicularly to the Earth surface.
After rotation, the x and y values are then used to measure
pitch and roll respectively, while turn angle information is
indicated in the z axis (Figure 4d).

2) Trace Extraction: In the reference coordinate system, we
use the z values of gyroscope data to extract the victim’s turn
angles at intersections and curves between them, while accel-
eration vectors are used to improve the search performance by
detecting vehicle’s idle states.

Turn and Curve Detection: Based on z values of gyro-
scope vectors after rotation, left and right turns are distin-
guished according to positive and negative angle changes. Our
idea for identifying intersections is illustrated in Figure 4d,
where left turns are identified by an increasing slope within a
short period of time and right turns correspond to decreasing
slope. More precisely, let zi be the gyroscope value on the z

4Our observation suggests linear model well approximate the angle drift.



TABLE I: Default parameters used in evaluation.

Parameter Value
Scoring weights ωA = 2.5, ωT = 0.1, ωC = 2.5

Turn/curve detection threshold φg1 = 1◦, φg2 = 10◦, φg3 = 30◦

Turn angle filtering threshold γ = 60◦

Heading filtering threshold φm = 90◦

Travel time filtering threshold β = 1.5
Noise distribution µ = 0.003, σ = 7.54
Sampling period δ = 100ms

Top candidates limit K = 5000, for iterations k ≥ 2

axis at time iδ in the rotated angle trace. An intersection is
found if it satisfies all the following conditions:

1) Start turn: The angle change between time iδ and (i+
1)δ is higher than a threshold φg1, i.e., |zi+1−zi| > φg1,
which captures the event that the vehicle is starting to
make a turn or enter a curve.

2) Large deviation: The largest deviation on a slope under
investigation must be greater than a threshold φg2, i.e.,
maxi∈slope |zi+1 − zi| > φg2. This distinguishes the real
turn from a slight curve on the route.

3) Large turn angle: If the difference between the first
and the last angle on a slope is greater than φg3, i.e.,
|zi+n−zi| > φg3, the slope is recognized as a real turn,
and the value αk = zi+n − zi is the turn angle for the
corresponding k-th intersection.

A curve is recognized if the first condition is met, but the other
two conditions do not hold at the same time. In other cases,
the road segment under investigation is considered a straight
segment. The parameters φg1, φg2, and φg3 are configured
accordingly to the geographic area.

Idle State Detection: Despite the limited accuracy of the
accelerometer to reveal the precise instantaneous vehicular
speed, we can still exploit it to differentiate an idle state (e.g.,
vehicle stops at traffic lights) from movement on a straight
road. In both cases, the gyroscope does not expose large
enough variations for detecting angle changes with adequate
accuracy. However, with accelerometer, the former case results
in nearly zero magnitudes of acceleration vectors, while the
values are considerably larger with higher fluctuations for the
latter case. With idle states detected, we can better estimate
the actual non-idle time and improve the attack performance.

V. EVALUATION

In this section, we evaluate the attack efficiency based on
simulations and real driving experiments. First, we justify the
accuracy of gyroscope sensor and present our selection criteria
for cities chosen for evaluation. Subsequently, we present our
simulation and real driving results with a discussion on attack
performance and the implications on user privacy. The attack
parameters with default values are given in Table I.

A. Accuracy of Gyroscope

While the accelerometer and magnetometer accuracy de-
pend heavily on the environment rendering them more suitable
for filtering improbable routes with relaxed rules, the gyro-
scope sensor is less impacted by the environment. Therefore,
it is important to first justify the accuracy of gyroscope data.
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Fig. 5: Gyroscope noise distributions measured in real driving exper-
iments for different smartphones.

For this justification, we measure the accuracy based on real
driving experiments as follows. We use 4 smartphones of
different brands and models, and take total 70 driving routes in
both Boston and Waltham (Massachusetts, USA). To assess the
gyroscope errors, we extract the truth turn angles θi of taken
routes from OpenStreetMap, then for each θi, we obtain the
gyroscope angle αi (after sensor data processing phase) and
compute turn errors ei = αi − θi. As observed from Figure 5
showing histogram of ei, the error distribution for each phone
closely follows a normal distribution with more than 95%
of errors below 10◦. Table II indicates almost equal noise
standard deviation of each device. For all routes combined
for 4 phones, the mean µ and standard deviation σ values are
0.003 and 7.54, respectively.

TABLE II: List of phones tested for accuracy along with the number
of turns, and the gyroscope noise’s mean and standard deviation.

Phone No. Turns N Mean µ Std. dev. σ
HTC One M7 482 1.73◦ 7.07◦

LG Nexus 5 618 -0.77◦ 7.89◦

LG Nexus 5X 170 -1.12◦ 6.40◦

Samsung S6 238 -0.57◦ 7.51◦

B. Selection of Cities

To assess the attack’s impact on diverse cities of the world,
we identified 11 cities for simulations based on their size,
density and road structure. Table III summarizes their attack-
related characteristics such as the graph size (number of
vertices |V | and edges |E|) and distribution of turn angles
at intersections (mean µturn and standard deviation σturn).

Big cities such as Atlanta, Boston, London, Madrid, Paris,
and Rome create larger graphs than the rest according to our
construction method. While Manhattan is quite populated, it
has the smallest graph in our set, because our graph only
contains maximal-length segments. Nevertheless Manhattan is
dominated by long east-west and north-south roads, many of
which are parallel. Despite having similar graph size as Man-
hattan, Concord and Waltham are attributed to a larger standard



TABLE III: List of cities used for evaluation with their characteristics:
graph size (|V |, |E|) and turn angle distribution (µturn, σturn).

City |V| |E| Mean µturn Std Dev σturn
Atlanta, GA, USA 10529 25557 88.73◦ 17.58◦

Berlin, Germany 4708 19752 88.21◦ 19.87◦

Boston, MA, USA 8010 22149 89.69◦ 20.52◦

Concord, MA, USA 3049 6467 88.13◦ 29.58◦

London, UK 9468 21968 87.83◦ 20.38◦

Madrid, Spain 10012 30144 86.41◦ 25.13◦

Manhattan, NY, USA 1033 3699 89.23◦ 17.81◦

Paris, France 6744 11204 86.35◦ 26.26◦

Rome, Italy 9408 20577 85.98◦ 26.15◦

Sunnyvale, CA, USA 5592 12302 88.59◦ 16.00◦

Waltham, MA, USA 3366 9437 88.93◦ 20.53◦
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Fig. 6: Distribution of intersection turn angles in selected cities.

deviation σturn. The top cities of grid-like road structure are
Atlanta, Sunnyvale, and Manhattan with low values of σturn.
Boston, Berlin, and London have more spread out turns, but
not as much as Paris and Rome. Figure 6 shows the turn
angle distributions for some selected cities, where we observe
that the majority of intersections in Sunnyvale are 90◦ while
Boston, Rome, and Concord have more unique turns.

C. Creation of Simulated Routes

For each selected city, we test the feasibility of the attack
by running the system on simulated routes. In case of Boston
and Waltham, we also collect 70 driving experiments used for
experimental evaluation described in Section V-E. Both sets
of simulated and real routes are converted to the same format
for compatibility, in which the user’s route is represented as a
sequence U = ((h1, α1, t1,C1), . . . , (hN , αN , tN ,CN )). The
heading vector hi represents the direction of vehicle right
before entering an intersection with turn angle αi, whereas
ti and Ci are the time duration and curvature of the travel
between the previous intersection and the next one.

Route Generation: Based on the constructed graph G = (V,
E) for a selected city G, each simulated route is created by first
randomly choosing a route length N ← {4, . . . , 11}, then the
route is formed by adding N random connected segments that
satisfy (a) turn angle constraint: 30◦ ≤ |αi| ≤ 150◦, (b) travel
time constraint: ti ≥ 10 s. Note that as these segments are
maximal-length, the system may choose connections that are

large distances apart for larger segments. In our simulations,
the generated routes are between ≈ 0.5 km and ≈ 48.15 km
with an average length of ≈ 7.15 km.

Noise Adding: To simulate realistic scenarios, we add
various levels of noise to the route’s characteristics. The mag-
netometer noise nm is added to hi by a uniform distribution
such that −90◦ ≤ nm ≤ 90◦. To mimic the travel time in
practice, we add uniform distributed noise nt to ti such that
ti
β ≤ ti + nt ≤ ti

β′ , where β is the over-speeding ratio, and β′

is the lower bound speed ratio which attempts to model the
slow driver or traffic jam. While β is fixed to 1.5, β′ is varied
depending on simulation scenarios defined shortly below. The
gyroscope noise is finally added to both turn angles αi and
curvature Ci according to a normal distribution N (µ, σ) with
µ = 0.003 (obtained from Section V-A). We note that the
noise margin with simulated magnetometer and travel time is
relatively higher than in reality; for instance, the magnetometer
error is found to be only around 60◦ for our devices, while in
practice drivers rarely exceed 15% (i.e., β = 1.15) of speed
limit (e.g., 75 mph over the limit 65 mph in Boston).

Simulation Scenarios: To understand the attack perfor-
mance under various environments, our simulation evaluation
is performed and reported for different scenarios, in which
several noise parameters are adjusted from the above settings.
• Ideal: noise-free scenario (upper bound performance).
• Worst: σ = 10, β′ = 0.1. In this scenario, we consider

heavy traffic and old smartphones with less accuracy.
• Typical: σ = 8, β′ = 0.5. In this scenario, we consider

moderate traffic and current smartphones. Note that, σ =
8 is slightly higher than the experimental value σ = 7.54,
implying a slightly harder attack.

• Future: σ = 6, β′ = 0.5. In this scenario, we consider
moderate traffic and future smartphones equipped with
more accurate sensors as MEMs technology progresses.

D. Simulation Results

We evaluate the potential of the attack for all cities in Ta-
ble III using the 4 different scenarios specified in Section V-C.
In total, there are 44 test cases and for each, we generate a new
set of 2000 simulated routes. We use the same scoring weights
ωA = 2.5, ωT = 0.1, ωC = 2.5 for every city. These weights
are selected as they are relatively good for all cities, and our
main simulation goal is to evaluate the attack using the same
configuration for different city profiles. Other parameters used
for the attack are specified in Table I. The attack outcome
is evaluated according to both individual rank and cluster
rank. For the latter metric, we choose the proximity threshold
∆ = 500 meters, which typically covers a few house blocks
or apartment buildings.

Figure 7 shows the Cumulative Distribution Function (CDF)
of individual and cluster ranks (i.e., P idv and P clt) produced by
the attack. For the Typical scenario, we see that the system is
able to find more than 50% (resp. 60%) of exact routes (resp.
clusters of routes) in the top 10 results for all cities except for
Atlanta, Berlin, and Manhattan. Even in the Worst scenario,
more than 35% (resp. 40%) of exact routes (resp. clusters)
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(b) Atlanta (σ = 17.58)
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(c) Manhattan (σ = 17.81)
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0 20 40 60 80 100

Individual Ranks

0

20

40

60

80

100

C
D

F

0 20 40 60 80 100

Cluster Ranks

Ideal

Future

Typical

Worst

(e) London (σ = 20.38)

0 20 40 60 80 100

Individual Ranks

0

20

40

60

80

100

C
D

F

0 20 40 60 80 100

Cluster Ranks

Ideal

Future

Typical

Worst

(f) Boston (σ = 20.52)
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(i) Rome (σ = 26.15)
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(k) Concord (σ = 29.58)

Fig. 7: Attack performance on simulated routes for various cities. Graphs are arranged in ascending order of turn distribution σ.

are discovered in the top 10 results. In case of cluster rank,
we examine the results in more details (excluded in this paper
due to lack of space) and find that each cluster comprises
a relatively small set of routes (approximately 1-20 routes
per cluster). This explains why cluster ranks are only slightly
better than individual ranks.

Among cities having low σturn (less unique turns) in the
top row of Figure 7, Manhattan results in lower ranking
than Atlanta and Sunnyvale even when it has a higher σturn
and smaller graph size (lower |V | and |E|). This can be
attributed to two factors: (1) Manhattan has mostly straight
roads reducing the curvature impact on scoring, and (2) most
roads are parallel rendering heading filters ineffective. Atlanta
and Sunnyvale, on the other hand, have more curvy roads
that do not run in parallel. Atlanta has lower ranking than
Sunnyvale, because it has a lot more segments and connections
that significantly increase the search space and inversely affect
the results. Berlin, like others in this group, has more 90◦ turns
and straighter roads, and its reported results are in between
Atlanta’s and Sunnyvale’s.

In the middle and bottom rows of Figure 7, since the

cities have high value of σturn, the turn angle impact on
scoring is high (especially very high for Rome, Paris and
Concord, cf. Table III). Attack for Concord is most successful,
because the high number of curvy roads and unique turns
helps diversify the route’s score, and the small graph size
significantly reduces the search space. Paris creates somewhat
more difficulty for the adversary than both Rome and London
even though it has a higher σturn and lower |V | and |E|.
This can be explained by the fact that many internal roads in
Paris are straight, reducing the curvature impact on scoring.
Madrid, like Paris, also has a lot of straight roads, but due to
high |V |, it results in slightly lower rankings than Paris. The
attack seems easy in Rome and London thanks to the high
variations in curvature in both cities. Boston has lower ranking
than London even when it is similar in turn distributions and
graph size. This is mainly because Boston has several grid-
like residential areas such as South Boston and Back Bay that
create much confusions for routes passing through such areas.
Waltham’s road structure is very similar to Boston’s except
that it is much smaller, which becomes the main factor for
increasing the attack performance.
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Fig. 8: Real experiments statistics: (a-b): GPS traces of all traveled
routes; (c-d): Turn and Distance distributions for all routes combined.

E. Real Driving Experimental Results

To measure the attack efficiency in actuality, we carried out
real driving experiments in Boston and Waltham. For each city,
over 70 different routes were taken. These routes emulated
mostly realistic scenarios, e.g., traveling between residential
areas, shopping stores, office, or city centers. There were 4
drivers participating in the experiments, who were instructed
to (1) place the phone anywhere but in fixed position during
collection, (2) idle at least 10 seconds before driving, and
(3) drive within the city limit and take a minimum of 3
turns on their routes. These requirements allow us to model
typical realistic scenarios, in which the victim, after putting
her phone in a stable position (cup holder, mount, etc.), may
take a few seconds before starting to drive to check for her
safety, such as tying her seatbelt, and adjusting the seat,
mirrors, or lights. In this initial study, we did not consider
situations when the vehicle starts by reversing. We emphasize
that given the limited resources, we aimed to obtain a data-
set as diverse as possible, therefore we did not request the
drivers to repeat the same routes. Still, all routes consist of
total ≈ 980 km, including driving in both peak and off-peak
hours. Scoring weights (ωA, ωT , ωC) were fine-tuned based
on road characteristics: (2.5, 0.1, 3) for Boston, and (2.25,
0.1, 2.5) for Waltham. Both cities (especially Boston) have
more unique curves than turns attributing to the higher ωC .
Waltham has typically less traffic than Boston, therefore, we
assign lower ωA and ωC to increase impact of ωT .

Figure 8 shows the distribution of turns made on all routes,
total traveled distances, and GPS traces. Note that GPS is used
only for ground truth comparison. The shortest route taken was
≈ 0.75 km, the longest≈ 7.25 km. Additionally, 4 more routes
were taken to consider scenarios of driving in a circle, taking
many turns (≥ 20), and traveling longer distances (≥ 20 km).
These routes were also used to test the system’s stability.

Figure 9 shows the attack in terms of both individual and
cluster ranks. The reported results are a worst-case scenario
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Fig. 9: Attack performance on real driving experiments.

with no a priori information on the user’s routes. We see that
roughly 50% of routes in Waltham and roughly 30% of routes
in Boston are in the top 5 individual ranks. When top 1 is
considered (i.e., exact route), the success probability reduces to
38% for Waltham, and 13% for Boston, respectively. The gap
between individual and cluster ranks is about 10%, which is
almost similar to simulations. The number of routes per cluster
is around 2-3 for most top ranked clusters. The performance
for both cities lies between the simulation’s Typical and
Worst scenarios. However, the results for Boston are closer
to the Worst scenario, while Waltham’s are much like the
Typical. The main reason for this difference is the traffic in
Boston that caused more variations in estimating non-idle time
than Waltham. The small gap between real and simulation
results shows that our simulation framework may serve as an
effective model for studying the attack in a larger scale where
experiments are limited.

F. Feasibility of the Attack

The colluding server was setup inside a Linux Virtual
Machine (VM) on a Dell PowerEdge R710 server. The VM
has 2x4 cores with 16 threads running at 2.93 GHz, with
32 GB of RAM. The attack is written in Python and run using
PyPy, a fast Python JIT compiler. We measure the feasibility
of attack in terms of execution time for processing data and
searching routes. The search time specifically depends on the
route length and graph size.

Data Processing: The longest experimental route (approx-
imately 45 minutes) in our set requires ≈ 1.4 s to process the
sensor data and produce a trace of heading, turns, curves, and
timestamps, while an average route takes 0.1− 0.2s.

Route Search: For the largest city in our set, Atlanta,
the search for each route takes about 2.2 s. For Concord, the
smallest one, each route takes about 0.4 s. We use 15 threads
to parallelize the search on multiple routes, and 1 remaining
thread for control and management. The simulation of 88000
routes takes ≈ 21 hours to complete (≈ 0.85 s per route).

While not a formal benchmark, it still implies that the attack
is practical (e.g., less than 4 seconds for a long route in
Atlanta). With adequate resources, an adversary can handle
millions of routes fairly quickly.

G. Impact of Algorithm Parameters and Assumptions

In this subsection, we study the attack performance under
various conditions such as when calibration is not performed,



0 20 40 60 80 100

Individual Ranks

0

20

40

60

80

100

C
D

F
Scoring Weight Impact

Optimized         

TurnW             

TimeW             CurveW            

0 20 40 60 80 100

Individual Ranks

Filtering Threshold Impact

Optimized         

Uncalibrated      

HeadingTh         

TurnTh            

TimeTh            

Fig. 10: Impact of parameters and calibration on Waltham experi-
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or the algorithm parameters are not carefully selected. We use
the real driving experiments from Waltham in this investigation
and re-perform evaluation changing one parameter at a time
to better understand the impact of individual parameters.
For comparison, the performance achieved with parameters
optimized in Section V-E is referred to as the Optimized test
case (cf. Table IV and Figure 10).

TABLE IV: Test cases for impact of parameters and calibration.

Test case Parameter settings
Optimized As in Section V-E

TurnW As Optimized, except ωT = 0, ωC = 0
TimeW As Optimized, except ωA = 0, ωC = 0
CurveW As Optimized, except ωA = 0, ωT = 0

HeadingTh As Optimized, except φm = 30◦

TimeTh As Optimized, except β = 1.0
TurnTh As Optimized, except γ = 20◦

Uncalibrated Optimized without calibration

Scoring Weights: To justify the impact of each scoring
weight, we ignore the other weights by setting them to zero
in the scoring function, cf. Equation (2). Figure 10 shows
that curvature is the most useful factor for success probability,
while travel time only slightly increases the performance. This
is not only applicable to Waltham, but also to cities that have
numerous roads with unique curvature. The travel time varies
more due to external factors such as traffic or unknown speed,
making it less impactful. Hence, weights must be selected
based on the target area to maximize the attack success.

Filtering Thresholds: Filtering allows quick elimination of
bad routes, however, it can also falsely remove good routes. To
see the performance impact from over-filtering, we reduce the
thresholds for turn, heading, and time as specified in Table IV.
We observe several interesting facts from Figure 10. First,
tighter heading and turn thresholds only slightly decrease
performance, which implies that the sensors have small noise
margin. Therefore, stricter rules can be applied to speed up the
search if execution time is of high priority. On the other hand,
stricter travel time threshold results in considerably lower
performance, which reveals that over-speeding is a common
practice in real driving.

Calibration: Recall that for the real driving experiments,
drivers were instructed to stay idle for at least 10 s before
driving. While this allows for easy calibration, an alternative
calibration method can be used, in which we first detect idle
time (based on accelerometer) and then compute the gyroscope

drift during that state. This enables calibration whenever
the vehicle is idle (e.g., stopping at traffic lights) and the
parking assumption can be relaxed. In Figure 10, however, we
show that even without calibration, the performance does not
decrease significantly. In fact, the individual ranks drop only
by 10%− 15% in comparison with Optimized which implies
calibration is an optional rather than a required operation.

Route Equiprobability: We emphasize that the reported
results in this work are based on the worst-case assumption of
no a priori information of the victim’s travel history. Knowing
the starting or ending point would improve the accuracy. On
the other hand, such travel history information can be built
up over time to improve the attack. We plan to study such
extensions in future work.

Fixed Position: Our assumption of fixed phone position
is realistic in various scenarios (e.g., many states in the USA
prohibit hand-held use). However, if users interact with their
phones, we describe an idea (we did not implement it) that can
help increase possibility of distinguishing between a real turn
and a change in phone’s orientation due to user interaction.
Our idea is based on the observation that human interaction
(e.g., touching, holding in hand) induces high variations in
sensor data in all 3 dimensions for a short duration. Note that
if the variations are low, the attack is barely affected and there
is no need for detection. When such events are detected, we
simply ignore the sensor data, and later, re-perform rotation
to reflect the phone’s new position. In practice, however, more
complex algorithms would be required to deal with noise and
unknown human behaviors, which can be studied in the future.

Detection of Vehicle Start: In this work, we assume that it
is feasible to determine when a user enters their vehicle. This
can be done a posteriori with the app continuously recording
(and storing a window of few minutes) and using techniques
similar to Android step detection [14] to detect when the user
stops walking and steps into the vehicle.

Reversing: In this work, we assume only forward motion of
drivers. While reversing can be detected using the accelerom-
eter, a more complex problem may arise when turning is
performed at the same time as reversing (e.g., making a U-turn
or pulling out of a parallel parking spot). This increases the
search space, and our algorithm would have to be extended to
roll back to previous states along all candidate routes.

Known City: Knowledge about the victim’s city can be
obtained in several ways. For instance, the app can detect
the city based on IP address when the victim is connected
to Wi-Fi or cellular networks. Additionally, an adversary with
access to the victim’s social network can find the victim’s city,
frequently visited places, and even route patterns. A powerful
adversary can also run the attack on multiple geographic areas
in parallel. These techniques can be combined together to
devise an effective attack.

VI. COUNTERMEASURES

Access to motion sensors is granted without permissions or
any notifications to the user as they are still underestimated as
a source of privacy leakage. Several detection and protection



mechanisms can be used to mitigate this attack, for example,
when installing an app, permissions to the sensors must be
explicitly requested by the app. Also, like location, a notifi-
cation (with app name) should be displayed to the user when
sensors are accessed. To deal with attacks that also require
access to sensors for other activity, more complex mechanisms
are required such as closely monitoring the Internet traffic and
energy consumption, or generating adequate artificial noise in
the data before providing it to the app. While the above make
the attack more difficult, effective protection mechanisms
are beyond the scope of this work and considered an open
problem. The mechanisms discussed should be implemented in
the OS to ensure prevention globally, however, they can also be
implemented using dynamic instrumentation tools like ddi [15]
or recently, using app sandboxing tools like Boxify [16].

VII. RELATED WORK

Smartphone privacy attacks have recently attracted sig-
nificant interest. They typically fall into one of the three
categories. Some attacks use cellular signals, GPS, Wi-Fi,
Bluetooth, NFC, Wi-Fi Direct and other radio communications
mechanisms (henceforth, we will refer to them as wireless
location support systems or WLSS). Sensor centric attacks
use native smartphone sensors such as the gyroscope, ac-
celerometer and magnetometer as data sources with no WLSS
involvement. The hybrid cases are where the victim makes
available, albeit to a limited community and on a limited
basis, her location. These attacks use WLSS and sensor data
integration. Fawaz et al. [1] reported that 85% of surveyed
users expressed concern about conveying location information.
Some countermeasures emerged in the form of location privacy
protection mechanisms or LPPMs. These services obfuscate
location information by modifying precision or performing
location transformation. As they attempt to deflect WLSS
centric threats, LPPMs remain ineffective in mitigating our
threat. As of this publication and to our knowledge, no service
exists to address our proposed threat.

A. WLSS Based Attacks

WLSS based attacks typically require either apps installed
on a smartphone with appropriate permissions or significant
presence within the network infrastructure. We do not address
the former as the user consciously forfeited some degree of
position anonymity. The infrastructure attack involves taking
over some of the infrastructure components or injecting signa-
ture probes and are subject to detection by conventional means
(i.e. IDS or IPS solutions). WLSS attacks provide accuracies
near 90% when attempting path identification.

In Qian et al. [17], the authors attempt targeted cellular DoS
attacks. Of relevance is identifying the specific smartphone
location as a precursor to the attack. The attack seeks to
gain IP identification using techniques like active probes
and fingerprints. By measuring promotion delay and Round
Trip Time (RTT), cellphone localization is achieved with
granularity to the Location Area Code (LAC)/Radio Network
Controller (RNC) range. Its effectiveness is limited due to

measurement tuning needs and RNC sharing observed among
smaller cities. This expands the geographical area cross section
from which to identify the user. As with WLSS attacks,
introducing network probes may enable detection.

Kune et al. [18] describe location determination via leakage
from lower level Global System for Mobile Communications
(GSM) broadcasts, in particular, a victim’s temporary iden-
tifier. For this attack to work, the attacker must initiate a
Paging Control Channel (PCCH) paging request targeting the
victim and passively listen for broadcast PCCH messages.
Although relatively simple, it places the attacker as an active
network participant which risks detection. It also requires a
priori knowledge of the victim’s telephone number. Position
resolution was observed to within 1 km2.

Bindschaedler et al. [19] use a group of 802.11 access ports
to eavesdrop on proximate target smartphones in order to
evaluate mixing zone effectiveness. Data collection includes
device time, location, device identifier and content. Although
victims may attempt to hide via a mix-zone network where
MAC addresses are synchronously changing (assuming suffi-
cient group membership), tracking can be achieved. This attack
requires collusion of multiple APs and Wi-Fi or equivalent
communications mechanisms. This may be impractical to set
up exclusive of the most sophisticated attackers.

B. Hybrid Attacks

There are a number of works [20–26] that combine WLSS
data with motion/inertial sensors to infer user location, mode
of transit, orientation and behavior. Of those surveyed, we find
best case accuracies near 80%. Although positional accuracy
benefits offered by these mechanisms are interesting, these
attacks generally require obtaining a ’fix’ via WLSS function-
ality prior to leveraging sensor data. This exposes the attacker
to WLSS discovery mechanisms.

Zhang et al. [27] developed the SensTrack system which
identifies turning points using a smartphone’s accelerometer
to determine speed, distance, and orientation. Additionally,
they use sensors with adaptive Wi-Fi and GPS switching to
address location contexts where GPS is less effective (i.e.
indoor locations). Their system achieved prediction errors of
nominally 3.128 meters versus 5 for good GPS signal strength.
This approach assumes some location predetermination using
GPS for initial reference position. Furthermore, the short
distances within a building do not offer the challenges one
realizes in the spatial-temporal context of driving a vehicle.

C. Sensor Only Attacks

The following attacks are most representative of our ap-
proach as they rely entirely on zero-permission sensor sources.

Han et al. [28] suggested a method of location inference
using the accelerometer and magnetometer. Leveraging a prob-
abilistic dead reckoning method called Probabilistic Inertial
Navigation (ProbIN), they mapped probability of displacement
to probability of motion. Training data associates sensor data
with map truth. Resolution is observed approaching 200 me-
ters, the length of a typical city block. Their small sample



size limited the experimental path length range to between
1 km and 9.7 km. Although claiming better accuracy than
achievable using Wi-Fi or cellular techniques, their approach
greatly depends on acquiring training data which may present a
resource challenge (i.e. time and labor) in large scale scenarios.

In Nawaz et al. [29], the authors demonstrate that a smart-
phone’s accelerometer and gyroscope can be used to identify
‘significant’ journeys independent of phone orientation and
traffic. This is because gyroscope signatures obtained from
multiple journeys of the same route exhibit similar patterns
that differ only in amplitude and time compression or ex-
pansion. They apply Dynamic Time Warping to calculate
the distance between various journeys and use a k-medoids
clustering approach to cluster similar routes together. A route
is labeled as significant if it is traveled more times than a
predefined threshold. They test this technique for two cities
using 43 real driving experiments and showed that the routes
were accurately clustered in 8 clusters defined for the two
cities. Grid road networks are addressed in a different manner.
Here, they depend on turn count as a uniqueness metric and
suggest that their technique is effective for reasonably long
routes because such routes exhibit a unique sequence of turns
even when individual turns are similar.

In Zhou et al. [30], the authors describe a novel technique
that analyzes verbal directions provided by a GPS based
navigation app. Using a second zero-permissions app, they
measure speaker on/off times controlled by the navigation app.
The attacker can infer which course a driver took due to the
duration of these audible driving instructions. Permission for
speaker usage is not required as of this writing. Associating
talk time to an off-board synthesized instruction driving set
yields a 30% false positive rate over a small sample size (7
out of 10 correct). This approach requires the use of a voice
enabled navigation system. Furthermore, it assumes that the
navigation app is trustworthy.

Michalevsky et al. [10] introduce a power based scheme
that distinguishes a user route from a set of possible routes
in real-time. Furthermore, they attempt to infer new routes by
constructing projected route power profiles that are aggregated
from shorter, known segment power profiles, all using 3G
networks. With a ’modest’ number of applications running,
they achieve accurate results in 2/3 of the scenarios while the
results degrade to an accuracy of 1/5 with additional active
applications such as Facebook and Skype. In addition, they are
limited by the need to provide data to the learning machine
which itself limits scalability in obtaining training data.

D. Behavior Analysis

This research area involves determining user modality from
smartphone sensors. For example, ergonomic/activity identi-
fication is discussed in [31]. The authors use learned data
from walking, jogging, climbing stairs, sitting, and standing to
ascertain user activity. They identified and collected data for 43
features from a 29 person sample set. Raw data was evaluated
using the WEKA data mining tool suite to develop decision
tree, logistic and regression and multilayer neural network

models. Excluding motions associated with moving up and
down stairs, the method can identify activity nearly 90% of
the time. Although of a single modality and reasonably well
suited for human activity identification, is has limited ability
to ascertain paths with much less start and stop points.

Lee and Mase [32] studied the feasibility of detecting user
behavior such as sitting, standing, walking on level ground,
going up or down a stairway as well as determining the number
of steps taken to infer a person’s location in an indoor envi-
ronment. They developed a system using the accelerometer
and gyroscope sensors to measure the forward and upward
acceleration and angle of the user’s legs. In addition, the
compass is used to determine the direction of movement. The
phone is mounted on different body locations and a dead-
reckoning method is applied to estimate the user’s physical
location. The authors show that their system efficiently calcu-
lated the number of steps and location for eight individuals,
using a predefined database of selected locations in an office
environment. They claim a high recognition ratio of 91.8% for
ten unique location transitions.

E. Other Works of Interest

Two additional works are noteworthy. They include a pattern
matching/machine vision approach to path traversal tracking
and a framework to measure the effectiveness of the attack.

In terms of matching shapes, patterns and contours, there are
numerous examples in the literature. We identify one here for
this discussion. Kupeev et al. [33] decomposed shape contours
in terms of segments for purposes of determining similarity
of contours. They were able to analyze 24 shape distances
with 32 unique quantized rotation angles against one another.
The error rate appeared to be less than 10%. Of importance
is the limited use of this technique observed in the location
privacy space. This approach’s weaknesses are similar to other
contour matching solutions in that the subtle differences in
road contours may not be distinguishable between similar yet
geographically separate roads.

In Shokri et al. [34], the authors suggest a framework for
scoring location privacy protection mechanisms. Here, they
define a triad taxonomy of accuracy, certainty and correctness
where the later represents the metric that determines the
privacy of user. To our knowledge, this is the first significant
attempt at establishing an evaluation framework. Although not
utilized in this work, it provides a foundation for evaluating
in the future, our results when compared with truth.

VIII. CONCLUSION

We modeled the problem of tracking vehicular users as the
problem of identifying the most likely route on a graph derived
from the city’s roads public database. The performance results
of our algorithms, both simulations and experimental, indicate
that in most cities a significant number of users are vulnerable
to tracking by seemingly innocuous applications that do not
request permissions to any sensitive information. We believe
that this calls for rigorous methods and tools to mitigate side-
channel attacks making use of mobile phones sensors.
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