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ABSTRACT
In this paper, we present JaX, a novel approach for detecting and
cancelling high-power jammers in the scenarios when the tradi-
tional spread spectrum techniques and other jammer avoidance
approaches are not sufficient. JaX does not require explicit probes,
sounding, training sequences, channel estimation, or the coopera-
tion of the transmitter. We identify and address multiple challenges,
resulting in a convolutional neural network for a multi-antenna
system to infer the existence of interference, the number of inter-
fering emissions and their respective phases. This information is
continuously fed into an algorithm that cancels the interfering sig-
nal. We develop a two-antenna prototype system and evaluate our
approach in various environment settings and modulation schemes
using Software Defined Radio platforms. We demonstrate that the
receiving node equipped with our approach can detect a jammer
with over 99% of accuracy and achieve a Bit Error Rate (BER) as
low as 10−6 even when the jammer power is nearly two orders of
magnitude (19 dB) higher than the legitimate signal, and without
requiring modifications to the link modulation. JaX is resilient
against various types of jammers with different characteristics of
jamming signals, jamming power, and timing pattern.

CCS CONCEPTS
• Security and privacy→Mobile and wireless security; •Com-
puting methodologies→ Neural networks.

KEYWORDS
Jamming detection; jamming cancellation; deep learning

ACM Reference Format:
Hai N. Nguyen and Guevara Noubir. 2023. JaX: Detecting and Cancelling
High-power Jammers Using Convolutional Neural Network. In Proceedings
of the 16th ACM Conference on Security and Privacy in Wireless and Mobile
Networks (WiSec’23), May 29-June 1, 2023, Guildford, United Kingdom. ACM,
New York, NY, USA, 12 pages. https://doi.org/0.1145/3558482.3590178

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
WiSec’23, May 29-June 1, 2023, Guildford, United Kingdom
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9859-6/23/05. . . $15.00
https://doi.org/0.1145/3558482.3590178

1 INTRODUCTION
Jamming remains one of the most serious threats to wireless com-
munications. A jamming attack targeting the PHY layer can signif-
icantly degrade the Signal-to-Noise Ratio (SNR) of wireless links.
This is especially critical to systems with high SNR requirements,
e.g., Wi-Fi manufacturers recommend a minimum SNR of 20 dB for
data applications [6]. Furthermore, jammers do not require sophis-
ticated RF Front-Ends design and basic jamming hardware against
Wi-Fi, cellular networks, and GPS devices is a commodity that can
be found on the Internet for a few dozens of dollars. Due to a se-
ries of incidents, the FCC routinely releases customer advisories
cautioning against the import and use of jamming devices [11],
rolled out a jammer tip line (1-855-55NOJAM), and issued several
fines [12]. Despite the regulation, preventing jamming remains dif-
ficult to enforce. Furthermore, wireless softwarization is making
jamming potentially a ubiquitous threat, as demonstrated by the
nexmon framework [38], Google Project Zero [36], and recognized
in numerous work [33, 46, 49]. Finally, jamming can also be the
prelude to more sophisticated attacks such as rogue infrastructure
(Wi-Fi and Cellular) and hijacking of physical assets (GPS) [20, 44].

Traditional anti-jamming relies on spread spectrum techniques
including Frequency-Hopping Spread Spectrum (FHSS) and Direct-
Sequence Spread Spectrum (DSSS). These techniques aim to mini-
mize the chance that the legitimate signal is interfered by the jam-
ming signal (jamming avoidance). Nowadays, with the rapid devel-
opment of RF hardware and the increasing prevalence of Software-
Defined Radios (SDR) [10], high-power jammers that significantly
degrade communications in the wide spectrum are easier to build.
As jamming avoidance approaches become less effective against
such jammers, the ability to remove/cancel the jamming component
in the received signal (jamming cancellation) becomes important to
maintain the SNR of the wireless link.

It is also important for the receiver to early detect the jammer,
before the communication link is impacted. Most of prior work
typically use statistics such as Signal-to-Noise Ratio or Packet De-
livery Ratio [40, 49] which can only be acquired after decoding the
samples, instead of using PHY layer information for early detection.
In this paper, we are concerned with the design of a unified jamming
detection-cancellation framework (JaX) to counter high-power jam-
mers. This framework detects the jammer and infers the necessary
jamming cancellation parameters directly from the raw RF sam-
ples in the PHY layer. It does not require explicit probes, sounding,
training sequences, channel estimation, or the cooperation of the
transmitter, and can promptly react to a wide variety of jammers
(e.g., AWGN, intermittent, variable power) by cancelling their in-
terference. Motivated by the recent success of Deep Convolutional
Neural Network (CNN) in the RF domain [26, 28], we developed
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Figure 1: Illustration of a jammer interfering with the com-
munications between two nodes.

a multi-antenna DL-based system to infer the existence of inter-
ference, the number of interfering emissions and their respective
phases. This information is continuously fed into an algorithm
that cancels the interfering signal. We evaluate JaX in a variety of
scenarios with multiple modulation schemes, demonstrating good
performance for a receiver exposed to a jammer that is two orders
of magnitude higher than the legitimate signal. For instance, we
demonstrate that a SDR-based receiver integrating our approach
can detect the jammer with over 99% of accuracy and achieve high
jamming-resistance with a Bit Error Rate (BER) as low as 10−6
while the jammer power is 19 dB higher than the legitimate signal.
Moreover, our DL model was trained using only continuous jam-
mer transmitting over cables and is also effective for intermittent
and power-variable jammers in over-the-air indoor environments
(discussed in Section 5). To the best of our knowledge, our work
is the first in the literature that leverages DL for unified jamming
detection-cancellation. Our contributions are summarized as follows:
• Anovel anti-jamming approachJaX for unified jamming detection-
cancellation using Deep Convolutional Neural Network.
• A neural network architecture, model, and supporting algorithms
for high-accuracy multi-antenna jamming detection and cancel-
lation using direct PHY layer I&Q RF samples.
• A two-antenna SDR prototype leveraging JaX’s proposed CNN
model and anti-jamming algorithms that are agnostic to the mod-
ulations (demonstrated with BPSK, QPSK, 8-PSK, 16-QAM).
• JaX is as effective as the optimal pilot-based approach [52] in
time-varying channels with 50% less transmission overhead and
without requiring link modifications for pilot support.
• JaX is evaluated for various types of jammers (i.e., continuous,
intermittent, constant power, variable power, AWGN, modulated)
operating in different wireless environments, demonstrating the
jammer detection accuracy of over 99% and achieving a BER as
low as 10−6 even against jammers that are 19 dB more powerful
than the legitimate sender.

2 PROBLEM STATEMENT AND APPROACH
2.1 Models
We consider a setup with two legitimate nodes communicating
in the presence of an adversary intentionally interfering with the
communications as illustrated in Figure 1.
Sender and Receiver Model. For the purpose of this work, we
assume that the legitimate nodes are communicating over a pre-
agreed channel and link parameters, including the center frequency,
bandwidth, modulation scheme. This is a standard assumption.

Further jamming resilience can be achieved by allowing the com-
municating nodes to randomize such parameters (e.g., frequency
hopping) but is not the focus of this work. We assume that the
sender uses a single transmitting antenna, and that the receiver
uses two antennas with the same gain to receive signals. We assume
that the nodes are neither aware of each other’s location, nor the lo-
cation of the jammer. We consider a slow-fading channel, therefore
a low-mobility for the involved parties. This concretely means that
the channel do not change abruptly within a packet (e.g., 1 ms).
AdversaryModel.We consider an attacker (jammer) using a single
antenna transmitting signals on the same channel as the users,
interfering with the legitimate communications (Figure 1). We allow
a powerful adversary that already knows the link parameters such
as center frequency, bandwidth and potentially other settings. The
jammer is allowed to transmit either random samples or modulated
packets, with a continuous or intermittent pattern. We also assume
a similar low-mobility pattern for the jammer so that the channel
characteristics do not change abruptly within a packet.
Communication Channel Model. The communicating nodes
can use arbitrary modulation and coding schemes and are exposed
to the typical additive Gaussian noise (AWGN) in addition to the
jammer interference. We assume the channel gains to be fairly
stable throughout the considered bandwidth. In our evaluations, we
consider differential BPSK, QPSK, 8-PSK, and 16-QAM modulations
for the communicating nodes. We evaluate our system in both
over-the-air setups, and using RF coax cable. The cable setup is
for reproducibility and in order to systematically and extensively
assess the performance of the approach over a range of three orders
of magnitude of powers (35 dB), and multiple phase offsets.

2.2 Theoretical Foundations and Approach

Jamming Fundamentals. It is standard to model a conventional
system using a single antenna, as receiving a complex-valued signal
𝑅 that comprises the transmitting signal 𝑆 , adjusted to account for
the channel gain ℎ, and additive white Gaussian noise 𝑁 :

𝑅 = ℎ𝑆 + 𝑁 (1)
In the absence of interference, the quality/capacity of such link

is determined by the Signal-to-Noise Ratio (SNR), which is propor-
tional to |ℎ |

2

|𝑁 |2 (where |.| denotes the complex norm). Assuming that
additive noise is constant over time, the SNR only depends on |ℎ |.
The receiver achieves better Bit Error Rate (BER) when the channel
gain |ℎ | is higher, which is reflected in a higher SNR.

Now assume the presence of an adversary (jammer), who knows
the frequency channel that the legitimate nodes are operating over.
The adversary transmits a "jamming" signal 𝐽 that interferes with
the legitimate signal 𝑆 (as shown in Figure 1a). The received signal
now becomes:

𝑅 = ℎ𝑆𝑆 + ℎ 𝐽 𝐽 + 𝑁 (2)
where ℎ𝑆 and ℎ 𝐽 are the channel gains corresponding to the sender
and the jammer, respectively. The decodability of the legitimate
signal is now dependent on the Signal-to-Interference-and-Noise
Ratio (SINR) which is proportional to |ℎ𝑆 |2

|ℎ 𝐽 𝐽 |2+|𝑁 |2
. When the jam-

ming power is considerably high relatively to the channel noise,
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Table 1: Comparison with existing work on Deep Learning-based jamming detection and jamming cancellation. JaX is the first
work in the literature that practically addresses unified jamming detection-cancellation leveraging Deep Learning.

Jamming Cancellation

Jamming Detection Pilots/Reference Signals
Exemption

Mechanical Jamming
Dampening Exemption Deep Learning-based Real Emission Evaluation

JaX ✓ ✓ ✓ ✓ ✓
BJM [52] ✓ ✓ ✓
Yan et al. [50] ✓ ✓ ✓
Vo-Huu et al. [45] ✓ ✓
Zhang et al. [53] ✓ Not Applicable Not Applicable ✓
Lv et al. [25] ✓ Not Applicable Not Applicable ✓
Li et al. [22] ✓ Not Applicable Not Applicable ✓ ✓

��ℎ 𝐽 𝐽 �� ≫ |𝑁 |, the SINR can be approximated as proportional to the
ratio |ℎ𝑆 |

2

|ℎ 𝐽 𝐽 |2
. As the interference becomes stronger, |ℎ𝑆 ||ℎ 𝐽 𝐽 | is subse-

quently smaller and the legitimate signal 𝑆 becomes undecodable.
Approach. To remove the jamming component from the received
signal 𝑅, in a single-antenna, is challenging without having control
over the jammer, knowing the jamming signal, or resorting to other
dimensions to evade the jammer (e.g., as in spread spectrum). Our
approach instead relies on two receiving antennas, each collects a
copy of the transmitted signals (subject to different channel gains):

𝑅1 = ℎ𝑆1𝑆 + ℎ 𝐽1 𝐽 + 𝑁1
𝑅2 = ℎ𝑆2𝑆 + ℎ 𝐽2 𝐽 + 𝑁2

(3)

Considering a jammer significantly above the noise, the cancellation
is achieved using the formula:

𝑅1 − 𝑝1𝑅2 = 𝑝2𝑆 (4)

where 𝑝1 =
ℎ 𝐽1
ℎ 𝐽2

, and 𝑝2 = ℎ𝑆1 − 𝑝1ℎ𝑆2 . If the new gain 𝑝2 of signal
𝑆 is sufficiently large, we can decode 𝑆 and achieve a good BER.

The main challenge is how to estimate parameter 𝑝1 correctly.
Here, we emphasize that traditional techniques used in MIMO
systems estimate such parameter relying on probing, training se-
quences and sounding procedures (cooperatively between the trans-
mitter and receiver). In the following, we will show that our ap-
proach can address the problem without requiring those cooper-
ative/explicit mechanisms. We first reformulate 𝑝1 in the polar
representation |ℎ 𝐽1 |

|ℎ 𝐽2 |
𝑒 𝑗 (𝜙 𝐽1−𝜙 𝐽2 ) . To find 𝑝1, we are required to esti-

mate the amplitude ratio 𝐴𝐽 =
|ℎ 𝐽1 |
|ℎ 𝐽2 |

and the phase shift Δ𝜙 𝐽
:

Δ𝜙 𝐽
= 𝜙 𝐽1 − 𝜙 𝐽2 (5)

We use two different approaches to estimate 𝐴𝐽 and Δ𝜙 𝐽
. For the

amplitude ratio, we rely on the fact that the parameter is propor-
tional to the square root of the ratio of jamming power received
at the antennas. On that account, we estimate using the measured
power in the periods before and during the collision ( Section 4.2).
To estimate the phase shift, JaX uses a lightweight, yet powerful
Convolutional Neural Network (CNN) that directly estimates from
the 𝐼/𝑄 RF samples. The ability of CNN to analyze and infer di-
verse complex data has been investigated and utilized in various
areas [2, 19, 31, 39]. Estimating phase shift involves extracting and
synthesizing low-level patterns of the original jamming signal em-
bedded in the RF samples. In conventional wireless systems design,

such patterns are extracted through signal processing filters, which
makes the convolutional filters of CNN an ideal candidate for the
task. Our CNN not only can disentangle the collision and estimate
the phase shifts, but also can infer if the estimations correspond
to transmitted signals or just noise. The latter allows us to detect
the presence of jammer and distinguish between the three possible
states of the channel: (1) When the channel is clear, (2) when only
the jammer or the sender is transmitting, and (3) when the user
nodes are being interfered with by the jammer. The workflow of a
JaX-enabled RF receiver is illustrated in Figure 2. To the best of
our knowledge, our work is the first that considers CNN as a multi-
functional approach for detecting and cancelling jammers. More
details of the approach are presented in Section 3 and Section 4.

JaX can also perform well under the impact of multi-path in
indoor environments (see Section 5). This does not contradict the
cancellation theory, as we can explain as follows. Under the impact
ofmulti-path effects, each receiving antenna collectsmultiple copies
of the legitimate and jamming signals:

𝑅1 =
∑︁
𝑖

ℎ𝑖𝑆1
𝑆 +

∑︁
𝑖

ℎ𝑖𝐽1
𝐽 + 𝑁1

𝑅2 =
∑︁
𝑖

ℎ𝑖𝑆2
𝑆 +

∑︁
𝑖

ℎ𝑖𝐽2
𝐽 + 𝑁2

(6)

where ℎ𝑖
𝑆𝑘

and ℎ𝑖
𝐽𝑘

are the channel gains of the 𝑖𝑡ℎ path from
the sender and the jammer to the antenna 𝑘 of the receiver, re-
spectively. We can see that by taking ℎ𝑆𝑘 =

∑
𝑖 ℎ

𝑖
𝑆𝑘

and ℎ 𝐽𝑘 =∑
𝑖 ℎ

𝑖
𝐽𝑘
, Equation (6) becomes equivalent to Equation (3). As also

explained in [45], the sum of the channel gains of all the paths
from the sender/jammer to the receiver can be viewed as a new
channel gain of the line-of-sight path between the receiver and the
sender/jammer being put in a different location. Therefore, JaX is
still effective to counter jammers in this scenario.

However, we note that multi-antenna jamming cancellation has
intrinsic limitations. Even with accurate estimates of the amplitude
ratio and phase shift, it is not guaranteed that jamming cancella-
tion can fully recover the original signal. As we mentioned earlier,
removing 𝐽 , results in signal 𝑆 being subject to an update gain
value ℎ𝑆1 − 𝑝1ℎ𝑆2 where 𝑝1 =

ℎ 𝐽1
ℎ 𝐽2

. This gain becomes small when
ℎ𝑆1
ℎ𝑆2
≈ ℎ 𝐽1

ℎ 𝐽2
, equivalently Δ𝜙𝑆

≈ Δ𝜙 𝐽
i.e. the separation between the

phase shifts corresponding to channel gains of signals 𝑆 and 𝐽 is
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Figure 2: The workflow of a JaX-enabled RF receiver.

small:
𝑆𝑒𝑝Δ𝜙

=

���Δ𝜙𝑆
− Δ𝜙 𝐽

��� ≈ 0 (7)

This derives from the intrinsic limitation of multi-antenna system
to not be able to distinguish between two emitters that are aligned
with the receiver. In the later sections, we will show the impact of
parameter 𝑆𝑒𝑝Δ𝜙

to the jamming cancellation approach through
extensive experiments for Bit Error Rate evaluation.

3 JAMMING DETECTION AND PHASE SHIFT
ESTIMATION

When a jammer interferes with communications, estimating the
phase shift Δ𝜙 𝐽

(in Equation (5)) is challenging without explicit
information about the jamming signal. To address this, JaX uses
a fast and accurate convolutional neural network that precisely
estimates the phase shifts and recognizes the current channel state
(outlined in Section 2.2) and detect the jammer. We are inspired by
CNN’s capability of extracting features from various types of data
such as visual [16, 39], speech [2], RF [31], and text [19].

3.1 Challenges and Goals of The Design

Challenges. While developing the CNN model for phase shift esti-
mation, we encountered two main challenges. First, with a single
estimation, it is hard to guess whether the phase shift associates
with the legitimate or the jamming signal. This is especially more
confusing when an adversary tries to mimic the legitimate com-
munication, e.g., by using the same modulation. As a result, in
the worst case scenario, we can instead inadvertently cancel the
legitimate signal. Second, the receiver does not know the current
state of the communication channel, i.e., how many transmitters
are concurrently using it. This could lead to another catastrophic
scenario when the sender is transmitting without being interfered,
while the receiver still believes that a collision is happening and
unintentionally removes the signal using the estimated phase shift.
Goals.We defined two goals for the design of that target CNN to
address the above challenges. First, the phase shift estimations for
both the legitimate signal 𝑆 and the jamming signal 𝐽 are required
instead of only for the latter. This is intuitively possible to achieve
with a CNN since signals 𝑆 and 𝐽 are typically non-coherent, there-
fore the unique features of both signals can be extracted by stacks

…Bt Bt+1 Bt+2

…S1 S2 S3 S128

I1 I2 I3 I128…
Q1 Q2 Q3 Q128…

Convolutional, K = 3 x 3, N = 64, 
ReLU

Convolutional, K = 3 x 3, N = 128, 
ReLU

Convolutional, K = 3 x 3, N = 256 
ReLU

Convolutional, K = 2 x 1, N = 256, 
ReLU

Fully-connected layer, M = 4

Sigmoid

PS1 PS2 IS1 IS2

Stream of RF samples

Block of 128 RF samples

Stack of I & Q values for input 
data representing two antennas

Linear

Max pooling

Max pooling

Max pooling

Fully-connected layer, M = 256

Figure 3: RF data representation and the CNN architecture
for phase shift estimation and signal detection. 𝐾 is the filter
size and 𝑁 is the number of filters in convolutional layers.
𝑀 is the number of neurons in fully-connected layers.

of trained convolutional filters. Second, for each estimated phase
shift, we also infer whether it is the estimation of a data-containing
signal or of noise. As such, the neural network outputs a confidence
value along each inferred phase. This indicates the presence of a
signal if the confidence is larger than 0.5, and indicates noise other-
wise. These capabilities allow us to recognize the current state of
the communication channel, to detect the jammer (i.e. when both
signal detection outputs indicate a signal), and to avoid accidentally
removing the legitimate signal without any means to recover.

3.2 Neural Network Architecture
Our development of the CNN started with defining the input layer.
Naturally, we want to avoid feeding a very long stream of RF sam-
ples to the CNN at once due to the heavy computational cost. To
address this, we divided the stream of 𝐼/𝑄 samples into blocks of a
fixed length 𝑀 (In our implementation, 𝑀 = 128 samples). Then,
we transformed each block into a 2 ×𝑀 matrix where the first row
comprises the In-phase (I) values and the second row comprises the
Quadrature (Q) values of𝑀 RF samples (shown in Figure 3). Finally,
we stacked the matrices of the two antennas to form the 2×𝑀 ×𝑁
real-valued tensor as the input of our CNN.

We have considered several possible architecture designs of the
CNN and converged on an optimized CNN structure that achieves
good performance in terms of processing speed and estimation cor-
rectness (see discussion in Section 5). The architecture of our CNN
is illustrated in Figure 3, in which a stack of three convolutional
layers with kernel size of 3 × 3 is followed by a 2 × 1 convolutional
layer and two fully-connected layers. 3 × 3 convolutional layer is a
popular Deep Learning technique and has been used as the building
block for state-of-the-art Deep Learning (DL) architecture such as
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Figure 4: The procedure of building dataset for jamming
detection and cancellation.

VGG [39] and ResNet [16]. As 3 × 3 convolution is especially effec-
tive for extracting low-level features in different local regions of the
data, we expected the neural network to find robust, unique features
and patterns of the colliding signals from the variation in the ampli-
tude and phase of contiguous RF samples. We added Max Pooling
layers between convolutional layers to extract the important sharp
features corresponding to the local max-values and to reduce the
computation cost. On the other hand, we used the 2 × 1 convolu-
tional layer with the sample-wise combining of I & Q channels to
gain the high-level semantics of angular distance for estimating the
phase shifts. Rectified Linear Unit (ReLU) activation was used for
the convolutional layers because it is computationally efficient and
more effective against the vanishing gradient problem [14].

The fully connected layers synthesize the features extracted from
the previous convolutional layers for making predictions. The out-
puts 𝑃𝑆1 and 𝑃𝑆2 estimate the phase shifts for legitimate and inter-
ference signals, while 𝐼𝑆1 and 𝐼𝑆2 detect whether the corresponding
phase shift estimations come from a signal or noise. (Again, 1 im-
plies real signal while 0 implies noise). Sigmoid activation is used
for 𝐼𝑆1 and 𝐼𝑆2 to limit the values in the range [0, 1], while linear
activation is used for 𝑃𝑆1 and 𝑃𝑆2 . We emphasize that as 𝑃𝑆1 and
𝑃𝑆2 cannot be used interchangeably, we distinguish them by having
𝑃𝑆1 learn the smaller phase shift while 𝑃𝑆2 learns the bigger one.

3.3 Data Collection
Having a large and carefully labeled dataset is a critical requirement
to train a good neural networkmodel. Unfortunately, data labeling is
normally done by manual labor, which requires domain knowledge
and takes significant amount of time and efforts. To address this
challenge, we devised an efficient multi-stage approach to build a
large training dataset for our CNN model, as depicted in Figure 4.
In our setup, we have a single-antenna transmitter (TX) and a two-
antenna receiver (RX). The TX can either act as a legitimate sender
or a jammer. First, we generated random samples and saved in
memory both at the TX and RX. Then, the TX transmits using the
saved data samples and the RX records the received RF samples
from each of the two antennas to files. Due to the channel effects,
the received samples are rotated by some unknown phase shift (𝜙1
and 𝜙2 for the two antennas as shown in Figure 4). To determine
these values, we chunked the received samples and cross-correlate
with the data samples already saved in the RX’s memory from

the first step. 𝜙1 and 𝜙2 were then computed from the angular
values (argument) of the correlation outputs with the highest energy
(peak). Next, we determined the phase shift Δ𝜙𝑆

(for the legitimate
signal, or Δ𝜙 𝐽

for the jamming signal) by taking the difference of
the two angles. When the channel is static, these phase shifts will
experience very little variance. Such dataset would negatively affect
the training and bias the resulting model to a small range of output
values. To address this, we shifted the phase of RF samples by a
random value between [−𝜋, 𝜋] and adjust the labels accordingly.
This resulted in a more diverse dataset. This process was performed
for both the sender and the jammer. After that, we generated the
data for collisions by adding the samples recorded for the sender and
the jammer together, with the phase shifts Δ𝜙𝑆

and Δ𝜙 𝐽
acquired

from the previous process as the labels for phase shift estimation.
We also collected data representing noise with the TX turned off.
The training dataset. Using the above data collection techniques,
we built a dataset containing 5, 450, 312 real-valued data tensors of
size 2 × 128 × 2 reflecting 𝐼/𝑄 values of 128 RF samples collected
by two antennas of the receiver. The receiver was connected to the
sender and the jammer through coaxial cables. The transmitters and
receiver were implemented on Ettus USRP B210 software-defined
radios using GNURadio [1]. While the sender only transmitted
modulated signals, the jammer could transmit either modulated
signals or AWGN signals. The transmitting power is adjusted for
varying Signal-to-Jamming ratio (SJR) between −25dB and 25dB.
We note that while our model was trained on the dataset where the
jammer emissions in each recording are continuous and have con-
stant power, it can also perform very well against the intermittent
and variable jammers (discussed in Section 5).

3.4 Loss Function and Training

Loss Function. During the training, our CNN aims to minimize a
loss function which represents the errors of phase shift estimations
and signal detections. For the phase shift estimations, we used a
modified Mean Squared Error function:

L𝜙 = 1𝑆1 (Δ𝜙1 − 𝑃𝑆1 )
2 + 1𝑆2 (Δ𝜙2 − 𝑃𝑆2 )

2 (8)

where Δ𝜙1 ,Δ𝜙2 are the ground truth values and 𝑃𝑆1 , 𝑃𝑆2 are the
output estimations (shown in Figure 3). 1𝑆1 (resp. 1𝑆2 ) is 1 if Δ𝜙1
(resp. Δ𝜙2 ) associates with a signal, otherwise 0. For the signals
detection, we used Binary Cross-Entropy loss function:

L𝑆 = −((1𝑆1 log(𝐼𝑆1 ) + 0𝑆1 log(1 − 𝐼𝑆1 ))+
(1𝑆2 log(𝐼𝑆2 ) + 0𝑆2 log(1 − 𝐼𝑆2 )))

(9)

where 𝐼𝑆1 , 𝐼𝑆2 are the detection outputs associated respectively with
𝑃𝑆1 , 𝑃𝑆2 , while 0𝑆1 (resp. 0𝑆2 ) is the complement of 1𝑆1 (resp. 1𝑆2 ).
The final loss function is the weighted sum of two loss components:

L = 𝛼L𝜙 + (1 − 𝛼)L𝑆 (10)

where 𝛼 is the weighting parameter that balances the values of the
components. Through the model validation process, we determined
that 𝛼 = 0.1 provides the best results.
Training. After a large number of iterations for validation, our
CNN is finalized for the training. We used PyTorch library [32] to
develop the CNN model. To improve the training convergence and
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eliminate the needs for regularization, we utilized Batch Normaliza-
tion [17] on the outputs of the convolutional layers. Furthermore,
we minimized the possibility of overfitting by using a Learning
Rate Decay technique [13] in which we lowered the learning rate
when the validation error does not improve over a period of time,
e.g., a few training epochs. We trained the CNN for 100 epochs, and
chose the best model with the lowest validation loss. We emphasize
that the phase shift estimations 𝑃𝑆1 , 𝑃𝑆2 are made distinguishable
during training by assigning them to learn the smaller and bigger
phase shifts, respectively.

4 JAMMING CANCELLATION
4.1 Analyze CNN Outputs
As described previously, at time period 𝑇 the receiver collects
a block of RF samples, which is fed to the CNN model to get
𝑃𝑇
𝑆1
, 𝑃𝑇

𝑆2
, 𝐼𝑇
𝑆1
, 𝐼𝑇
𝑆2
. 𝑃𝑇

𝑆𝑖
represents the phase shift estimation for the cur-

rent signal, while 𝐼𝑇
𝑆𝑖

classifies the type of the corresponding phase
shift, i.e., real signal or noise, with 𝑖 ∈ {1, 2}. We remind the reader
that we distinguish the estimations by the ordering 𝑃𝑇

𝑆1
< 𝑃𝑇

𝑆2
as

learned during the training. We define the signal detection indicator
1𝑇
𝑆𝑖

for corresponding estimation 𝑃𝑇
𝑆𝑖

using the output 𝐸𝑇
𝑆𝑖
:

1𝑇𝑆𝑖 =
{
1 𝐸𝑇

𝑆𝑖
> 0.5

0 otherwise
∀𝑖 ∈ {1, 2} (11)

1𝑇
𝑆𝑖

being equal to 1 or 0 indicates that 𝑆𝑖 (whose phase shift is
estimated by 𝑃𝑇

𝑆𝑖
) is a real signal or noise, respectively. We can

therefore recognize the current state of the communication channel
and subsequently acquire the correct phase shift for cancelling the
jamming signal when collisions happen (as shown in Algorithm 1).
When only 1𝑇

𝑆1
or 1𝑇

𝑆2
is 1: This indicates that the channel is cur-

rently used by a single transmitter, which can be either the legiti-
mate sender or the jammer. We identify the jammer by checking
if the RF samples are decodable. In this case the capability of the
jammer is limited to degrading the communications between the
nodes by occupying the channel. If we identify the jammer’s pres-
ence (samples are not decodable), the estimation 𝑃𝑇

𝑆𝑖
where 1𝑇

𝑆𝑖
= 1

signifies the jamming signal. In the case where the adversary trans-
mits data that mimicks legitimate communications, a solution can
consist of duplicating the receiver chain continuously tracking and
decoding both inferred signals (at the expense of doubling the re-
ceiver cost). Smarter approaches are possible by tracking the phases
of the transmitters of interest and canceling other ones.
When both 1𝑇

𝑆1
and 1𝑇

𝑆2
are 1: In this case, we detect a collision

indicating that the legitimate signal is being interfered with by a
jammer. We identify the jamming phase shift Δ𝑇

𝜙 𝐽
out of the two

estimation outputs 𝑃𝑇
𝑆1
, 𝑃𝑇

𝑆2
by calculating the distance to the exist-

ing estimation Δ𝑐𝑢𝑟
𝜙 𝐽

and picking the one with the closest distance.
This is based on the prior assumption of slow-fading channel for
our setup, where the phase shift varies slowly over time. Δ𝑐𝑢𝑟

𝐽
is

calculated and updated by a smoothing process on the history data
of jamming phase shift estimation, which will be described in Sec-
tion 4.3. We emphasize that if the jamming signal is weaker than
the legitimate signal, the jammer is also detected and canceled.

Algorithm 1: CNN-based Jamming Cancellation
Data: 𝑃𝑇

𝑆1
, 𝑃𝑇

𝑆2
, 1𝑇

𝑆1
, 1𝑇

𝑆2
,Δ𝑐𝑢𝑟

𝜙𝐽
, RF samples at time period𝑇

Result: 𝐼 𝑙𝑎𝑠𝑡
𝐽

, 𝐸 𝐽𝑖
, 𝐸𝑆𝑖 with 𝑖 ∈ {1, 2}, RF samples

if 1𝑇
𝑆1

⊕
1𝑇
𝑆2

= 1 then
Decode the RF samples;
if decodable then

Measure the signal power 𝐸𝑖
𝑆
with 𝑖 ∈ {1, 2};

𝐼 𝑙𝑎𝑠𝑡
𝐽
← 0;

else
Measure the jamming power 𝐸𝑖

𝐽
with 𝑖 ∈ {1, 2};

Calculate Δ𝜙𝐽
using Equation (14) and update Δ𝑐𝑢𝑟

𝜙𝐽
;

𝐼 𝑙𝑎𝑠𝑡
𝐽
← 1;

end
else if 1𝑇

𝑆1
= 1 and 1𝑇

𝑆2
= 1 then

if
����𝑃𝑇𝑆1 − Δ𝑐𝑢𝑟

𝜙𝐽

���� < ����𝑃𝑇𝑆2 − Δ𝑐𝑢𝑟
𝜙𝐽

���� then
Δ𝑇
𝜙𝐽
← 𝑃𝑡

𝑆1
;

else
Δ𝑇
𝜙𝐽
← 𝑃𝑡

𝑆2
;

end
Calculate Δ𝜙𝐽

using Equation (14) and update Δ𝑐𝑢𝑟
𝜙𝐽

;
Calculate amplitude ratio using Algorithm 2;
Removing jamming signal by Equation (4);

else
Skip the current period;

end

We also need to estimate the amplitude ratio 𝐴𝐽 =
|ℎ 𝐽1 |
|ℎ 𝐽2 |

, as
discussed in Section 2.2. We introduce the intuition behind our
approach. We analyze the power variation of RF samples in the
periods before and during the collision, presented in details in
Section 4.2. With the phase shift and amplitude ratio estimated, the
receiver can solve Equation (4) with 𝑝1 =

ℎ 𝐽1
ℎ 𝐽2

= 𝐴𝐽 𝑒
𝑗Δ𝜙𝐽 to null the

jamming component in the received signal. The legitimate signal
now has a new gain 𝑝2 and can be used to decode the data. While
𝑝2 is not necessary to estimate, as mentioned in Section 2.2, we
note that the phase shift separation 𝑆𝑒𝑝Δ𝜙

between signals 𝑆 and 𝐽
has a direct impact on the gain 𝑝2 and subsequently the quality of
the final signal. This impact will be evaluated in Section 5.
When both 1𝑇

𝑆1
and 1𝑇

𝑆2
are 0: This informs the receiver that nei-

ther communication nor jamming is happening in the channel and
we can skip this period. The ability to identify this channel state
helps the receiver to reduce the computational power and to avoid
corrupting the phase shift estimation in the long run.

4.2 Amplitude Ratio Estimation
Our amplitude ratio estimation algorithm is described in Algo-
rithm 2. We note that Algorithm 2 is only triggered when a collision
is detected and the amplitude ratio needs to be estimated for cancel-
lation. Our approach is inspired by the observation that the signal
power during a collision comprises two independent, separable
components for the legitimate signal 𝑆 and the jamming signal 𝐽 .
Suppose during time period 𝑇 , the receiver collects 𝑁 digital RF
samples from the analog input of antenna 𝑖 , the received power 𝐸𝑇

𝑖



JaX: Detecting and Cancelling High-power Jammers Using Convolutional Neural Network WiSec’23, May 29-June 1, 2023, Guildford, United Kingdom

ResNet18 VGG16 MR-CNN JaX-CNN
Models

0.0

0.1

0.2

0.3

0.4

Es
tim

at
io

n 
er

ro
r

0.076 0.067

0.302

0.057

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Fo
rw

ar
d 

tim
e 

(m
s)

2.679 2.854

0.355
0.835

Estimation error
Forward time

Figure 5: Comparison of CNN models for estimation error
and network forward time.

can be written as:

𝐸𝑇𝑖 =
1
𝑁

𝑁∑︁
𝑡=1
|ℎ𝑡𝑆𝑖𝑆

𝑡 + ℎ𝑡𝐽𝑖 𝐽
𝑡 |2 (12)

Given that the channel is slow-fading and not dependent on the
instant time 𝑡 , and because the sender’s signal 𝑆 and the jam-
mer’s signal 𝐽 are uncorrelated, i.e.

∑𝑁
𝑡=1 ℎ

𝑡
𝑆𝑖
𝑆𝑡 (ℎ𝑡

𝐽𝑖
𝐽 𝑡 )∗ = 0 and∑𝑁

𝑡=1 (ℎ𝑡𝑆𝑖𝑆
𝑡 )∗ℎ𝑡

𝐽𝑖
𝐽 𝑡 = 0, Equation (12) becomes:

𝐸𝑇𝑖 =
1
𝑁
( |ℎ𝑆𝑖 |

2
𝑁∑︁
𝑡=1
|𝑆𝑡 |2) + 1

𝑁
( |ℎ 𝐽𝑖 |

2
𝑁∑︁
𝑡=1
|𝐽 𝑡 |2) = 𝐸𝑆𝑖 + 𝐸 𝐽𝑖 (13)

To estimate 𝐴𝐽 =
|ℎ 𝐽1 |
|ℎ 𝐽2 |

=

√︂
𝐸 𝐽1
𝐸 𝐽2

(where 𝐸 𝐽𝑖 =
1
𝑁
( |ℎ 𝐽𝑖 |2

∑𝑁
𝑡=1 |𝐽 𝑡 |2)),

we need to measure 𝐸𝑆𝑖 = 1
𝑁
(
��ℎ𝑆𝑖 ��2∑𝑁

𝑡=1 |𝑆𝑡 |2) for two antennas
𝑖 ∈ {1, 2}. To do this, we first determine whether the legitimate
sender or the jammer transmits first, right before the collision (using
the detection capability described in Section 4.1), then calculate the
power accordingly. Here, we assume the sender’s power is stable
during the transmission of a packet (slow fading channel), so the
measurement of 𝐸𝑆𝑖 at the beginning of the collision can be used
until the end of that collision. Our algorithm looks at period 𝑇 − 1
right before the collision, and identifies the transmitter in that
period with parameter 𝐼 𝑙𝑎𝑠𝑡

𝐽
(which is updated in Algorithm 1 and

utilized in Algorithm 2). If the sender appears in period𝑇 −1 (where
𝐼 𝑙𝑎𝑠𝑡
𝐽

= 0), we can measure 𝐸𝑆𝑖 and calculate 𝐴𝐽 . Otherwise, we
know that the jammer appears in period𝑇 − 1, and we can measure
𝐸 𝐽𝑖 and update 𝐸𝑆𝑖 with the current power 𝐸𝑖 . It is noted that in the
latter case, the new 𝐸𝑆𝑖 is used until the end of the collision and is
not updated again if we detect a collision in the previous period.

Algorithm 2: Amplitude Ratio Estimation
Data: 𝐸 𝐽𝑖

, 𝐸𝑆𝑖 , 1
𝑇 −1
𝑆𝑖

with 𝑖 ∈ {1, 2}, 𝐼 𝑙𝑎𝑠𝑡
𝐽

, RF samples at𝑇
Result:𝐴𝐽

Measure the current power 𝐸𝑇
𝑖
with 𝑖 ∈ {1, 2};

if 𝐼 𝑙𝑎𝑠𝑡
𝐽

= 1 and 1𝑇 −1
𝑆1

⊕
1𝑇 −1
𝑆2

= 1 then
𝐸𝑆1 ← 𝐸𝑇1 − 𝐸 𝐽1 ;
𝐸𝑆2 ← 𝐸𝑇2 − 𝐸 𝐽2 ;

end

𝐴𝐽 ←

√︄
𝐸𝑇1 −𝐸𝑆1
𝐸𝑇2 −𝐸𝑆2

4.3 Estimation Smoothing
Unlike the estimations 𝐼𝑇

𝑆1
, 𝐼𝑇
𝑆2

which are discretized to the values of
0 and 1 for the signal detections, the real-valued 𝑃𝑇

𝑆1
, 𝑃𝑇

𝑆2
are used

directly to solve the jamming cancellation equation. This makes the
cancellation process susceptible to the neural network’s estimation
variations and outliers [4]. We improve the robustness of the phase
estimation and the subsequent jamming cancellation by stabilizing
the estimations with the exponential smoothing function:

Δ𝜙 𝐽
= Δ𝑇

𝜙 𝐽
_ + Δ𝑐𝑢𝑟

𝜙 𝐽
(1 − _) (14)

where _ controls the smoothness of the output. We note that after
performing the cancellation for the current period, Δ𝑐𝑢𝑟

𝜙 𝐽
is updated

to the current value of Δ𝜙 𝐽
. The effectiveness of the smoothing

algorithm and _ parameter is discussed in Section 5.

5 EVALUATION
In this section, we evaluate JaX against various types of jammers
operating in different environments. We split the dataset, acquired
in Section 3.3 into three parts used for training, validation, and
testing with the ratio 0.64 : 0.16 : 0.2, respectively. Despite be-
ing trained on a single setting of jammer (continuous and having
constant power) and environment (over-the-cables), JaX is demon-
strated to be resilient against both continuous and intermittent
jammers, and jammers with either constant or variable power, in
over-the-cables and over-the-air indoor environments.

5.1 Comparison with Other Neural Networks
We designed the CNN architecture with the goal of achieving good
performance for both estimation correctness and processing speed.
We validated our design by comparingwith existing CNNmodels us-
ing the estimation error (defined by Equation (10)) and network for-
ward time metrics (i.e., the elapsed time from when the network re-
ceives data to when it outputs estimations). In our setup, we trained
our CNN model (called JaX-CNN), VGG16 [39], ResNet [16], and
MR-CNN [31] and evaluated on our developed jamming detection-
cancellation dataset. The models were developed using the Pytorch
library [32] and CUDA [30] Version 10.2 running on a NVIDIA
GeForce GTX 1080 GPU. We used Stochastic Gradient Descent op-
timizer with momentum [43] and ReduceLROnPlateau learning
rate scheduler [51] with initial learning rate 𝑙𝑟 = 0.005 to train
the models. To benchmark the forward time, we used Pytorch’s
torch.cuda.synchronize wrapping around neural network’s
forward propagation function to synchronize CUDA operations for
accurate timing measurement. The final test loss and forward time
were achieved by averaging over 20, 000 iterated measurements,
and illustrated in Figure 5. It is clear that our JaX-CNN model
outperforms the other models with the test error of 0.057, lower
than both ResNet18 (0.076) and VGG16 (0.067). Furthermore, JaX-
CNN is 3.2 times faster than ResNet and 3.4 times faster than VGG.
MR-CNN is faster than the other models, however, it suffers from a
very high estimation error of 0.302, over 5 times higher than JaX-
CNN. JaX-CNN achieves very good performance both in terms of
speed and accuracy for this task and is more suitable than the other
models to deploy for real-time and embedded applications.
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Figure 6: Bit Error Rate evaluation for over-the-cables experiments with MOD jammer (1𝑠𝑡 row) and AWGN jammer (2𝑛𝑑 row).

5.2 Comparison with Existing Work
The comprehensive comparison betweenJaX and existingwork for
jamming detection and cancellation abilities is summarized in Ta-
ble 1. In [50, 52], pilot signals known by the receiver are inserted
into the transmitted signals to estimate channel gains and cancel
jamming for multi-antenna receiver. However, this approach intro-
duces several limitations: First, it causes additional overhead to the
communications for transmitting the pilots. Second, the estimation
accuracy typically degrades in time-varying channels. Third, it re-
quires compatibility between the transmitter and receiver to agree
on when, what, and how the pilots are transmitted. In contrast,
JaX does not require pilot signals, and achieves high jamming
resilience against high-power jammers. To highlight those advan-
tages, we evaluated and compared JaX with the BJM approach [52]
which is the closest existing work in the literature. BJM leverages
pilot signals to provide optimal data decoding at the receiver with
minimal Mean Square Error. Figure 7 shows the performance of
these approaches over a realistic time-varying channel (Rayleigh)
with multipath fading and uncontrolled phase alignment between
the jammer and sender. We simulated the Rayleigh channel using
MATLAB software and compared JaX to BJM with different levels
of pilot utilization, up to 50% of total transmitted data (equivalent
to 50% of communication overhead). Our results demonstrate the
advantages of JaX over pilot-based systems. JaX outperforms
BJM with 20% pilot overhead and below, and is as good as BJM
using 50% transmitted signals for pilots.

Figure 7: Comparison of JaX and BJM [52] with different lev-
els of pilot overhead over a time-varying channel (Rayleigh).

In [45], the authors propose a hybrid mechanical-software jam-
ming cancellation approach that does not require pilot signals.
Nonetheless, the effectiveness of this approach heavily relies on the
sophisticated mechanical antenna steering mechanism to dampen
the jamming signal before the cancellation can take place. In con-
trast, JaX can perform jamming cancellation without the need for
mechanical jamming dampening, even when the jamming signal
is strong. Deep Learning is recently utilized in several works for
jamming detection. The majority of those works only consider
simulation settings for evaluation [25, 53], and only a few works
evaluate with real emissions [22]. Nonetheless, Deep Learning for
jamming cancellation remains unexplored. To the best of our
knowledge,JaX is the first work that addresses the unified jamming
detection-cancellation problem using Deep Learning.

5.3 Over-The-Cables Evaluation
First, we evaluate the efficiency of JaX’s jamming cancellation
approach in a relatively idealistic environment where RF signals
propagate through coaxial cables, thus multi-path and other fading
effects are absent. However, this setup is reproducible and enables
a fine grain experimental extensive evaluation of performance. Our
setup comprises a sender, a receiver and a jammer, where the sender
transmits modulated signals using differential BPSK, QPSK, 8-PSK
and 16-QAM. For this experiment, we used two types of jammer:
MOD jammer transmits modulated signals (with the same modula-
tions as the sender), andAWGN jammer transmits Additive White
Gaussian Noise signals. Both sender and jammer have continuous
transmissions. The efficiency of jamming cancellation is measured
by the Bit Error Rate metric, which we calculated by comparing
and counting the error bits between the sent and received signals.

In Section 2.2 we showed that the phase shift separation 𝑆𝑒𝑝Δ𝜙
=���Δ𝜙𝑆

− Δ𝜙 𝐽

��� being very small can cause negative effects to the legit-
imate signal even when the jamming signal is completely removed.
In our experiment, the transmitters were connected to the sender
by identical coaxial cables, in which 𝑆𝑒𝑝Δ𝜙

≈ 0. To get different
values of 𝑆𝑒𝑝Δ𝜙

, we introduce an artificial channel effect by shifting
the phases of RF samples. Depending on the shifting, 𝑆𝑒𝑝Δ𝜙

will
receive a different value. We discuss the impact of 𝑆𝑒𝑝Δ𝜙

on the
efficiency of the jamming cancellation in the evaluation below.
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5.3.1 Impact of Phase Separation and Jammer Type. We evaluate
JaX against two types of jammer:
MOD jammer. The first row of Figure 6 shows the Bit Error Rate
(BER) evaluation considering four cases: No jamming cancellation
(No JaX) is applied, and jamming cancellation is applied with three
values of 𝑆𝑒𝑝Δ𝜙

: 𝜋
3 ,

𝜋
2 , and

2𝜋
3 . In this evaluation, the jamming can-

cellation algorithm uses the estimation smoothing with parameter
_ = 0.01. First, it is clear to see that our cancellation approach can
achieve very high jamming resistance against the MOD jammer: It
allows the receiver to operate at BER of 10−6 with the Signal-to-
Jamming Ratio (SJR) of −19dB (i.e., the jammer is 79 times more
powerful than the legitimate signal) for BPSKwith 𝑆𝑒𝑝Δ𝜙

= 2𝜋
3 . The

cancellation also achieves BER= 10−6 for QPSK under SJR= −18dB
and 𝑆𝑒𝑝Δ𝜙

= 2𝜋
3 . Interestingly, when compared with the case of no

cancellation, our approach achieves up to 30dB gain when operating
at a BER of under 10−4 (the best result is 30dB for QPSK and 8-PSK,
while for BPSK and 16-QAM, we achieve 25dB gain). In addition,
we also see that the jamming cancellation performs better as 𝑆𝑒𝑝Δ𝜙

gets bigger. For instance, the jamming resistance when operating
at a BER of 10−6 with BPSK modulation drops by 5dB when 𝑆𝑒𝑝Δ𝜙

decreases from 2𝜋
3 to 𝜋

2 , and by 11dB when it decreases to 𝜋
3 . It

is easy to see the same trend for the other modulations. This lim-
itation is intrinsic to multi-antenna jamming cancellation as the
receiver cannot resolve two transmitter that are aligned with it.
Also, our jamming efficiency when using 8-PSK and 16-QAM is
lower compared to BPSK and QPSK, which is expected because
they have smaller distance between the constellation points and
thus are more prone to bit errors [35].
AWGN jammer. The performance of JaX against AWGN jammer
is shown in the second row of Figure 6 with four settings: No JaX,
and JaX with 𝑆𝑒𝑝Δ𝜙

= 𝜋
3 ,

𝜋
2 ,

2𝜋
3 . JaX reduces the BER down to

10−6 under a SJR= −11dB for BPSK and −10dB for QPSK (with
𝑆𝑒𝑝Δ𝜙

= 2𝜋
3 ). The efficiency of JaX for BPSK and QPSK reduces by

8dB compared to the case of MOD jammer. Meanwhile, the perfor-
mance for 8-PSK and 16-QAM has minimal changes: JaX decreases
the BER to 10−6 under a 𝑆 𝐽𝑅 = −8dB for 8-PSK and −4dB for 16-
QAM, 2dB and 1dB less efficient compared to the MOD jammer case,
respectively. Furthermore, it is clear that JaX’s jamming resistance
declines by 5dB as 𝑆𝑒𝑝Δ𝜙

decreases to 𝜋
2 and by 10 − 12dB when it

decreases to 𝜋
3 . This is similar to JaX’s performance against MOD

jammer. Moreover, JaX still achieves a gain of up to 27dB (as ob-
served in 8-PSK) at BER of below 10−4, compared to no-cancellation.
The fact that AWGN is better at jamming than modulated signals is
consistent with information-theoretic results [7].

5.3.2 Impact of Estimation Smoothing. We investigate the impact
of phase shift estimation smoothing in JaX with the Bit Error Rate
evaluation shown in Figure 8a. In this case, we use BPSK signals and
𝑆𝑒𝑝Δ𝜙

= 𝜋
2 . It is clear that the smoothing significantly improves

our system: We achieve 11 and 15 dB gain with _ = 0.1 and 0.01
for BER below 10−4, respectively. This effect can also be seen in
Figure 8b, where the estimation smoothing helps stabilizing the
energy of the samples and reduce both the degree and the frequency
of energy variation, resulting in lower BER for the same level of
SJR. Finally, setting _ to 0.01 makes the energy more stable and
yields better performance (−14 dB of SJR compared to −9dB for
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Figure 8: Estimation smoothing reduces energy fluctuation
from cancellation and improves Bit Error Rate. Decreasing
𝝀 from 0.01 to 0.001 does not further improve the energy
variation (Plot (b): 𝝀 = 0.01 (left) has similar variation to
𝝀 = 0.001 (right)). Similarly, for the Bit Error Rate (Plot (a)).

_ = 0.1 at BER=10−6, while decreasing _ to 0.001 does not improve
further. Therefore, we selected _ = 0.01 for all later evaluations.

5.4 Over-The-Air Evaluation
5.4.1 Jammer Detection. We conducted over-the-air experiments
to assess JaX’s ability in a more practical environment that is dif-
ferent from the one used for training, i.e., model trained on data
recorded through cables is evaluated for over-the-air without re-
training. Similar to over-the-cables experiments, our setup consists
of a sender, a receiver, and a jammer. The sender transmits modu-
lated signals, while the jammer transmits either modulated signals
(MOD jammer) or AWGN signals (AWGN jammer). The testbed was
positioned in an indoor environment, where there were common
RF-blocking and reflecting objects such as computer, monitor, walls,
and desks. To evaluate the detection capability, we focus on the clas-
sification of three channel states: (1) When there is no transmission
and the channel is clear, (2) when there is a single transmission,
and (3) when there are two transmissions (from the sender and the
jammer) causing collisions. We note that in the second case, the
transmitter being the sender or the jammer is decided by the decod-
ing check in Algorithm 1. Figure 9 depicts the classification results,
in which the CNN classifies three states: Noise (no transmission),
Single (one transmission) and Collision (two transmissions). Our
CNN model achieves 98.19% accuracy, where the prediction accu-
racy is over 99% for Collision state and Noise state and is 94.73%
for Single state. We also get high scores for other metrics, over
98% for both Precision, Recall and F1-Score. The results justify the
capability of our CNN model to identify the current channel state,
and the presence of jammer (by recognizing collisions with 99.83%
accuracy) in the realistic environment without the needs to retrain
the model trained in the idealistic environment (i.e. coaxial cables).

5.4.2 Jamming Resilience. We designed testbed configurations in
the indoor over-the-air environment for different types of jammers.
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Figure 9: Channel classification results with confusion ma-
trix (left) and various other metrics (right).

The distinctive features of wireless channels for each configuration
was created by the random positioning of the jammer. The locations
of sender and receiver were fixed in all configurations. It is noted
that our focus in the over-the-air experiments is to evaluate how
JaX is effective in cancelling different types of jammer operating
in different configurations, compared to when it is disabled.

Over-the-air wireless channels can introduce undesirable arti-
facts for reproducible evaluations, such as fading or other third-
party interference. A short burst of errors may have significant
impact to the resulted BER especially when the target is very low
(e.g., a burst of only 100 bit-errors can raise the BER to 10−4 when
we evaluate a reception of one million bits). Therefore, we used
Packet Loss Rate (PLR) as the over-the-air evaluation metric for
jamming resilience to eliminate such flakiness. The data is chunked
into 16-bytes packets, and a packet is lost when it has at least one
bit received incorrectly (complete wireless links incorporate error
correction codes to address such errors).
MOD and AWGN jammers. We designed four testbed configura-
tions for MOD jammer (𝑀𝑂𝐷1 to𝑀𝑂𝐷4) and four configurations
for AWGN jammer (𝐴𝑊𝐺𝑁1 to 𝐴𝑊𝐺𝑁4). In the experiments, both
legitimate and jamming signals were transmitted continuously with
a constant power over time. Figure 10 shows the over-the-air PLR
when JaX is enabled compared to when it is disabled, in the pres-
ence of a MOD or AWGN jammer. The transmitted packets are
modulated with a mix of the considered modulations (BPSK, QPSK,
8-PSK, and 16-QAM). It is clear that JaX significantly reduces the
PLR against the high-power jammers. In most configurations, JaX
can maintain a PLR below 0.1 when the Signal-to-Jamming Ratio is
less than −10dB, i.e., the jamming power is at least 10 times higher
than the TX power of user. Especially in 𝐴𝑊𝐺𝑁1, 𝐴𝑊𝐺𝑁3 and
𝐴𝑊𝐺𝑁4, JaX achieves such resilience under SJR= −17dB. With-
out JaX, the received PLR cannot get to below 0.9 even when
SJR= 0dB (i.e., when the sender and the jammer use equal power).
Power-variable jammer.To see howJaX performs against power-
variable jammer, we modified the jammer in the previous experi-
ments to change the transmitting power randomly within a 10dB
range around the averaged jamming power for every 1000 bytes
transmitted in each run. It is noted that the power of the sender
remained constant. The evaluation result in Figure 11a shows that
JaX is able to adapt to jamming power variation and cancel up to
17dB of average jamming power to maintain a PLR below 0.1.

Intermittent jammer.We implemented an intermittent jammer
that transmits signals periodically and rests for 0.1 seconds for every
2000 bytes transmitted. JaX counters intermittent jammers with
the ability to classify the current state of the spectrum and identify
the time slots where the jammer is present. Thanks to that, JaX
can maintain very low PLR against a jammer 63 times stronger than
the legitimate sender (with SJR=−18dB) while the receiver without
JaX suffers much higher PLR against such jammer.

6 DISCUSSION AND RELATEDWORK
One limitation of JaX, as is the case for any multi-antenna jam-
ming cancellation systems, is that its performance degrades when
the emitters are phase-aligned. The next challenge is how to en-
sure a desirable phase shift separation to distinguish between two
emitters and cancel the unwanted signal. To address this, one can
consider a larger antenna array, potentially distributed, to exploit
the diversity of multi-antenna and enhance the robustness of can-
cellation. Exploring DL techniques for distributed antenna arrays
for robust anti-jamming would be an interesting future direction.

Traditional anti-jamming at the physical layer has been relying
on spread spectrum techniques, which require the coordinating
nodes to pre-share a secret key. Recent research efforts have ad-
dressed that limitation for FHSS [21, 41, 42, 47], or DSSS [24, 34],
or both [18]. Nonetheless, these approaches are designed with the
specific goal to remove the pre-shared secret for spread spectrum
and not to counter powerful jammers, i.e., a few orders stronger
than the sending node while maintaining high spectral efficiency.

Significant research efforts focused on mitigating jammers at
higher layers such as MAC [3, 37], network layer [8], cross-layer [5]
or timing channel between datalink and network layers [48]. Nonethe-
less, the need for an efficient, resilient anti-jamming technique for
physical layer security is still very important because of the fact
that high-power jammers are increasingly easy to build nowadays.

Advances in Deep Learning have been utilized in some recent
anti-jamming research. Most of those works are inspired by Deep
Reinforcement Learning to find an optimal sequence of actions, such
as changing spread spectrum parameters (e.g., frequency hopping)
or coding schemes, to minimize the probability that the communi-
cation is impacted by the jammer [15, 23]. In [9], Generative Ad-
versarial Network is used for the same purpose. These approaches
are designed with the main goal of avoiding jamming emissions
(jamming avoidance). However, they do not counter high-power
jammers successfully interfering with the communications. In such
scenario, cancelling jammer is essential to maintain the quality of
the communications. With that goal, we developed JaX, to the best
of our knowledge, the first work in the literature that addresses DL-
based unified jamming detection-cancellation. Our inspiration for
CNN comes from the successful applications in various tasks of wire-
less communications [26, 29, 31] and security applications [27, 53].
JaX can detect the presence of a jammer emission with over 99%
accuracy and enhance the RF receiver to reduce the Bit Error Rate
to as low as 10−6 against a jammer whose transmitting power is 19
dB stronger than the legitimate sender.
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Figure 10: Performance of JaX in over-the-air settings against MOD (first row) and AWGN (second row) jammers. There are four
sets of experiments for each jammer type, each set uses one configuration of positioning the sender, receiver, and jammer.
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Figure 11: Performance of JaX in over-the-air settings against
variable and intermittent jammers.
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