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ABSTRACT
We introduce, design, and evaluate a set of universal receiver beam-
forming techniques. Our approach and system DEFORM, a Deep
Learning (DL)-based RX beamforming achieves significant gain for
multi-antenna RF receivers while being agnostic to the transmitted
signal features (e.g., modulation or bandwidth). It is well known
that combining coherent RF signals from multiple antennas results
in a beamforming gain proportional to the number of receiving
elements. However in practice, this approach heavily relies on ex-
plicit channel estimation techniques, which are link specific and
require significant communication overhead to be transmitted to
the receiver. DEFORM addresses this challenge by leveraging Con-
volutional Neural Network to estimate the channel characteristics
in particular the relative phase to antenna elements. It is specifically
designed to address the unique features of wireless signals complex
samples, such as the ambiguous 2𝜋 phase discontinuity and the
high sensitivity of the link Bit Error Rate. The channel prediction
is subsequently used in the Maximum Ratio Combining algorithm
to achieve an optimal combination of the received signals. While
being trained on a fixed, basic RF settings, we show that DEFORM’s
DL model is universal, achieving up to 3 dB of SNR gain for a two-
antenna receiver in extensive evaluation demonstrating various
settings of modulations and bandwidths.

CCS CONCEPTS
•Networks→Wireless access networks; •Computingmethod-
ologies→ Neural networks.
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1 INTRODUCTION
The success of wireless communications was accompanied by a
dramatic crowding of the RF spectrum. Beamforming is a widely
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used spatial filtering technique to steer RF emissions towards/from
other devices. It enables array and diversity gains of multiple-input-
single-output (MISO) systems [7, 27], and canceling interference
from unwanted sources. Beamforming was extensively investigated
in a variety of applications such as in radars, sonars, acoustics,
astronomy, and even medical devices design [18]. Beamforming
and more advanced MIMO techniques are widely used in systems
targeting high throughput and spectral efficiency such as cellular
systems since the third generation 3GPP 3G, and IEEE 802.11n.

Extensive research was conducted on beamforming [4, 19, 28,
30, 34]. However, beamforming in today’s systems requires explicit
mechanisms such as sounding and feedback in 802.11, Demodula-
tion Reference Signal (DMRS) in 5G, training sequences, etc. This
approach introduces critical limitations: Firstly, it results in ad-
ditional overhead to transmit reference signals and estimate the
channel. Secondly, accurate channel estimation typically exhibits
long delay that is undesirable in fast-changing channels. Thirdly,
it requires compatibility between the transmitter and receiver (to
agree on when, what, and how reference signals are transmitted).

Advances in Deep Learning (DL) techniques and models have re-
cently achieved great success in numerous areas such as computer
vision [8], speech recognition [13], and wireless communications
[21]. A deep neural network can analyze complex patterns in raw
I/Q data collected from the RF front-end and accurately predict
channel characteristics in a very short amount of time. Such capa-
bilities eliminate the requirement of TX-RX compatibility and are
crucial for a universal beamforming component that support the
communications of different technologies operating over the same
spectrum. However, despite of the great potentials, most of prior
work on DL-based RX beamforming [16, 32] is limited to analytical
and simulation results, and lack the goals of universality.

In this work, we introduce a set of techniques, and their exten-
sive experimental evaluations demonstrating the practicality of
universal beamforming for wireless receivers using Deep Learning.
Our approach and system denoted DEFORM, is agnostic to the
specifics of transmitted signals such as modulation, bandwidth or
standard. DEFORM is designed around a deep convolutional neu-
ral network (CNN) augmented with a Maximum Ratio Combiner
(MRC). It is specifically designed to address the unique features
of wireless signals complex samples, such as the 2𝜋 phase am-
biguous discontinuity. Also, RF links targeting low Bit Error Rates
(e.g., below 10−4) are sensitive to the typical variations and out-
liers in the continuous-valued estimations of neural networks [3].
DEFORM addresses these challenges successfully achieving the
optimal beamforming gain. Our contributions can be summarized:

• A design, model, and algorithm for a novel Deep Learning-based
universal receiver beamformer (DEFORM). To the best of our
knowledge, our work is the first in the literature that leverages
DL to enable multi-antenna receivers for beamforming RF signals
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Figure 1: DEFORM’s beamforming workflow

irrespective of modulations or bandwidths (and not requiring
any explicit mechanisms such as sounding).
• A two-antenna SDR [1] receiver prototype leveraging DEFORM
that supports arbitrary and unseen modulations and bandwidths.
DEFORM is trained on a fixed basic RF settings (BPSK, (1 MHz)
bandwidth, in a cable environment) and bolstered with efficient
RF dataset collection process with phased augmentation.
• DEFORM is extensively evaluated (B/Q/8-PSK, 16-QAM, GMSK
with different bandwidths) in cabled setup with emulated fading
channel effects. DEFORM achieved the optimal 3 dB gain of a
two antenna receiver.

2 PROBLEM AND APPROACH
Receiver (RX) beamforming aims to optimally combine the received
signals from multiple antennas to maximize the Signal-to-Noise
Ratio (SNR). In this section, we identify and formulate the RX beam-
forming problem and present the key ideas of DEFORM.

2.1 Theory and Challenge
Consider a transmitter and a receiver communicating through a
slow fading channel. The receiver has 𝑁 antenna elements, where
we model the signal 𝑅𝑖 received by antenna 𝑖 consisting of the
transmitted signal 𝑆 adjusted by the channel gainℎ𝑖 and the additive
Gaussian noise 𝑁𝑖 :

𝑅𝑖 = ℎ𝑖𝑆 + 𝑁𝑖 = 𝑠𝑖 + 𝑁𝑖 (1)

Receiver beamforming aims to leverage the diversity of the inde-
pendent wireless channels between the transmitting and receiving
antennas by combining the receiving branches with the adequate
complex beamforming weights:

𝑅∑ =

𝑁∑︁
𝑖=1

𝑎𝑖𝑅𝑖 =

𝑁∑︁
𝑖=1
(𝑎𝑖𝑠𝑖 + 𝑎𝑖𝑁𝑖 ) (2)

The beamforming weights 𝑎𝑖 are chosen to maximize the combining
Signal-to-Noise Ratio (SNR), which is given by:

𝑆𝑁𝑅∑ =
(∑𝑁

𝑖=1 𝑎𝑖𝑠𝑖 )2

𝑁0
∑𝑁
𝑖=1 |𝑎𝑖 |2

(3)

where we assume the noise in each branch is independent and
has the same Power Spectral Density (PSD) 𝑁0. The maximization
of 𝑆𝑁𝑅∑ is solved using the Cauchy-Schwartz inequality [7] and
yields the optimal weights:

𝑎𝑖 =
𝑠∗
𝑖∑𝑁

𝑗=1 |𝑠 𝑗 |
∀𝑖 ∈ 1, ..., 𝑁 (4)
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Figure 2: Error analysis of the approximation of 𝐴𝑖 (Equa-
tion (7)) with regards to different SNR levels, number of sam-
ples, and number of antennas. Each data point is acquired
by 10, 000 Monte Carlo simulations in the AWGN channel.

where the denominator is the scaling factor for the weights. Substi-
tute to Equation (3), we now have the combining SNR:

𝑆𝑁𝑅∑ =

∑𝑁
𝑖=1 𝑠

2
𝑖

𝑁0
=

𝑁∑︁
𝑖=1

𝑆𝑁𝑅𝑖 (5)

The optimal combining SNR is the sum of the SNRs from all receiv-
ing branches. In the best case scenario when all branches have the
same SNRs, this beamforming technique (also known as Maximal-
Ratio Combining [7]) can achieve a final SNR of 𝑁 times the SNR
acquired from a single branch. For instance, with a two-antenna
receiver we gain twice the SNR (corresponding to a 3 dB gain).

The main challenge to achieving the optimal combiner is how
to estimate the optimal weight 𝑎𝑖 for each receiving branch 𝑖 . In
Equation (4), 𝑎𝑖 is dependent on 𝑠𝑖 (𝑠𝑖 = ℎ𝑖𝑆), which is unknown to
the receiver. Conventional techniques, which are still extensively
used in OFDM or MIMO systems [26] , have to insert mutually-
known data such as a training sequence or pilot symbols into the
transmitted signals that causes significant communications over-
head. Meanwhile, phased-array systems [27] do not require channel
estimation, but are especially inaccurate against multi-path effects
which add up the channel gains from multiple paths and distort the
channel characteristics of the direct path.

2.2 Approach
We design the receiver beamforming system with the goal to es-
timate the optimal beamforming weights 𝑎𝑖 accurately. We first
reformulate 𝑎𝑖 from Equation (4) in the polar representation:

𝑎𝑖 =
|𝑠𝑖 |∑𝑁
𝑗=1 |𝑠 𝑗 |

𝑒−𝑗𝜃𝑖 ∀𝑖 ∈ 1, ..., 𝑁 (6)

To find 𝑎𝑖 , we need to estimate the amplitude 𝐴𝑖 = |𝑠𝑖 |∑𝑁
𝑗=1 |𝑠 𝑗 |

and
the phase 𝜃𝑖 . First, we present a simple approach to estimate the
amplitude. Out of𝑁 receiving branches, we pick an arbitrary branch
𝑘 , and approximate 𝐴𝑖 for every branch 𝑖 with the transformation:

𝐴𝑖 =

|𝑠𝑖 |
|𝑠𝑘 |∑𝑁

𝑗=1
|𝑠 𝑗 |
|𝑠𝑘 |

≈
|𝑅𝑖 |
|𝑅𝑘 |∑𝑁

𝑗=1
|𝑅 𝑗 |
|𝑅𝑘 |

(7)
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where the ratio |𝑠𝑖 ||𝑠𝑘 | is approximated by the amplitude ratio of re-

ceived signals |𝑅𝑖 ||𝑅𝑘 | for every 𝑖 ≠ 𝑘 (If 𝑖 = 𝑘 , the ratio is 1). It is easy
to see that the approximation is correct when |𝑠𝑖 | ≈ |𝑠𝑘 |∀𝑖 ∈ 1, ..., 𝑁 .
Nonetheless, as |𝑠𝑖 | gets significantly bigger than |𝑠𝑘 |, the approxi-
mation error increases. The worst case scenario is when |𝑠𝑖 | ≫ |𝑠𝑘 |
and at the same time, the signal power |𝑠𝑘 |2 is close to the noise
PSD 𝑁0. However, we can minimize the approximation error by
calculating the average of 𝐴𝑖 over multiple RF samples, instead
of only using a single sample. As shown by the numerical analy-
sis in Figure 2, the approximation error decreases as we increase
the number of samples used for the approximation, regardless the
number of antennas in the system. When 128 samples are used
for the estimation, we can reduce the error to less than 5% even
at a very low SNR (i.e., about 3dB in Figure 2). Moreover, many
wireless communications typically requires a sufficiently high SNR
to operate (e.g., over 20 dB for Wi-Fi [5]). As we will discuss in later
sections, a SNR of 10 dB is the minimum requirement for the RX to
achieve a target Bit Error Rate of less than 10−4.

Estimating the phase 𝜃𝑖 is more challenging, especially in the
absence of explicit information from the transmitter (e.g. reference
signal or sounding mechanism). This is due to the effect of multi-
path propagation, in which the constructive and destructive phase
combining of multiple copies of the signal traversing the space is
typically unpredictable. At the same time, estimating the phase
is a critical requirement for the optimal beamforming weights to
make the receiving branches co-phased in the combined signal.
Without this, the branch signals will not add up coherently and the
combining signal will experience even further fading (similar to
the behavior of multi-path) [7]. To address this, we present a new
approach to achieve co-phasing and optimal beamforming weights.
Instead of finding the absolute signal phase 𝜃𝑖 , we estimate the
relative signal phase Δ𝜃𝑖 = 𝜃𝑖 − 𝜃𝑘 between the current branch 𝑖
and a pre-selected arbitrary branch 𝑘 , resulting in the new weight:

𝑎𝑖 = 𝐴𝑖𝑒
−𝑗Δ𝜃𝑖 (8)

which makes the received signal from branch 𝑖 co-phased with the
signal from branch 𝑘 . As a result, all branch signals are co-phased
in the combiner and we achieve the optimal SNR gain.

To estimate the relative phase, we need to detach the signal
component from the noise component. Phased-array systems [27]
have been known for the capability to disentangle different com-
ponents in the received signals. However, they typically perform
poorly in the presence of multi-path fading [23]. To address this
problem, we propose a novel Deep Learning-based universal RX
beamforming system (DEFORM) that centers around an efficient,
powerful Convolutional Neural Network (CNN). Inspired by the
capability of CNN to filter and extract relevant low-level features
from data in various areas such as text [13], RF [21], visual [25], or
speech [2], we develop a CNN model that precisely estimates the
relative phase directly from the branch signals. The CNN is facili-
tated with optimization techniques to address the unique features of
wireless signals complex samples, such as the misleading 2𝜋 phase
discontinuity and the link Bit Error Rate sensitivity, bolstering DE-
FORM’s universality. DEFORM is implemented for a two-antenna
receiver, and extensively evaluated in various RF settings of mod-
ulations and bandwidths to validate the universality in achieving
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Figure 3: The CNN structure for DEFORM with rotational
double-output feature.

the optimal beamforming gain. Here, we emphasize that existing
phase-array-based systems addressing multi-path typically require
more antennas [31] or multiple types of sensing hardware [15].
Furthermore, they are limited by some assumptions on the com-
munication channels, and therefore not universal. The operation
workflow of DEFORM is depicted in Figure 1, where the branch
signals are combined using the optimal beamforming weights, re-
sulting in the output signal which is sent to the decoder to decode
the data. The design and optimization of the most important module
- phase estimation, will be presented in details in Section 3.

3 PHASE ESTIMATION FOR UNIVERSAL RX
BEAMFORMING

In this section, we present the design of DEFORM’s phase estima-
tion module, which leverages a CNN to accurately estimate the
relative phases (which is critical for DEFORM to calculate the beam-
forming weights), supported by optimization techniques specially
designed to address the unique features of wireless signals complex
samples. We have considered several neural network architectures
and choose CNN because it is very powerful to extract relevant
low-level features embedded in data of various types [2, 13, 21, 25].
It is natural to leverage such capabilities to disentangle the signal
components and provide accurate phase estimations.

3.1 Neural Network Design

Goals. We define three goals for the design of the CNN model.
Firstly, the model should be able to process the continuous stream
of 𝐼/𝑄 data efficiently. Feeding a very long stream of samples to
the CNN would significantly increase the size of the network as
well as the computation cost. Secondly, the model should output
the real-valued relative phase with the smallest estimation error
as possible. Finally, the network estimation needs to be fast and
computationally efficient. We note that there is a natural trade-off
between the second and third goals, therefore we aim to find the
best model that achieves optimal accuracy and speed throughout
the training and validation processes.
CNN Architecture. To reduce the computational cost of the net-
work, a long stream of RF samples is divided into equal chunks
of 𝑀 samples (𝑀 = 128 in our implementation). As complex RF
samples are composed of In-phase and Quadrature components, it
is intuitive to view a block of M samples as a matrix of size 2 ×𝑀
where each entry is an In-phase (1𝑠𝑡 row) or Quadrature (2𝑛𝑑 row)
value. The matrices of 𝑁 antennas (𝑁 = 2 in our current system)
are stacked along the third dimension, which consequently form a
2 ×𝑀 × 𝑁 tensor of real-valued elements for each input data.

After having done a network structure search, we converge on
an optimized structure that achieves good performance in both
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processing speed and estimation correctness. We find that as the
network gets deeper, the estimation error generally decreases. How-
ever, after reaching a certain depth, the improvement becomes less
significant. As one of our goals is estimation efficiency, we choose
the fastest model that can achieve comparable performance with
deeper models. We justify our selection by comparing with popular
DL architectures (which is discussed in Section 4.1). The structure
of our neural network is shown in Figure 3. Preceding layers are
three convolutional layers with kernel size of 3 × 3, followed by
one 2 × 1 convolutional layer and the fully-connected output layer.
3× 3 convolutional layers have been widely used in state-of-the-art
DL architectures [9, 25] due to their capabilities of extracting low-
level features appearing in local regions of the input data. On the
other hand, the 2× 1 convolutional layer aims to provide high-level
semantics of angular distance with the sample-wise combining of
𝐼/𝑄 channels. The fully connected layer synthesizes the output
from previous layers and makes prediction. Rectified Linear Unit
(ReLU) activation is used for the convolutional layers because it is
computationally efficient and more effective against the vanishing
gradient problem [6], while linear activation is applied to the out-
put layer. We utilize Batch Normalization [12] for all convolutional
layers to improve the training convergence and eliminate the needs
for regularization. To avoid overfitting, we use Learning Rate Decay
[33] which lowers the learning rate if the validation error remains
unimproved for a period of time (e.g., a few epochs).

3.2 Rotational Double-Output
Theoretically, the neural network is required to provide one es-
timation for one relative phase between two receiving branches.
Nonetheless, while investigating various models, we find that the
phase estimation exhibits abrupt variations as the relative phase
gets very close to the boundaries of phase values (i.e. upper and
lower bounds of the ranges [−𝜋, 𝜋] or [0, 2𝜋]). More specifically,
the behavior is described as follows:
• If the network estimates the phase in [−𝜋, 𝜋], then the esti-
mation abruptly fluctuates when the true value is either in
[−𝜋,−(𝜋 − 𝜖)] or [𝜋 − 𝜖, 𝜋].
• If the network estimates the phase in [0, 2𝜋], then the esti-
mation abruptly fluctuates when the true value is either in
[0, 𝜖] or [2𝜋 − 𝜖, 2𝜋].

where 𝜖 ≈ 0.2𝜋 based on our investigation during the validation
process. We believe that such behavior is related to the discon-
tinuity of the phase when it travels beyond the boundaries, for
example, above 𝜋 and below −𝜋 for [−𝜋, 𝜋]. Because of the rota-
tional characteristics (i.e., 2𝜋 + 𝜃 = 𝜃 mod 2𝜋 ), the phase will be
shifted backward by an angle of 2𝜋 . This confuses the estimation
model because those values are far apart (by a distance of 2𝜋 ) in
the numerical axis.

To overcome this problem,we enhance the CNNmodel withwhat
we call a rotational double-output feature, which incorporates two
estimation outputs 𝐸1, 𝐸2 (as depicted in Figure 3) for the relative
phase converted in [−𝜋, 𝜋] and [0, 2𝜋], respectively. We note that
the two estimations do not experience abrupt variations simultane-
ously. Therefore, if we know which output is experiencing errors
and not usable, we can select the other output. The double-output
selection is described in Algorithm 1, where we define 𝑆𝐸𝐿𝐸𝐶𝑇1 and

Algorithm 1: Double-output selection
Data: 𝐸1, 𝐸2, 𝑆𝑇𝐷1, 𝑆𝑇𝐷2, 𝜖
Result: 𝐸𝑐𝑢𝑟
if 𝜋 − 𝜖 < 𝐸2 < 𝜋 + 𝜖 then

𝑆𝐸𝐿𝐸𝐶𝑇2 ← 𝑇𝑟𝑢𝑒

else
𝑆𝐸𝐿𝐸𝐶𝑇2 ← 𝐹𝑎𝑙𝑠𝑒

end if
if −𝜖 < 𝐸1 < 𝜖 then

𝑆𝐸𝐿𝐸𝐶𝑇1 ← 𝑇𝑟𝑢𝑒

else
𝑆𝐸𝐿𝐸𝐶𝑇1 ← 𝐹𝑎𝑙𝑠𝑒

end if
Convert 𝐸2 to [−𝜋, +𝜋] by Equation (9)
if 𝑆𝐸𝐿𝐸𝐶𝑇2 = 𝑇𝑟𝑢𝑒 and 𝑆𝐸𝐿𝐸𝐶𝑇1 = 𝐹𝑎𝑙𝑠𝑒 then

𝐸𝑐𝑢𝑟 ← 𝐸2
else if 𝑆𝐸𝐿𝐸𝐶𝑇2 = 𝐹𝑎𝑙𝑠𝑒 and 𝑆𝐸𝐿𝐸𝐶𝑇1 = 𝑇𝑟𝑢𝑒 then

𝐸𝑐𝑢𝑟 ← 𝐸1
else if 𝑆𝐸𝐿𝐸𝐶𝑇2 = 𝑇𝑟𝑢𝑒 and 𝑆𝐸𝐿𝐸𝐶𝑇1 = 𝑇𝑟𝑢𝑒 then

if 𝑆𝑇𝐷1 < 𝑆𝑇𝐷2 then
𝐸𝑐𝑢𝑟 ← 𝐸1

else
𝐸𝑐𝑢𝑟 ← 𝐸2

end if
else

𝐸𝑐𝑢𝑟 ← (𝐸1 + 𝐸2)/2
end if

𝑆𝐸𝐿𝐸𝐶𝑇2 to imply the correctness of the respective outputs 𝐸1 and
𝐸2. If both indicators are𝑇𝑟𝑢𝑒 , the algorithm selects the predictions
with a smaller Standard Deviation (STD) in a history windows of
𝐾 = 10 elements. In the last case, the average value of two outputs
is taken. We note that eventually, 𝐸2 should be converted to [−𝜋, 𝜋]
to avoid inconsistencies of the selections:

𝐸2 =

{
𝐸2 − 2𝜋 𝐸2 > 𝜋

𝐸2 else
(9)

where 𝐸2 is the mean of 𝐾 = 10 last predictions in [0, 2𝜋]. With
this feature, our CNN is trained to minimize the modified Mean
Squared Error:

L𝜃 = (Δ𝜃1 − 𝐸1)2 + (Δ𝜃2 − 𝐸2)2 (10)

where Δ𝜃1 and Δ𝜃2 are the conversions of the true relative phase
Δ𝜃 in [−𝜋, 𝜋] and [0, 2𝜋], respectively.

3.3 Stabilizing The Estimations
When DEFORM system directly uses the continuous-valued phase
estimations to compute the beamforming weights, it becomes sus-
ceptible to variations and outliers as typically seen in neural net-
work models [8]. Meanwhile, practical wireless communication
systems and standards require not only high precision, but also
stability in the estimations as they target a Bit Error Rate in the
orders of 10−4 for a proper operation. Short-term changes on some
samples have significant and lasting impacts on the whole packet
decoding and easily aggravate the Bit Error Rate. To address this, we
propose two different methods for stabilizing the phase estimations:
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Temporal smoothing. Because wireless channels typically change
with at a much slower rate than the incoming rate of RF samples
(128 RF samples collected at 1Msamp/s is only 0.128 ms long), we
can stabilize the prediction at a given instant by combining with
estimations from the recent past. We stabilize the estimation and
improve the robustness of the RX beamforming by using the expo-
nential smoothing function:

𝐸𝑇 = 𝐸𝑐𝑢𝑟𝜆 + 𝐸𝑇−1 (1 − 𝜆) (11)
where the final phase estimation at the current time period 𝑇 is
computed using the estimation from previous period 𝑇 − 1 and the
current CNN output estimation acquired from Algorithm 1. Param-
eter 𝜆 controls the smoothness of the result, and is chosen with the
best value 𝜆 = 0.2 through the validation process. It should be noted
that if the offset between 𝐸𝑇−1 and 𝐸𝑐𝑢𝑟 is significant (exceeding
a certain threshold 𝛼 , i.e. 𝛼 = 1.5𝜋 , we should select the instanta-
neous estimation 𝐸𝑐𝑢𝑟 instead. This behavior is typically seen when
the channel changes from being vacant to being occupied by the
transmitter. In this case, a drastic change of the phase estimation
indicates the beginning of a packet that we should account for.

Algorithm 2:Multi-trial averaging
Data: 𝑁 , RF samples in period 𝑇
Result: 𝐸𝑇

repeat N times
Artificially adjust the phases with a random 𝜃𝑟𝑎𝑛𝑑 ;
Compute instantaneous 𝐸𝑐𝑢𝑟 using Algorithm 1;
Update 𝐸𝑐𝑢𝑟 to original value with 𝜃𝑟𝑎𝑛𝑑 ;
Categorize 𝐸𝑐𝑢𝑟 into two clusters 𝐶1,𝐶2;

end
Count cluster elements 𝐶𝑂𝑈𝑁𝑇𝐶1 ,𝐶𝑂𝑈𝑁𝑇𝐶2 ;
Calculate average estimations 𝐸𝑇

𝐶1
, 𝐸𝑇

𝐶2
;

if 𝐶𝑂𝑈𝑁𝑇𝐶1 > 𝐶𝑂𝑈𝑁𝑇𝐶2 then
𝐸𝑇 ← 𝐸𝑇

𝐶1
else

𝐸𝑇 ← 𝐸𝑇
𝐶2

end if

Multi-trial averaging. Temporal smoothing requires multiple
chunks of RF samples to achieve a stabilized prediction. In cases

when the number of samples is limited but higher computation
power is available (e.g., offline processing), we can instead stabilize
the prediction by processing the same samples multiple times (thus
multi-trials). The algorithm is described in Algorithm 2. To avoid
repeatedly getting the same estimation, in each trial, we augment
the RF samples by artifically adjusting the phases with a random
𝜃𝑟𝑎𝑛𝑑 . We note that after being processed by the CNN, the current
estimation 𝐸𝑐𝑢𝑟 needs to be re-adjusted to account for the prior
augmentation. To deal with possible drastic changes, we catego-
rizes the estimations across 𝑁 trials into two clusters based on
their values: We maintain the average estimations 𝐸𝑇

𝐶1
and 𝐸𝑇

𝐶2
for

the clusters at time period 𝑇 . An estimation 𝐸𝑐𝑢𝑟 for any trial is
categorized into cluster 𝐶1 if |𝐸𝑐𝑢𝑟 − 𝐸𝑇𝐶1

| < 𝛼 where 𝛼 = 1.5𝜋 is
the categorization threshold, otherwise cluster 𝐶2. Finally, after 𝑁
trials, we count and compare the number of elements in each group,
and choose the average estimation where the corresponding cluster
has more elements, as the final estimation for current period.

3.4 Dataset Collection
It is widely known that adequate, curated training data is critical
to any Deep Learning approaches. For supervised learning, data is
required to have sufficient high-quality labels. Unfortunately, data
labeling is typically a manual process done by humans, requires
domain knowledge, is slow, arduous, and can be very costly. Fur-
thermore, open datasets of real RF emissions for RX multi-antenna
beamforming remain absent. To address this, we devise an efficient
multi-stage approach towards building a sufficiently large dataset
for training our Deep Learning model, as depicted in Figure 4.

Our setup comprises a single-antenna transmitter (TX) and a
multi-antenna receiver (RX). As a first step, we generate random
complex samples and save them in the memory of both the TX and
RX. Then, the TX transmits the saved samples and the RX collects
the samples from receiving branches and saves to files. Because of
the channel effects, the received samples will experience unknown
phase shifts. To determine these phase shifts, we first chunk the
received samples, which we subsequently cross-correlate with the
transmitted samples already saved in the RX. The phase shift is
calculated as the argument of the peak in the correlation output.
The labels (relative phase Δ𝜃 ) are obtained by taking the difference
between the two phase shifts. When the channels are static, the
acquired labels will have very little variance. This would negatively
impact the training and bias the DL model towards a small range
of values. To address this, and improve the diversity of the dataset,
we employ a simple data augmentation technique. For each chunk
of RF samples, we randomly shift the phases by a value in [−𝜋, 𝜋]
and adjust the label accordingly. We emphasize that while this
process is quite efficient, it is not necessary for DEFORM to repeat
this process for each type of data (modulation or bandwidth). As
we will show in later sections, our deep beamforming system is
agnostic to bandwidths and modulations. Thanks to its universality,
DEFORM can be quickly deployed without a prior knowledge about
the RF signal and channel parameters.

4 EVALUATION
We validate the universality of DEFORM for different modulations
and bandwidths under fading wireless channels. To train the DL
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Figure 5: Comparison of the DL models
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Figure 6: Power Spectral Density plot shows the center fre-
quency offsets in the received wideband signals. It is noted
that the y-axis scale is relative.

model, we use the techniques described in Section 3.4 and collect a
dataset of over 167 million complex RF samples transformed into
654, 553 real-valued tensors of size 2 × 128 × 2, each corresponds
to a total of 256 samples collected by the two RX antennas. For
this dataset, we use an Ettus USRP B210 software-defined radio
(SDR) with the TX implemented using GNURadio [1] to transmit
BPSK signals (SNR ranging from 0 to 35 dB) to the RX through
two identical coaxial cables with a fixed TX bandwidth of 1 MHz.
The RX bandwidth is maintained at 1 MHz for the whole dataset.
The dataset is split into training, validation, and test sets with ratio
0.64 : 0.16 : 0.2, respectively. While being trained with a fixed set
of RF settings, DEFORM still performs very well on other unseen
and more sophisticated settings of modulations, bandwidths, and
channels. To the best of our knowledge, our work is the first univer-
sal RX beamforming system in the literature that is designed using
Convolutional Neural Network (CNN) and extensively evaluated
for practical, universal RF beamforming capabilities.

4.1 DL Model Comparison
To validate our design of neural network and highlight the benefits
of our model for the specific task of phase estimation, we evaluate
and compare the CNNmodel with three popular CNN architectures:
VGG16 [25], ResNet18 [9] andMR-CNN [21] using the test set of our
beamforming dataset. All models are implemented using PyTorch li-
brary [22], then trained and tested on a NVIDIA GeForce GTX 1080
GPU using Adam Optimizer [14] and ReduceLROnPlateau Learn-
ing Rate Decay scheduler [33] with initial learning rate 𝑙𝑟 = 0.005.
The evaluation metrics are estimation error and network forward
time. Mean Square Error loss function (Equation (10)) is used to
calculate the estimation error. We use torch.cuda.synchronize

from PyTorch to synchronize CUDA operations before and after
the network propagation function and calculate the elapsed time of
such function accurately. Figure 5 compares the estimation error of
models on the test set and the network forward time. It is clear that
in terms of estimation correctness, DEFORM outperforms MR-CNN
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Figure 7: Emulated fading pattern for over-the-cables evalu-
ation. The initial relative phase is randomly chosen within
[−𝜋, 𝜋], then slowly changing throughout the experiment for
a total amount of 2𝜋 radian.

with a test error of 12.6 times lower (0.26 compared to 3.28). More-
over, DEFORM’s CNN is 8 times faster than VGG16 and 12 times
faster than VGG16 while having comparable estimation error (equal
to ResNet18, and only 0.06 lower compared to VGG16). Compared
with these two models, DEFORM is lightweight, more computation-
ally efficient, and can quickly estimate phases with high precision,
which makes it more suitable for real-time and embedded systems.

4.2 Over-the-cables Evaluation
We evaluate DEFORM’s performance in a relatively idealistic en-
vironment where the RF signals propagate through coaxial cables,
where multi-path and other fading effects are absent. Data packets
are sent from the TX to the two analog inputs of RX (devices are Et-
tus USRP B210 with SDR) through a pair of identical cables (So the
received signals have similar SNRs). TX signal is modulated using
differential BPSK, QPSK, 8-PSK, GMSK and 16-QAM techniques,
and with a fixed TX bandwidth of 1 MHz and center frequency
of 795 MHz. We assess DEFORM’s wideband capability by using
different values of RX bandwidths, with a random shift of RX center
frequency when the bandwidth is larger than 1 MHz (Figure 6).
Evaluation for Model Optimizations. To highlight the impact of
the optimization techniques, we measure and analyze the received
Bit Error Rate (BER) in five cases: (1) When beamforming is turned
off and one of the two received signals is selected for decoding (Note
that in our over-the-cables experiments, received signals have sim-
ilar SNRs), (2) when beamforming is used with the single-output
CNN (BF-SO), or (3) with the rotational double-output CNN (BF-
DO), and when DEFORM is enabled with double-output CNN and
(4) temporal smoothing (DEFORM-TS) or (5) multi-trial averaging
(DEFORM-MT) optimization. To calculate BER, we record TX and
RX signals at the SDRs and transfer them to the host computer to
compare and count the bit errors. Figure 8 illustrates the evaluation
results, where we compare the approaches with BPSK transmissions.
For each scenario, RX signal features (relative phase, bandwidth)
are artificially adjusted to show the effects of model optimizations:
For Figure 8a, because Δ𝜃 is far from the phase boundaries, all
beamforming settings including the baseline single-output CNN
achieve 3 dB gain compared to non-beamforming. When Δ𝜙 = 9𝜋

10
which is very close to 𝜋 (where the estimation of the single-output
CNN estimating phase in [−𝜋, 𝜋] experiences abrupt variations
- Figure 8b), the efficiency of BF-SO decreases to less than 1 dB
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Figure 8: BER comparison between non-beamforming, and beamforming with the baseline CNNs and DEFORM’s optimizations.

gain, while BF-DO and further optimization settings maintain the
3 dB gain. When we increase RX bandwidth to 6 MHz ( Figure 8c),
DEFORM-TS and DEFORM-MT outperform the baseline CNNs with
3 dB and 2 dB gains compared to non-beamforming, respectively.
This justifies the efficiency of DEFORM’s optimizations to address
the increasing variations and outliers of the baseline CNNs intro-
duced by communication settings of wider bandwidths.
Evaluation for Signal Features Universality. As mentioned
above, we consider various settings of modulations and bandwidths
to evaluate the universality of DEFORM. We emulate the slow
fading effect of the real wireless channels by artificially adjusting
the phases of received signals following a stair-step pattern for the
relative phase Δ𝜃 as illustrated in Figure 7 to cover the whole 2𝜋
phase range. Figure 9 shows the Bit Error Rate (BER) analysis where
DEFORM is evaluated with both DEFORM-TS and DEFORM-MT
approaches, and compared with non-beamforming. It is evident that
for all combinations of modulation and RX bandwidth, DEFORM-
TS can provide a 3 dB SNR gain compared to using a single RX
branch, with the only exception of GMSK-2MHz where the gain for
BER = 10−5 is approximately 2.5 dB. Meanwhile, DEFORM-MT also
achieves 3 dB gain for 1 and 2 MHz RX bandwidths, and about 2-3
dB gain for 4 MHz bandwidth. However, with 6 MHz bandwidth,
the SNR gain of DEFORM-MT declines to 1 dB for BPSK and QPSK
at BER ≥ 10−4, and to 2 dB for 8-PSK and 16-QAM. Interestingly, it
still performs equally well with DEFORM-TS for GMSK in 6 MHz
RX bandwidth, both having a 3 dB gain for all BER levels.

5 DISCUSSION AND RELATEDWORK
It is clearly seen that the Deep Learning-based approach of DE-
FORM can be extended to larger multi-antenna systems to achieve
even higher than 3 dB gain. For a RF receiver system of 𝑁 receiving
antenna elements, the deep learning architecture can be modified
to have 2 × (𝑁 − 1) outputs in which two estimations are made for
each relative phase between the pre-selected antenna and one other
antenna. The new requirement of such systems are time synchro-
nization mechanisms for RX radios as typical wireless peripherals
have a limited number of antennas (Most of Ettus’s USRPs only
support 2 simultaneous RX channels [24]).

Our current system assumes that there is only one user in the
observing spectrum at any given time. The problem becomes more
challenging when multiple users are simultaneously transmitting

on the same frequency band, which results in significant interfer-
ence that damages the phase structure in the captured RF samples.
In this case, the prediction could be accurate for only one user, or
even not working for any users. It would be interesting to investi-
gate the CNN’s capability for multi-band spectrum and collision
analysis in the future work.

Theoretical aspects of beamforming have been investigated in
the literature [4, 19, 28, 30, 34], including some efforts to build the
so-called blind beamformers [4, 10, 34], that estimates the channel
phase offsets without explicit knowledge from the transmitter. The
practicality of thosemethods and systematic deployment guidelines,
however, are still open questions. Popular wireless communications
technologies still utilize informed beamformer approaches that esti-
mate the channel using information from the transmitter such as
pilot sequence [35] in IEEE 802.11 or reference signal [17] in 5G
radios. As discussed, this approach typically requires significant
communication overhead, and is limited to specific TX-RX setup
and communication techniques.

Advances inMachine Learning and Deep Learning have emerged
as a solution for critical problems in various areas, including wire-
less communications. In recent years, ML and DL approaches have
been extensively utilized in various tasks such as modulation recog-
nition [21], RF technology identification [20], or wireless localiza-
tion [29]. There are also some efforts to enable ML-driven beam-
forming. For example, in [32], a Deep Neural Network (DNN) is
developed for OFDM channel estimation. In [11], DNN is also uti-
lized for downlink MIMO beamforming. Nonetheless, those works
are limited by simulated data, and specific assumptions of channel
model. Furthermore, they lack the explanation and evaluation for
the impact of various RF characteristics, i.e. link modulations and
bandwidths. Compared to those, our work is unique in two main
aspects. First, our CNN-based DL model is trained with real RF
data acquired by an efficient dataset collection process. Second,
our system is agnostic to different RF settings of modulations and
bandwidths. Despite being trained on a fixed, basic RF settings, we
can still achieve the optimal beamforming gain in complex, unseen
settings. Hence, DEFORM can be used as a universal RX beamform-
ing module for existing multi-antenna RF receivers. As the next
step, we will apply DEFORM to RF receiver operating in realistic
over-the-air environments with various wireless channel artifacts
(e.g., multi-path fading). We will also justify DEFORM’s universality
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Figure 9: BER analysis of over-the-cables communications for different modulation schemes and RX bandwidths. DEFORM is
evaluated with Temporal Smoothing (DEFORM-TS) and Multi-Trial Averaging (DEFORM-MT).

with the beamforming-relay application supporting the commu-
nications of different wireless technologies such as ZigBee and
LoRa.
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