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Abstract—Bluetooth Low Energy advertisements are increas-
ingly used for proximity privacy-preserving protocols. We in-
vestigate information leakage from BLE advertisements. Our
analysis, among other things, reveals that the design of today’s
Bluetooth chips enables the linking of BLE advertisements
to Bluetooth Classic (BTC) frames, and to a globally unique
identifier (BDADDR). We demonstrate that the inference of the
BDADDR from BLE advertisements is robust achieving over 90%
reliability across apps, mobile devices, density of devices, and
tens of meters away from the victims. We discuss the impli-
cations of current chipsets vulnerability on privacy-preserving
protocols. The attack, for instance, reveals the BDADDR of
devices of infected users of contact-tracing apps. We also discuss
how the vulnerability can lead to de-anonymization of victims.
Furthermore, current mobile devices do not allow selective
disabling of BTC independently of BLE which renders simple
countermeasures impractical. We developed several mitigations
for the Android OS and the Bluetooth stack and demonstrate
their efficacy.

Index Terms—Bluetooth, BLE, Privacy, Linkage attacks, Con-
tact Tracing, Exposure Notification, Apple Find My

I. INTRODUCTION

Mobile and wireless systems have revolutionized how we
access and share information. However, this success has come
with increased concerns about user privacy. For instance, users
are increasingly aware and concerned about the implications of
disclosure of location information [1]. Similarly, governments
and legislators have increased their scrutiny as illustrated by
the US Congress Location Privacy Protection Act [2].

Protecting users privacy is known to be challenging as
private information can leak through numerous channels [3]–
[7]. As such, protections should take into account a variety
of adversarial models. Today, most wireless communications
systems have adopted security protocols with encryption,
integrity protection, and even forward security features. How-
ever, the linkability of communications remains an important
challenge. Linkability of communications can not only enable
tracking, but also used as a crucial stepping stone for more
sophisticated attacks. For instance, once a single (linkable)
message reveals a private information about a user, it can
then be associated with the device, its mobility patterns, and
other linked-information collected or inferred by an adversary.

Over the years, wireless systems increased their defenses
against linkability. Cellular systems as early as GSM intro-
duced the Temporary Mobile Subscriber Identifier (TMSI) to

minimize leakage of the globally unique and permanent Inter-
national Mobile Subscriber Identifier (IMSI). Later generations
introduced further protections leading to the 5G design not
sending permanent identifiers in the clear and instead relying
on the Subscriber Concealed Identifier (SUCI) consisting of
the permanent SUPI encrypted (IND-CPA) with the public key
of the cellular operator [8]. Mobile platforms also recognized
the risks associated with linkability and potential attacks.
For instance, Android, and iOS rely on Wi-Fi MAC address
randomization to prevent leakage and continue to improve
their security in light of discovered vulnerabilities [9].

We investigate and demonstrate the linkability of BLE
advertisements to a global identifier (BDADDR) that permits
both the tracking of BLE users, and linking of their device to
any information learned directly or indirectly from advertise-
ments. In the context of contact tracing apps, the adversary
learns the BDADDR of infected user devices and the de-
anonymization of such users is possible in some scenarios. In
case of Apple Find My, it is possible to link transient public
keys generated by the protocol to user identifiers. Our analysis
reveals that the design of today’s Bluetooth chips enables
(1) the linking between BLE advertisement frames emanating
from a mobile device, and (2) more critically, the linking
of BLE advertisements to Bluetooth Classic (BTC) frames.
This Bluetooth stack vulnerability is fundamental because both
BLE and BTC are driven by the same clock with a timeslot
duration of 625µs. A detailed analysis enables us to develop
and demonstrate an inference technique that links BLE adver-
tisements to devices globally unique BDADDR with over 90%
reliability across apps and density of devices. We find that the
inference is over 70% reliable even for distances of 40 meters
or higher and in mobility scenarios. Furthermore, the fact that
current mobile devices do not allow selective disabling of
BTC independently of BLE renders simple countermeasures
impractical. We developed several mitigations for Android
OS and Bluetooth stack and demonstrate their efficacy. In
summary, we:

• Discovered a linking vulnerability in the design of Blue-
tooth chips, that leads to attacks on privacy-preserving
protocols relying on BLE advertisements.

• Analyze the performance of the attack on Android and
iOS devices, in terms of accuracy and speed considering
different apps, devices, density of neighboring devices,



distance to target, and types of existing Bluetooth traffic.
• Our analysis indicates that the attack is robust. For

instance at a distance of 10 meters, an attacker can link
BLE advertisements to the globally unique BDADDR
with 77% probability within 1 second of sniffing and with
100% probability within 10 seconds of sniffing.

• We show the implications on privacy-preserving protocols
(e.g., linking transient public keys in Apple Find My to
BDADDR, or exposing the BDADDR of infected users
in contact tracing) and discuss scenarios that can lead to
de-anonymization.

• We devise and implement several mitigation techniques
for Android to limit the attack’s potential. We plan to
open source all of our code.

• We responsibly disclosed the attack and proposed mit-
igations to Google, Apple, and contact tracing systems
designers. Google assigned severity S2 to the vulnerabil-
ity, and Apple is evaluating the impact of this attack.

II. BACKGROUND: BLUETOOTH AND BLE
PRIVACY-PRESERVING PROTOCOLS

Bluetooth protocols were developed over two decades lead-
ing to several backward compatible standards. We focus
on the latest configuration supported by a vast majority of
mobile devices, the Basic Rate (BR) and Low Energy (LE)
combined core configuration [10]. A BR system includes
optional Enhanced Data Rate (EDR) and Alternate Media
Access Control and Physical (AMP) layer extensions. These
protocols are typically referred to as Bluetooth Classic (BTC).
Bluetooth Low Energy (BLE) on the other hand aims at
minimizing energy consumption. These modes serve unique
needs, optimising for energy, bit-rate, and range. However,
their physical and MAC layers share common characteristics
that prove key to the cross-mode side channel vulnerability. We
first provide an overview of the two prominent modes, BTC
and BLE, focusing on the mechanisms enabling the attack.

A. Bluetooth Classic (BTC) Overview

BTC operates in the 2.4GHz ISM band, spanning 80MHz.
The physical layer uses a Gaussian Frequency Shift Keying
(GFSK) modulation (BR mode), and π/4-DQPSK or 8DPSK
(EDR mode). The modulated signal is transmitted at a symbol
rate of 1Msym/s, thus providing a bit-rate of 1Mbps (BR
mode) and 2Mbps or 3Mbps (EDR mode). Signals are trans-
mitted in 79 relatively narrow band channel spaced by 1MHz.
The center frequency ranges from 2.4GHz to 2.4835GHz.
The channels are determined by their center frequency fk =
(2402 + k) MHz, k ∈ [0, 78] where k is the channel index. A
channel is divided into slots of 625µs. BTC uses frequency
hopping to mitigate interference and selective fading. A BTC
packet might last 1 to 5 timeslots but always starts in a
synchronized way with the 625µs period (see Figure 1).

BTC communicating devices form a network topology
called piconet, consisting of a master and up to seven slaves.
The master determines the channel hopping pattern and time
slots schedule. Therefore, time synchronization is required at

Fig. 1: Bluetooth Classic transmissions using TDD
Scheme (src. [10]). Packets can span multiple slots but
are always synchronized to a 625µs period set by the master.

Fig. 2: BLE advertising events over multiple advertisement
channels (src. [10]).

the initialization stage when two devices initiate a connec-
tion. Slaves apply an offset to align their local clock to the
master clock. The channel hopping pattern is determined by
the master’s clock and Bluetooth Device Address BDADDR.
A BDADDR consists of a Lower-Address-Part (LAP), a
Upper-Address-Part (UAP), and a Non-significant-Address-
Part (NAP). The LAP of the master device is used to derive
the access code for every packet in the piconet and can be
extracted from the header during the frame synchronization
stage. The UAP of the master device is used to initialize the
generation of Header Error Check (HEC), which is whitened
together with the rest of the header. As the UAP is not
explicitly transmitted and combined with frequency hopping
over 79 channels, BTC was considered to be secure in terms
of not revealing devices MAC address. However, this has been
recently shown not to be true [11].

B. Bluetooth Low Energy (BLE) Overview

BLE operates over the same spectrum as BTC and has a
similar physical layer but optimized for energy. BLE has two
modulation schemes, using GFSK: LE 1M and LE Coded with
1Msym/s, and LE 2M with 2Msym/s. BLE supports data bit
rates of 1Mbps (LE 1M), 500 kbps and 125kbps (LE Coded),
and 2Mbps (LE 2M). The spectrum [2.4 − 2.4835]GHz is
divided into 40 RF channels with 2MHz spacing. The channels
center frequencies are defined as fk = (2402 + k × 2) MHz,
k ∈ [0, 39]. There are two categories of channels (1) primary
advertising (37, 38, 39) and general purpose (0, · · · , 36).

Unlike BTC, the multi-access scheme of BLE divides time
into units called events. There are five types of events, Adver-
tising, Extended Advertising, Periodic Advertising, Connection
and Isochronous. We focus on the advertising events for
linking BLE to BTC. Advertising events are an important
feature specific to BLE. By broadcasting an advertising packet,
a BLE device announces its offering of a service. In this



Fig. 3: Illustration of BLE advertising events timing (src. [10]).

scheme, the advertising device is called advertiser and listening
devices are scanners. The scanners either ignore or react to
advertisements. An advertising event is defined as a time
window where advertising packets and their responses occur.
Figure 2 illustrates advertising packets in the same advertising
events with the same information transmitted on different
advertising channels. The first advertising packet in an adver-
tising event is also the start of the event. The time between two
advertising events is composed of a selected fixed duration,
called advertising interval and is a multiple of 625µs in range
20ms to 10485.759375s; and a delay, called advertising delay
which is random in a range of 0ms to 10ms to avoid collision
among advertisements from different advertisers. Figure 3
shows the timing spacing between advertising events.

BLE incorporates a MAC address randomization scheme,
triggered after a period of time or whenever a new advertising
or connection is initialized. The standard recommends that
a random MAC address is re-generated every 15 minutes.
This mechanism improves the protection against tracking but
vulnerabilities have been shown for certain device implemen-
tations [12].

C. BLE-Based Privacy-Preserving Protocols

We focus on privacy-preserving protocols like Contact Trac-
ing and Apple Find My, because these protocols explicitly rely
on the unlinkability (randomization) of BLE advertisements.
Contact Tracing Apps: Digital contact tracing serves an
important role in the current COVID-19 pandemic for tracking
the spread of the virus [13]. Concerns about privacy led to
several initiatives to design privacy-preserving contact tracing
systems. Apple and Google teamed-up to design and embed
an “Exposure Notification” protocol in iOS and Android
platforms [14]. Around the world, other groups proposed
precursor designs, alternatives, and complementing solutions,
including university consortia and research labs (e.g., DP-
3T [15], PACT [16], [17] and PACT [18]). A common privacy
goal of these solutions is to dissociate any information that
might connect a smartphone owner’s device to the contact
tracing information. Several studies investigated privacy con-
cerns arising from contact tracing apps [19]–[24] and some
additional protections were also proposed [21], [25]. Several
contact tracing apps (e.g., Immuni [26], SwissCovid [27],
COVID Alert [28], California COVID Notify [29]) were
developed using the Exposure Notification Service.

The Exposure Notification service provides privacy through
the use of non-personal cryptographically generated identifiers.

Each user is assigned a random 16 byte cryptographic key
called the Temporary Exposure Key (TEK). This key is setup
to roll every day for every user of the system. The TEK
is used to generate two identifiers called Rolling Proximity
Identifier (RPI) and Associated Encrypted Metadata (AEM )
by encrypting the epoch time and a constant using the AES
algorithm. In case of the AEM , the RPI is also encrypted to
link the identifiers together. The generated RPI and AEM are
broadcast to devices in proximity using BLE advertisements.
Another technique that the service utilizes to preserve privacy
is generating new RPI and AEM values whenever the
advertiser’s BLE MAC address is randomized. This way, an
attacker is unable to link the identifiers with a device. The
TEK, RPI , and AEM are all required to determine whether
a user was in contact with an infected user. The infected user
uploads their last 14 TEKs to a server. These TEKs (called
Diagnosis Keys) are combined and downloaded on all devices
and then used to generate RPIs and AEMs. A user is alerted
of possible contact if their device contains a minimum count of
infected RPIs and AEMs. We refer the readers to the design
documentation for a detailed description [14]. Although other
apps use other cryptographic protocols and algorithms, they
all use the same underlying Android BLE implementation for
communication, the subject of our analysis.
Apple Find My: Apple introduced the Find My feature to
provide customers with a tool to find their devices in a
privacy-preserving manner [30], [31]. To perform its intended
function, the protocol requires the user to own two Apple
devices that share a private key known only to those devices.
Corresponding to the private key, the devices generate transient
public keys that are broadcast over BLE advertisements. Both
private and public keys do not reveal any information about
the device owner. In order to mitigate linkability, these public
keys change whenever the advertiser’s BLE MAC address is
randomized. The transient public keys broadcast using BLE
advertisements are received by other devices in proximity
which use their own location, encrypt the location using the
received public key, and then upload the encrypted location
and public key’s hash value to the cloud. When a user realizes
that their device is missing, they use the other device to upload
the hash values of public keys as identifiers and download all
the encrypted locations corresponding to those hash values.
These encrypted locations are then decrypted using the private
key to reveal the location of the lost device.

III. SYSTEM AND ATTACKER MODEL

A. System Model: The Bluetooth (BTC+BLE) Stack

We consider scenarios that are common among smartphone
users. Bluetooth is embedded in virtually every phone, car,
laptop, mouse, keyboard, game console, and wearable device
(billions of devices ship every year [32]). Its services range
from communication with peripherals, audio and video stream-
ing, and even transmission of health information (e.g., fitness
trackers). We assume a smartphone user that regularly uses
Bluetooth on their device for such services. For the purpose
of the attack, it does not matter how the services are used,



Fig. 4: Flow Diagram for the Attack System.

what data is exchanged, if a session is active, which apps are
used, or the mode of transmission.

Current Android and iOS devices support both BTC and
BLE. BLE is used by many services for data transmission and
advertisements. Examples of some services include Samsung
Health, Apple Find My, Apple iBeacon, and Apple/Google
Exposure Notification (contact-tracing). We focus on BLE
advertisements, the communication medium used by the ex-
amples above. We assume the advertisements are running in
the background. This is now a common scenario for millions
of users that run the aforementioned apps on their smartphones
as these apps start broadcasting as soon as the device is booted
and keep broadcasting at all times.

B. Attacker Model: Abusing BTC+BLE Timing Information

We assume an attacker in proximity to the victim(s). The
attacker is able to record and process RF (I&Q) samples in the
2.4GHz band. This can be achieved using a software defined
radio (SDR) or even mobile phones supporting the Nexmon
framework [33]. The attacker records relevant BTC and BLE
packets and their timestamps. This might include public keys
for Apple Find My, RPIs from Exposure Notification, and
user identifiers [34]. We also assume that the attacker is
able to retrieve public information for each of the considered
systems. In the case of Exposure Notification, this includes the
published Diagnostic Keys of infected users. For Apple Find
My, it would include the encrypted location given the device
randomized public key hash. The attacker is passive and does
not inject wireless signals or interact with the victim.

IV. LINKAGE AND TRACKING: ATTACK OVERVIEW

We first provide an overview of the attack approach, then
discuss the characteristics of the side-channel linking BTC
and BLE. Through a set of experiments, we demonstrate the
existence of a dependency, although noisy, between transmis-
sion times. We then summarize the challenges that need to be
investigated to understand the full potential of the attack.

A. Overview of the Attack

The goal of the attacker is to (1) link BLE advertisements
and BTC transmissions, (2) derive globally unique identifier
from BTC transmissions (BDADDR), and (3) use the link for
tracking BLE users and for linking their device to any informa-
tion learned directly or indirectly from the advertisements. To
achieve this goal, the attacker needs to handle multiple steps
- from the correct reception of RF emissions, to extracting

timing information and finally discerning which transmissions
are coming from the same device. The key components and
flow of the attack is outlined in Figure 4.

First, our attack system decodes the RF samples to si-
multaneously extract information of both BTC and BLE
transmissions. For BTC, this includes the global BDADDR
and the timestamp of each packet received. For BLE, the
information includes the BLE advertisements (BLEADV) and
their timestamps. The collected information is then processed
to derive a timing relation between each pair of BDADDR and
BLEADV. The timing relation, in this context, is the alignment
quantification between the clock of BTC and the clock of
BLE. Intuitively, if a device supports both BTC and BLE,
their modules are combined in the same Bluetooth chip and
their time reference is derived from the same clock source.

The inference algorithm is the core of the attack. It com-
putes the time alignment between BTC and BLE transmissions
addressing the peculiarities of BLE as described in sec-
tion IV-D, such as irregular channel offsets. We first show
preliminary results in Section IV-B, and delve into the details
of the attack in Section V.

B. Coupling of BTC and BLE Advertisements

The key premise of the attack is that BLE advertisements
can be linked to BTC transmissions, which themselves reveal
the device BDADDR. Our initial guess was that given the
similar frequency-hopping pattern of BTC and BLE (1,600
hops per second) and the high integration of Bluetooth SoCs,
it is likely that both radios are driven by a common clock. We
conducted a set of basic experiments to determine the nature
of coupling between BTC and BLE advertisements.

The results of our preliminary analysis are shown in Fig-
ure 5. Details of the experimental setup are in Section VI.
These results compare the time alignment of two different sets
of BLE advertisements with the same set of BTC transmis-
sions. The first set of BLE advertisements are transmitted from
the same device as the BTC transmissions (our test device),
while the second set corresponds to the BLE advertisements
of another device. Figure 5a shows the alignment of BTC
transmissions with BLE originating from the same device
(modulo 625µs), while Figure 5b shows the alignment of
second BLE set from other device. This result confirmed our
intuition of coupling between BLE advertisements and BTC
emissions (i.e., either fixed low offset or fixed offset around
±110µs). In Section V, we show that these offsets result from
irregular transmissions, scanning request-respond procedure,
channel impairments, etc. The offset to the other device is
non-constant. Yet, it is not trivial to infer the coupling since
there are multiple fixed-offset patterns (two in Figure 5a). As
we do not have visibility into driver implementations, we have
not been able to confirm our intuition for the reason of these
offset patterns. We leave the detailed analysis of this artifact
for future work.

Another observation during preliminary analysis was that
even when BLE MAC randomization occurred, the timing of
advertising events remained the same since the randomization
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does not affect the baseband clock of the Bluetooth module.
This makes it possible to link BLE advertisements pre- and
post- randomization by computing the alignment between BLE
advertisements, instead of linking them to BTC transmissions.
As such, this attack could potentially be used to link BLE ad-
vertisements over long periods of time in the absence of BTC
emissions. These preliminary results support our hypothesis
that BTC and BLE can be linked in the wild, and indicate the
necessity of an in-depth analysis for a robust attack.

C. Reliability of a Simple End-to-End Attack

In light of our early analysis, we developed a basic end-
to-end attack for linking BTC and BLE transmissions in sce-
narios without any knowledge about a specific target device.
Our only assumption is that the target is transmitting BLE
advertisements along with an active BTC connection. We note
that this is a realistic attack scenario as many apps such
as Exposure Notification, Apple Find My and iBeacon rely
on BLE advertisements, while users still rely on BTC for
streaming music and videos to their headsets. As such, the
two may often be used together enabling the attack.

Analyzing 10 seconds of samples, we report on the Root
Mean Square Error of offset between BLE and BTC in
Figure 6. We link BTC transmissions and BLE advertisements
from Immuni [26], a contact tracing app, only 20% of the time
(using a RMSE threshold of 13). These initial results indicate
not only the possibility of a robust attack but also the need
for a systematic analysis accounting for various nuances of
BTC/BLE, Android Bluetooth Stack, mobile apps, etc.

D. Challenges Impacting Attack Performance

The challenges in inference arise due to the nature of a sniff-
ing attack at the physical layer, the complexity of Bluetooth
protocols and the heterogeneity of hardware implementations.

Wireless impairment. The attack relies on sniffing and
decoding RF emissions. It is therefore limited by the channel
impairments, such as the impact of interference and distance
to the target devices. These limitations are particularly sig-
nificant for BLE advertisements, especially in the case of
Exposure Notification which is setup to transmit at low power.
In crowded scenarios with multiple wireless devices, as the

interference and collisions are unavoidable, the quality of our
sniffing is significantly impacted.

Unexpected timing offset pattern. The coupling of BLE
advertisements and BTC transmissions appear as a constant
offset but not always small. Furthermore, the timing offsets are
a combination of multiple patterns resulting in the challenge
of distinguishing between a bias misalignment, which can be
compensated for, and a real misalignment of a non-coupling.

Tight coupling of BTC and BLE in Android. The Android
OS provides no automated mechanism to disable BTC even
when all paired devices are disconnected. Furthermore, the OS
couples BTC and BLE together such that apps must enable
BTC on the device if they need to use BLE advertisements.
The above scenarios increase the possibility of a device to
reconnect with a previously paired device even when not
required. The OS provides no notifications of concurrent BTC
and BLE transmissions making mitigations more challenging.

E. Privacy Implications of the Attack

The linking of BLE advertisements to a device BDADDR
breaks a key assumption of privacy-preserving BLE-based
protocols as most explicitly and critically rely on the un-
linkability (randomization) of BLE advertisements. In case
of the Exposure Notification service, the BLE advertisement
data consists of the RPIs broadcast by the user devices.
These RPIs are generated such that they do not reveal the
user’s identity. However, the vulnerability we expose will
link them to the BDADDR. An adversary (or coalition) that
periodically downloads the Diagnosis keys, can then generate
the RPIs of infected users and compare them to RPIs
previously recorded and linked to BDADDRs. This does
not fully de-anonymize the infected users. However, it can
serve as a stepping stone to full de-anonymization of infected
users when combined with any other side-channel or attack
that links the BDADDR to users private information. For
instance, on Android, system apps can already access the
BDADDR of the device, Bluetooth multi-player games can
access the BDADDR of paired devices, as can paired IoT
devices such as smart speakers. These apps can potentially
link the BDADDR to any information they have about the



user. Recent works [34], [35] demonstrated that other BLE-
based Apple protocols such as AWDL, AirDrop and Nearby
Action can reveal user identifiers such as hostnames, email
hashes and phone number hashes. In case of hostname, the
study revealed that about 75% of these hostnames contain the
user’s first or last name or both. With sufficient incentives, it
is imaginable that an underground market could emerge for
linking BDADDR to user identities especially because it is
now possible to track users based on their BDADDR [11].

In case of the Apple Find My service, the BLE advertise-
ments broadcast transient public keys that are not tied to a
user. Since the only information retrievable (by an adversary
who knows the transient public key hash) from Apple’s servers
is the location encrypted with the transient key, it is harder to
imagine powerful attacks that leverage the BTC-BLE linkage
vulnerability. One possible attack assuming an adversary who
knows the BDADDR of a target user (as discussed above) is
that he can then link the public keys to the user identifier.
An adversary (or coalition) can use this knowledge to launch
a targeted attack where they first steal the user’s device, and
then start spoofing their location and encrypting the spoofed
location using the user’s public keys. This can cause the user
to identify the lost device location at a spoofed location of the
attacker(s) choice, leading to physical threats to the user.

Given that the BTC-BLE linkage vulnerability appears to
have more severe impact on the Exposure Notification proto-
cols, we will focus mostly on such applications.

V. THE DETAILED ATTACK

A. Analyzing BLE and BTC Coupling

We first analyze the nature of the coupling between BLE and
BTC. We setup a Samsung Galaxy S6 phone to stream audio
to a Bluetooth headset over BTC, while broadcasting BLE
advertisements using a mobile app. The app called Immuni
uses Exposure Notification service as its underlying BLE
advertiser. Immuni is the official exposure notification app
of the Italian government and is used by over one million
users. For this part, we posit that Immuni is representative of
many contact tracing apps. We note that this experiment was
performed in an environment with proximity to several other
devices using BTC communication and BLE advertisements.
This enabled us to also determine whether there could be other
devices with clocks aligned with our test device.

Our analysis follows the attacker model of Section III-B.
We built an integrated and synchronized SDR-based BLE
decoder [36] with BTC decoder [11]. We use a USRP B210
SDR to sample half of the Bluetooth spectrum. First, we
record all BTC transmissions and BLE advertisements over
a 10s interval. To protect the privacy of individuals in our
environment, we record only timestamps, BLE randomized
address and service UUID. From the recordings, we calculated
the time difference between each BLE advertisement and
the closest BTC transmissions (modulo 625 µs). This time
difference is used to determine whether a BTC transmission
and BLE advertisement are from the same device, specifically
our test device. A low time difference indicates a higher

probability of linkage between same device BTC and BLE
transmissions. Similarly, a higher difference may indicate that
the BTC transmissions and BLE advertisements are from
different devices.

To analyze the coupling, we collect 10 second recordings
every minute for a 1 hour period. Our goal was to determine if
the attack is achievable and repeatable over extended periods
of time. The attack system is implemented following the flow
graph of Figure 4. We compute the time alignment between
each BLE advertisement and BTC transmission. In order to
have a single metric to determine how well linked -or not-
BTC and BLE transmissions are, we compute the Root Mean
Square Error (RMSE) of the misalignment values for each
recording. A linkability threshold is set to determine the
maximum misalignment per packet.

Irregular transmissions. As described in Section II-B, a
BLE advertiser should transmit the same advertisement over
all three channels (37, 38 and 39) within an advertisement
event. We found the transmissions over the first channel
typically aligned to BTC transmissions from the same device.
However, subsequent transmissions within the event are not
necessarily aligned to the BTC transmissions. In other words,
if advertisements within an event are sent over channels N ,
N +1 and N +2 in that order, the transmission on channel N
will be aligned to BTC transmissions from the same device,
but N +1 and N +2 will see an offset to channel N . Further-
more, in our initial experiments on several Android devices,
we observed a second abnormality. Frequently transmissions
on a specific channel would not occur, but the remaining
channels would still transmit an advertisement. This irregular
behavior was what led to the low performance for the attack
described in Section IV-C. The behavior mandates that a robust
attack algorithm should not rely on a specific channel and fixed
offset but should adapt to account for such variability. To rule
out problems with our SDR setup, we implemented a simple
BLE scanner app for Android to monitor advertisements. The
scanner app confirmed the irregular behavior that advertise-
ments are sometimes not transmitted over specific channels
for extended periods, up to 10 seconds.

Unexpected channel offset. In a BLE advertising session,
subsequent advertisements transmitted over the same channel
are typically aligned for the entire duration of the session. As
such, the time offset from channel N to N + 1 or to N + 2
remains constant. However, this is not always the case. An
example is the presence of a connectable or scannable flag in
the advertisement (e.g., ADV IND, ADV SCAN IND). Such
flags trigger a response after transmitting the advertisement
on channel N that can cause a delay in advertising packets
on subsequent channels. Furthermore, the separation between
channels N , N+1 and N+2 can vary depending on the device
as well as advertisement configuration. Analyzing the channel
offset for a set of devices, we found a varying interval between
advertisement packets. Even for the same app, we measured
separations between channels 37 and 38 of 380us and 1.25ms
for two different devices. Moreover, the advertising interval is
affected by the choice of advertising app.



B. Linking Same Device BTC-BLE Transmissions

To link a BLE advertisement to the BTC BDADDR, we
need to quantify the misalignment of corresponding packets
timestamps. This quantity is computed as the time difference
between each BLE advertisement and the nearest BTC trans-
mission (modulo 625µs). The modulus 625µs is in fact the
time unit defined in BTC, to which all BTC transmissions in
a piconet are aligned to. In BLE, the advertisements instead
align to advertising events with random intervals. Despite
different schedule procedures in BLE and BTC, our techniques
still infer the alignment and reveal the linking. For ease of
presentation, we describe the attack for a window of samples:

1) Record I&Q RF samples of considered spectrum.
2) Process signal and decode to reveal N BTC transmitters
{BTCi}, i ∈ [0, N −1] and M ×K BLE advertisements
{BLEj,k}, j ∈ [0,M − 1], k ∈ [0,K− 1], where M and
K are the number of different advertisements and number
of different advertising channel indices respectively.

3) For each combination of BTCi and BLEj,k, compute
the time distance (modulo 625µs) {D(l)

i,j,k}, l ∈ [0, L−1]
for each of L BLEj,k advertising packets and the nearest
BTCi packets then derives the combination’s score as:

• Si,j,k =
√

1
L

∑L−1
l=0 (D

(l)
i,j,k)

2 if k = 0

• Si,j,k =
√

1
L

∑L−1
l=0 (D

(l)
i,j,k −mode({Di,j,k}))2 if k > 0

4) The attacker links BTCi and BLEi if (Si,j,k < S̄ &
Lk > L̄), where S̄ and L̄ are the thresholds of score and
of number of advertising packets respectively.

Consider an attacker performing a linking attack against N
BTC devices and M BLE Advertisements. In this scenario,
each BTC device is a master in a connection with a slave.
The master devices, as combined BTC-BLE cores, broadcast
M BLE advertisements in parallel with BTC transmissions.

First, the attacker starts a recording of the wireless envi-
ronment to capture signals emitted by the Bluetooth devices.
Then, process the recording to derive information such as BTC
BDADDRs and timing of its packets, and BLE Advertisements
(MAC address) and timing of associating packets. The attacker
now has two sets of data, one of N BTC devices {BTCi} and
the other of BLE advertisements {BLEj}.

Second, the attacker analyzes the coupling of each pair of
BTC device and BLE advertisement. To analyze the coupling
of a pair, we use the time difference (modulo 625µs) between
each BLE advertising packet and the nearest BTC packet.
This searching for the nearest is limited to a window of
time around the examining BLE advertising packet to prevent
possible effect of the drift in the device’s Bluetooth clock. If
there is no BTC packet found in this window, we discard
the BLE advertising packet. Since each advertisement can
be transmitted on multiple channels, we consider the timing
on each channel separately and denote k ∈ [0,K − 1] as
channel index of K advertising channels in use. At the end
of this stage, for each pair of BTC device BTCi and BLE
advertisement BLEj,k, we obtain a vector of L elements
timing offset values {D(l)

i,j,k}, l ∈ [0, L − 1] for each BLE

advertising packet on each channel to nearest BTC packet.
In the last stage, we quantify the coupling by computing

a score Si,j,k =
√

1
L

∑L−1
l=0 (D

(l)
i,j,k)2 as the Root-Mean-

Square-Error of the timing offsets for each pair of BTCi

and BLEj,k. Lower score correlates with likely linkability.
A linking decision is made based on experimental thresholds
as 1) if Si,j,k < S̄, where S̄ is a score threshold, and 2) if
Lk > L̄, where Lk is the number of BLE advertising packets
and L̄ is its required amount. From our measurements, we
find that an experimental threshold of 10 µs is able to clearly
delimit transmissions originating from one device.

As stated in the previous subsection, we find that channels
following the initial channel are not aligned to 625 µs, a
priori limiting the use of channels other than the initial one.
Nonetheless, we find that although the offset on subsequent
channels appears to be device and advertisement specific, this
offset is constant for the same advertisement. This fact makes
it possible to align channels k + 1 and k + 2 to 625 by
computing and substracting the most repeated offset value -the
mode- for a given advertisement. Transmissions coming from
other devices do not have a constant offset, as they drift over
time (fig. 5). In this way, we are able to rely on channels other
than the initial one for our linkability attack.

We also observed abnormal offset values caused by scanning
procedures triggered within an advertisement event. Due to the
asynchronous nature of the scanning, an advertising packet
on the second and third advertising channels can be delayed
by a specific or random amount of time depending on the
manufacturer’s implementation, adding unexpected values to
the timing offset on these channels. As the actual value of
the added offset is not possible to forecast, we do not rely on
measurements from an advertisement event that had a scanning
procedure triggered.

VI. EXPERIMENTAL EVALUATION SETUP

The goal of our measurements is to understand the potential
of the vulnerabilities across devices with different chipsets,
across multiple apps, as well as the impact of range, density
of devices, and existence of a BTC connection.

For our experiments, we use a low-cost USRP B210 SDR
to record a portion of the Bluetooth RF spectrum. The USRP
B210 is able to cover 56 MHz of the target RF bandwidth.
We sample the lower 44 MHz of the BT spectrum. In this
way, measurements with the B210 board include half the BTC
bandwidth and channels 37 (2402 MHz) and 38 (2426 MHz) of
BLE advertisements. Note that this does not limit the attack, as
advertising apps broadcast the same information on channels
37, 38 and 39. We do not record the whole bandwidth as it
would require two B210 or more expensive SDRs. Later, we
show this setup sufficient for highly accurate attacks. The SDR
records the RF spectrum in the form of I&Q samples that it
relays to the host computer over USB 3.0.

To evaluate the effect on multiple smartphone models in
differing scenarios, we chose the following devices for our
experiments - Samsung Galaxy S6 (SGS6), Pixel 3A, Xiaomi
Mi8, Motorola Moto G5 Plus and iPhone X. These devices



encompass different chipsets, operating systems and hardware
drivers. Along with the devices, we explore whether only
specific apps and/or advertisement configurations are affected
by the vulnerability or whether it is fundamental to all BLE
advertisements. We select a set of apps to answer this question.
Our baseline app was nRF Connect that directly uses the
Bluetooth API and permits configuring advertisements param-
eters such as transmit power and latency. Secondly, we choose
an app that uses the Exposure Notification API - Immuni.
Different apps may have different implementations but their
underlying mechanism is the same. Immuni is quite mature
and was among the first Exposure Notification apps. It was
downloaded more than 1.5 million times from the Google Play
Store. We also explore an alternative app to Immuni called
StopCovid [37] that does not utilize the Exposure Notification
API. Instead, it sends BLE advertisements containing identi-
fiers generated from the ROBERT protocol [38]. Finally, we
select Find My as a specific app for iOS devices.

We setup the aforementioned devices in three different
scenarios to understand the impact of various factors:

a) Scenario A: This is the most controlled one in our
evaluations, yet emulates real-world BTC and BLE usage. The
scenario is comprised of a residential area that exhibits low to
average amounts of traffic from both BTC and BLE devices.
We place our test devices at random locations of this area.
They stream music over BTC and transmit BLE advertise-
ments using the apps under test. We found an additional 20
BLE advertisers and 2 BTC devices during our measurement.
This low noise scenario is useful because it allows us to
evaluate the performance across different devices and apps
while avoiding the randomness associated with excessive RF
interference and packet collisions.

b) Scenario B: This consists of an office environment
with many devices operating in the 2.4 GHz spectrum, using
both Wi-Fi and BT. In addition to the traffic generated in typ-
ical offices, this specific area includes two IoT labs resulting
in a crowded scenario. All devices considered, this scenario
presents more than 100 BLE devices advertising concurrently
and transmissions from 20 different BTC devices, leading to
significant interference. We placed our test devices in random
locations of this office with each device using similar levels
of BTC and BLE transmissions as the first scenario.

c) Scenario C: Due to limited physical space in the
previous scenarios, we include another scenario in a football
field about 100 meters in length. We intentionally place our
devices far away at 20m, 40m, 60m in this field to measure
the viability of performing the attack from a distance.

As all three scenarios described are public and not isolated,
we take precautions to ensure that the information we record
does not contain any private information of individuals. To
that end, we only record timestamps, BLE random addresses
and Service UUID to identify the application being used.

VII. ATTACK EXPERIMENTAL EVALUATION RESULTS

We describe the results of the attack evaluation in the
considered scenarios, exploring the impact of metrics relevant
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Fig. 7: Probability of linking BLE Exposure Notifications and
Find My to de-anonymized BTC for different recording sizes.

for a real world attack, such as recording time, chipset, BLE
and BTC traffic or apps used.

A. Impact of Recording Time

A key attack metric, especially for Exposure Notification
Service due to its low transmit power, is the duration the
attacker needs to be in the vicinity of a victim. To understand
its impact, we consider recording intervals of 1s, 2s, 5s and
10s. This emulates the scenario where the victim just passes
by the attacker or the attacker follows the victim closely for
a short duration. We use the setup described in Scenario A,
and place 5 different devices each one connected to a BT
device. The devices were configured to stream audio over
BTC and transmit BLE advertisements. We setup the Android
devices to transmit Exposure Notification advertisements and
iPhone to transmit Find My advertisements. We took 10s
recordings every minute for half an hour, resulting in 300s
of total RF spectrum recordings. Then, we split the recordings
based on the chosen interval and analyzed them independently.
We computed, for each chunk, if we are able to link BTC
transmissions and BLE advertisements for the target devices.

Figure 7 shows the probability of linking Exposure Notifica-
tion and Find My BLE advertisements with same-device BTC
transmissions. Note that the advertising period for Find My
is 2s, hence the low linkability probability for 1s recordings.
Nonetheless, due to iPhone X transmitting at high power,
the system already achieves 95% linkability probability with
2s recordings, increased to 100% for 10s recordings. For
exposure notification, we see that, even for 1s recordings, our
system is able to link correctly devices advertising Exposure
Notification 77% of the time. For 10s recordings, the system
correctly links devices almost 100% of the time. One factor
resulting in increased attack performance is the frequency
of advertisements. Exposure notification advertisements are
transmitted once every 260 to 280ms, and Find My every 2s.
This leads to only 3-4 packets recorded in 1s and 1 packet
every 2s respectively. As such, we lower the threshold for the
minimum number of packets required for inference leading to
false positives. The problem disappears with 10s as sufficient
count of BLE advertisements are recorded.

B. Impact of Bluetooth Chipset

We analyze whether the attack affects all devices equally, or
if certain devices are more vulnerable. We use the setup from



SGS6(1) SGS6(2) Pixel 3A Xiaomi Mi8 Moto G5P iPhoneX

1 s 0.8615 0.8659 0.9011 0.8399 0.9219 0.965
2 s 0.9358 0.9231 0.9658 0.9391 0.9524 0.9708
5 s 0.9825 1.0000 0.9831 0.9655 0.9643 0.975
10 s 1.0000 1.0000 1.0000 1.0000 1.0000 1.000

# Pkts 7627 5096 15461 3711 21539 13679

TABLE I: Probability of linking an advertisements to a BTC
device for different devices and recording sizes.

Scenario A, with all our devices streaming audio over BTC
and concurrently broadcasting BLE transmissions. For this
experiment, to remove any app specific artifacts, we used nRF
Connect for the BLE advertisements on Android devices. We
chose nRF Connect for Android because our analysis showed
it is more stable than other apps. This could be due to the fact
that all other apps perform intensive cryptographic operations.
Similar to the previous experiment, we recorded 10 seconds
of RF spectrum every minute for 30 minutes, and then split
the data into different chunks based on recording intervals.

Table I summarizes the results showing the probability of
linking BLE advertisements to same-device BTC transmis-
sions, for each test device. Note that for Apple iPhone X we
use Immuni as we found it to be reliable on iOS, unlike nRF
Connect which is not as configurable as its Android coun-
terpart. The probability values range between 84% (Xiaomi
Mi8) for 1s recordings to 100% for 10s. The probability for
10s is 100% for all devices in our set showing that the attack
is robust across devices and chipsets. Comparing all devices,
we see slight differences in linkability that we mostly attribute
to the spectrum being congested.

Although our results indicate that the performance of the
attack is not related to the device, we did observe some arti-
facts during our experiments. We observed that the alignment
between BLE and BTC is tighter for some devices/chipsets.
For example, we find that both Samsung Galaxy S6 phones
(SGS6(1) and SGS6(2)) have a very similar mismatch per
packet, between 5µs to 10µs. On the other hand, Xiaomi Mi8
and Pixel 3A BTC-BLE packets are generally more tightly
synchronized, with errors per packet of at most 2µs.

C. Impact of App and Advertisement Configuration

We analyze the potential impact of different advertisement
configurations like transmit power and latency on attack per-
formance. For this evaluation, we ran measurements placing
a Samsung Galaxy S6 and an iPhone X in our Scenario A.
To compare both the impact of different apps using BLE
and the advertisement configuration itself, we ran Find My
on iPhone X and Immuni, StopCovid, and two parallel BLE
advertisers using nRF connect on the Samsung Galaxy S6.
The first nRF Connect advertiser was setup with the same low
latency configuration as StopCovid (i.e., 100ms), whereas the
second advertiser was setup to emulate exposure notification
configuration latency (i.e., 250ms). Both nRF advertisers were
set to transmit at higher transmission power than StopCovid
and Exposure Notification. StopCovid and Find My also
transmit with higher power than Exposure Notification. We
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Fig. 8: Time alignment between BTC and different BLE
advertisement apps for 1s and 10s recording time.

place the test device within 10 meters of the attack system
and recorded for 10s every minute for 1 hour. We computed
the RMSE of the time alignment for each advertiser separately.

The results of this experiment are shown in Figure 8a
and Figure 8b. The figures show the empirical CDF of the
RMSE for the 4 different advertisements for 1s and 10s
chunks, respectively. We observe that nRF Connect is more
successfully linked to BTC transmissions for 1s recordings,
even with low latency configurations. This is due to their
higher power. For 1s recordings, StopCovid is linked 71%
of the times, whereas Immuni is linked 63% of the times.
Find My is able to be linked 46% of the times due to its
high transmit latency (period) of 2s. For 10s recordings, we
find that the performance of the attack for Immuni, StopCovid
and Find My increases to 83% and ≈100% respectively. In
case of Immuni, we observed that Immuni frequently stopped
transmitting on channel 37 and only 10% of the 1s recordings
had Immuni transmissions on channel 37. Moreover, in 15% of
the recordings the decoder did not find any packets transmitted
for Immuni on either channel 37 or 38, which explains the
lower performance.

D. Impact of Device Density

Crowded scenarios can impose a challenge for an attacker
trying to reliably perform the attack for two main reasons.
First, the RF spectrum is more congested and some transmis-
sions might not be scheduled correctly or get overshadowed
by other devices transmitting at higher power. Secondly, as
the number of devices grow, the probability of having another
device with similar clock values increases.

We first study these issues by using the setup described in
Scenario B, a noisy office environment with more than 100
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Fig. 9: ECDF of the RMSE of the linkability between BTC
and different BLE applications in a crowded scenario.

BLE devices and 20 BT devices due to the proximity to two
IoT labs. In order to test differences in apps and configuration
parameters, we set two of our devices, Xiaomi Mi 8 and
Motorola Moto G5 Plus to stream audio and run two BLE
advertisers - the former with nRF Connect and StopCovid,
and the latter with nRF Connect and Exposure Notification.
We place these devices within 10 meters of the attack system
and record 60 samples of 10s each.

Our results showcase considerable loss of BLE adver-
tisement packets due to the congestion. For the same time
duration, we were able to record 7811 advertisements for
StopCovid, 3746 for Exposure Notification and 8156 for nRF
Connect in the low traffic Scenario A. In Scenario B, the
recorded advertisements were reduced to 2019, 497 and 5894,
respectively. Consequently, the results for RMSE of the time
alignment for 1s and 10s recordings in Figure 9 shows a
drop in the performance of the attack. For 1s recordings (Fig-
ure 9a), the probability drops to 55% and 44% for StopCovid
and Exposure Notification, respectively. For 10s recordings
(Figure 9b), the attack remains robust at 90% and 82% for
StopCovid and Exposure Notification, respectively. Another
side effect is that, due to the number of advertisements getting
reduced, the system adapts the minimum count of packets used
to perform the linkability to ensure that it does not decrease
the attack performance. This fact along with the increase in
volume of advertisements leads to the appearance of multiple
false positives. Analysing the two test devices, out of 120
measurements of 10s each, the algorithm incorrectly linked
11 advertisements.

In order to evaluate the impact of a high number of BTC
devices, we take the same devices, Xiaomi Mi8 and Moto G5
Plus, to Scenario A and we isolate them from the high BLE
traffic while we increase the number of BTC devices by setting

up 20 additional IOGEAR Bluetooth 4.0 dongles constantly
transmitting.This leads to 30 total number of BTC devices,
similar to the BTC density in Scenario B, while BLE advertise-
ments density remain low to average. Our results show that, for
this scenario, Exposure Notification and StopCovid linkability
probabilities increase to 76% and 71% for 1s recordings,
whereas 10s recordings increase linkability above 97% for
both apps. Comparing these results to the ones on Scenario
B, we find that BLE is generally the bottleneck for the attack,
due to its limited channels and lower power transmissions,
whereas BTC has higher power and transmissions are not as
impacted by interference and collisions.

E. Impact of Mobile Device BTC Traffic

Even when an active BTC session is not taking place, in
many cases, a paired device may still remain connected. In
such cases, the device may not transmit several BTC packets
but still periodically send BTC keep-alive packets to the paired
device. An attacker can exploit these keep-alive packets to
execute the attack.

To test the impact of these periodic keep-alive transmissions,
we used three smartphones - Xiaomi Mi8, Samsung Galaxy
S6 and Motorola Moto G5 Plus in our Scenario A setup.
We paired each one of these devices to a Bluetooth headset,
but did not stream any music to them. As a result, these
BTC connections were idle during the experiment with the
exception of the keep-alive packets. The devices were all setup
to transmit BLE advertisements during the entire experiment
spanning 600s.

Our results indicate that devices in BTC idle mode trans-
mit only few packets per second. For our test devices, this
frequency was between 1.5 and 5 packets per second on
average similar to the BLE advertisement rate. For reference,
the same devices transmit about ten times more packets
per second when they are streaming audio. Even with the
reduced rate, our results show that the linkability per device
drops, however, it is still quite good. For 10s recordings, we
achieve ≈90% linkability for both nRF Connect and Exposure
Notification advertisements. For 1s recordings, we achieve an
attack performance of 80%. This suggests that the attack is
robust even when the transmissions are sporadic, as long as
the BTC and BLE packet timestamps are near each other.

F. Impact of Mobility and Range

As BTC transmissions can travel distances of more than 100
meters, they can be decoded from a distance without dedicated
hardware. However, BLE advertisements are frequently config-
ured with low transmit power to reduce the transmission range.
A good example of this is Exposure Notification which has a
maximum range of 10 meters. As such, distance impacts the
attack performance mainly because of the difficulty to decode
BLE transmissions. As for mobility, the Doppler effect due
to relative speeds between receiver and transmitter can shift
the frequency of the received signal, potentially jeopardizing
decoding for both BLE and BTC transmissions.
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1s 0.95 0.75 0.80 0.90 - 0.80 0.53 0.21 0.74 -
5s 0.98 0.87 1.00 0.93 0.87 0.95 0.81 0.60 0.98 0.76
10s 1.00 0.98 1.00 0.97 0.93 0.97 1.00 0.77 1.00 1.00

TABLE II: Linkability in walking and running scenarios.

To study the viability of the attack from a distance, we
setup a Xiaomi Mi8, Motorola Moto G5 Plus and iPhone X
at different distances (20, 40, and 60m) from the attacker
in Scenario C. The Android devices are setup to transmit
high power advertisements using nRF Connect, concurrently
with Immuni and StopCovid advertisements,whereas iPhone
X is set up to transmit Immuni and Find My advertisements.
Instead of using an omnidirectional antenna, this time we use
a directional antenna with higher gain to get better coverage.

Our results show that nRF Connect advertisements are easily
spotted due to high transmit power and the linkability attack
has a probability above 90% even for a distance of 60m.
On the other hand, we did not see any Android Exposure
Notification advertisements at 60m. At 20 and 40m, the system
was able to record 17 advertisements in a 300s period which
is not enough recordings for a successful attack. However,
for Exposure Notifications coming from the iPhone X, we are
able to link them correctly with a probability of 80% even
for a distance of 60m. This is in line with the results for
Find My, which we are able to link with a 75% probability
at 60 meters. The good results for iPhone X are due to Apple
devices transmitting BLE advertisements at high power. Lastly,
StopCovid, with a transmit power between the other apps, did
not see many advertisements for 60m but reported a linkability
of 70% and 90% at 40 and 20m, respectively.

To study the impact of mobility, we carry out our measure-
ments in Scenario C. We set the receiver at a fixed position
and we use the same setup in terms of devices and apps as we
used for the distance measurements. The devices are moving
within a maximum distance of 20 meters from the receiver at
two different speed levels, walking and running.

Results for this experiment are summarized in Table II. We
only showcase results for 5s and 10s for Find My due to
its advertisement periodicity being 2s. At a walking speed,
we were able to link the advertisements for all apps -except
Find My- with at least 75% probability for 1s recordings.
At a running pace, the linkability percentage was notably
lower for certain apps. For 1s recordings, nRF Connect
still had a linkability above 90% but Stop Covid dropped
to 55% and Exposure Notification dropped to 21% as the
decoder missed multiple packets coming from the Android
device. Despite its lower performance on Android, Immuni
on IphoneX demonstrated to be more reliable due to the high
power used for its transmissions, and the attack performance
was not particularly affected by speed. Similarly, Find My
was not affected by dynamism, leading to high linkability
values for both scenarios. For 10s recordings linkability on
most apps perform well, including Exposure Notification for
Android which was able to be linked 77% of the time.

G. Summary of Attack Performance and Limitations

Evaluating the performance of the attack under varying
scenarios and setups, we observe that the attack proves to be
highly reliable and robust across device models and chipsets.
This is true even in scenarios that would, intuitively, be
challenging. For instance, the probability of linking BLE
advertisements with same-device BTC transmissions is be-
tween 80% and 95% in a crowded environment with more
than 100 BLE advertisers and significant congestion. Another
challenging scenario is when a BTC connection on a device
is idle and just transmitting sporadic keep-alive messages.
In this scenario, an attacker is able to correctly link BLE
advertisements 90% of the time.

The results indicate that BLE advertisements transmitted
with higher power have higher probability of linkage with
BTC transmissions. For example, the Find My app uses
high transmit power and high transmission period (2s) and
is more vulnerable to the attack than apps using the Exposure
Notification service on Android. This is because, although the
Exposure Notification service transmits more frequently (every
250 - 280ms), the transmit power is low increasing the chances
of the decoder missing packets.

To make matters worse for victim(s), the attacker does not
need to obtain sufficient data to execute the attack. Our results
indicate that the probability of linking correctly a device is
already above 90% for 10s recordings in most scenarios.
Shorter recording times do see a performance drop, but the
attack is still successful even for 1s recording times. This is
especially true in low traffic scenarios, where 1s recordings
have a linkability probability of above 75%.

In terms of limitations, without improvements to the
BLE/BTC decoders, it is difficult to exploit the attack at
distances over 80 meters and with speed increases. Scaling the
exploitation of the vulnerability would require additional steps.
For instance, the adversary could conduct the attacks at the
entrance of a testing center or crowded spaces. Alternatively,
we believe the attack can be implemented as a mobile (without
SDR) within the Nexmon framework [33]. Finally, some pro-
tocols [15] support enhancements based on a k-out-of-n secret
sharing. We expect such schemes to limit the exploitation of
the vulnerability to users with low mobility. On the other hand,
since an adversary only needs k out of n advertisements, it
might also extend the range of the attack if the shares results
in shorter messages than the original advertisements.

VIII. COUNTERMEASURES

We discuss countermeasures, their design, and implementa-
tion in Android to reduce the impact of the vulnerability.

A. Measures for Reducing Attack Performance

The identified vulnerability exploits fundamental design de-
cisions in the Bluetooth standard. As such, complete mitigation
of the attack may require significant changes, unlikely to
happen in the near future. We note that for specific applications
(e.g., contact tracing), the vulnerability can also be mitigated
by designing schemes that avoid user-to-user exchanges over



BLE advertisements (e.g., VenusTrace [39]). Below, we out-
line some countermeasures that can be implemented for the
Android OS to reduce the attack performance.

1) Disable BTC when inactive: The Android OS does
not automatically disable BTC on the device when inac-
tive. This increases the likelihood of the BTC-BLE link-
age attack as the device can connect to any paired de-
vice in proximity. Note than any app that requests the
android.permission.BLUETOOTH_ADMIN permission
can also enable BTC on the device. Therefore, the functional-
ity to proactively disable BTC should be implemented directly
into the Android OS.

2) Reduce BLE Tx power when BTC connected: The
Android OS currently does not restrict concurrent BTC and
BLE transmissions. When a smartphone user is using BTC
(e.g., streaming music), disabling BTC will result in usability
concerns. Disabling BLE is also not feasible as that may dis-
able health applications (e.g., Exposure Notification, Samsung
Health) that use BLE for their services. One potential measure
to limit the attack radius (e.g., to 6-10 meters) can be to reduce
the BLE Tx power when a BTC connection is active and
restore original Tx power once BTC is disabled.

3) Restart Advertisements instead of Randomization: One
measure to protect against BLE pre- and post- randomization
linkage attacks can be to restart the advertisements every
few minutes instead of randomizing the MAC address. By
introducing a small random delay before each restart, the
advertisements can be made to switch to a different clock and
change the timing information.

4) Minimize BLE Tx power before Randomization: Recall
that the clocks used for channel hopping drift over time.
As such, reducing the BLE advertisement Tx power to a
minimum for a moment before randomization and restoring
power after randomization can force a distant attacker to lose
BLE advertisements and synchronization.

B. Implementing an Android System for Attack Mitigation

Our objective with the Android mitigation system was to
ensure that the system (1) does not affect the functionality
of existing apps that use BTC and BLE, and (2) minimizes
changes required to the Android Bluetooth stack. In terms of
measures, we focused on the aforementioned measures like
controlling the BTC state based on connection status, reducing
the BLE Tx power when BTC is active, and minimizing
the BLE Tx power before MAC randomization. Note that
the system does not focus on restarting BLE advertisements
(see section VIII-A3) as this measure violates our objective
of not affecting app functionality. We also note that certain
mitigations may not work against a determined attacker who
uses powerful antennas to execute the attack from a distance.
Our implemented system addresses the above measures uti-
lizing two levels of abstraction. First, we extend the current
Android Bluetooth stack to address problems that allows an
attacker to launch the attacks more easily. Next, we build upon
these extensions to opportunistically change the state of BTC
and BLE transmissions based on how the medium is being

utilized by the user and installed apps. The change in state
also generates user notifications that users can view on their
devices. These notifications show (and warn) the users when
BTC and BLE are concurrently used on the system.

1) Extensions to the Android Bluetooth stack: The Android
Bluetooth stack presents a serious problem that both BTC and
BLE are controlled using the same API. There are only two
possible states - BTC Off, BLE Off (BTC_OFF_BLE_OFF)
reachable by invoking the disable API provided by the An-
droid SDK BluetoothAdapter implementation; and BTC
On, BLE On (BTC_ON_BLE_ON) by invoking the enable
API provided by the same class. There are currently no public
APIs that apps can invoke to control BLE directly when BTC
is disabled. This forces installed apps to enable BTC on the
device even when they do not require any BTC services.

We solve the above problem in our system by decoupling
BTC and BLE, enabling BLE on the device even when
BTC is disabled. More precisely, our system introduces a
new state BTC Off, BLE On (BTC_OFF_BLE_ON) that
allows installed apps to use BLE without reliance on BTC.
We implemented this new state by creating public wrappers
around hidden APIs in the Android source code using Java
Reflection. The Android Bluetooth stack implements methods
(e.g., enableBLE, disableBLE, isLeEnabled) in the
BluetoothAdapter class that can be invoked to enable and
disable BLE on the device. These methods have a scope de-
fined as public in the source code, it is just that the APIs are
not documented in the Android SDK. We must also note that
the above methods are protected using the same permissions as
BTC (android.permission.BLUETOOTH_ADMIN). As
such, our new state does not introduce any security vulnera-
bilities in the Android ecosystem. Implementing this wrapper
does not require any changes to the Android OS, nor does it
require rooting the device or installing third-party frameworks.
We will make this wrapper open-source as an Android library
to prevent apps from invoking the BTC_ON_BLE_ON state
(and enabling the attack) in the future.

2) Implementing Measures limiting the attacks: The states
BTC_OFF_BLE_OFF, BTC_OFF_BLE_ON, and BTC_ON_-
BLE_ON can be utilized to implement the protections from
the attack. To implement the countermeasures, we require the
capability of updating an app’s BLE transmissions without
instrumenting the app or changing its functionality. In all
versions of Android, this is infeasible due to obvious security
reasons. To achieve our objective, we implemented the system
as an extension of the MATRIX framework [40]. The frame-
work enables our system to insert code into Android SDK
APIs before or after the API invocation, the BLE Advertiser
API in our case. We preferred this approach over modifying
the Android source to quickly ship this protection to millions
of users who already use Xposed [41] on their devices.

Our system tracks the count of BTC connections, BLE
connections and BLE advertisers to determine the current state
of the device. The Android OS implements broadcast intents
that all apps can register to receive certain device updates.
Our system uses the intent action BOOT_COMPLETED to track



when a device has booted up and enters the default state of
BTC_OFF_BLE_ON. To track the count of BTC connections,
the system tracks the intent actions ACL_CONNECTED and
ACL_DISCONNECTED which are broadcast whenever a BTC
paired device connects and disconnects with the device. To
track BLE connections, the system tracks the intent actions
BLE_ACL_CONNECTED and BLE_ACL_DISCONNECTED.
The above BLE intents are not documented in the Android
SDK and we found these intents during our analysis of the
Android code. Unfortunately, there are no intents to track BLE
advertisers. As such, we rely on the Xposed framework to
insert counters into the methods startAdvertisingSet
and stopAdvertisingSet of the BluetoothLeAd-
vertiser class to track the count of BLE advertisers.
These methods are also used to record an app’s advertising
parameters (e.g., service UUID, Tx power, service data) in
order to modulate the BLE Tx power.

The system implements state transitions that are triggered
whenever the counts are updated, i.e., whenever any BTC
and BLE connections or disconnections occur. In many cases,
even when the counts change, the transitions do not occur
as the device state remains the same (e.g., two apps now
broadcasting BLE advertisements instead of one). At each
update, a notification is generated that the user can view on
the device to see a list of all BTC, BLE connections and
BLE advertisements. Specifically, the system implements the
following two important transitions and parameter updates -

• BTC_OFF_BLE_ON→ BTC_ON_BLE_ON: This transition
occurs when the user or an app enables BTC on the device.
If no BTC connection is established within a reasonable
time, the system switches back to BTC_OFF_BLE_ON
state. To reduce the BTC-BLE linkage attack radius, all
BLE advertisers active on the device switch to a low power
transmission mode. In this mode, the advertisements just
have enough power to be reachable within a 6-10 meters
radius of the device. The Tx power update is achieved using
the Xposed framework by inserting custom code in the
setTxPowerLevel method of the AdvertisingSet-
Parameters class of the Android SDK.

• BTC_ON_BLE_ON→ BTC_OFF_BLE_ON: This transition
occurs when all paired BTC devices have disconnected from
this device. As BTC is disabled, the possibility of BTC-BLE
linkage attacks is eliminated. Therefore, all BLE advertisers
are switched back to their regular transmission powers. As
the risk of pre- and post- randomization linkage attack still
exists, the system periodically switches all advertisers to
minimum power transmission mode for a small duration.
This is done so that an attacker outside this minimum range
loses synchronization with the device and is unable to link
the pre- and post- randomized MAC addresses.

The system is intended to reduce the attack performance
rather than eliminating the attack. The system does not enforce
changes to apps that currently enable BTC to transmit BLE
advertisements. Instead, we intend to spread awareness of this
problem and provide developers a library to easily switch to

the more secure BTC_OFF_BLE_ON state. We validated the
library by implementing a BLE Advertiser app without using
any BTC code and observed that it works reliably1. We believe
that eliminating this attack would require significant changes
to the BTC and BLE chipsets. Such extensive changes are
outside the scope of this work.

C. Impact of the Mitigation System on Attack Performance
To verify the mitigation system, we loaded it on a Google

Pixel smartphone. We performed the same experiment twice
for 200 seconds each - once using a factory image and another
one using our mitigation system. In both cases, we paired
the smartphone with a headset and streamed audio to it with
pauses in between. The device was setup to transmit BLE
advertisements at high transmit power. The device was placed
at a 15 meter distance from the attack system.

In the first experiment using the factory image, the attack
system was able to decode 826 advertisements transmitted
from the device. In addition, 1497 BTC transmissions were
also recorded. In the second experiment using our mitiga-
tion system, the attack system was not able to decode any
BLE advertisements. This was because the mitigation system
automatically switched the BLE advertiser to a low power
mode to mitigate the BTC-BLE linkage attacks. There was
no degradation in BTC audio streaming, as the attack system
still recorded 2035 BTC packets during the experiment. We
verified the range of the advertisements using a BLE scanner
app and found that an attacker would need to be as close as 6
meters to the victim(s) to execute a successful attack. The BLE
advertiser restored the transmit power automatically when the
BTC headset was disconnected.

We also modified the StopCovid app source code to de-
termine how much effort app developers would require to use
our more secure BTC_OFF_BLE_ON state. We note that, with
the exception of method name changes, we were able to run
StopCovid without BTC by modifying only 6-8 lines of code.
As such, we believe that app developers can easily protect
their users from this attack by using our mitigation system.

IX. CONCLUSION

We reveal that apps that rely on BLE advertisements are
vulnerable to tracking by linking the advertisements to Blue-
tooth Classic frames, and ultimately to the device’s globally
unique identifier (BDADDR). Despite challenges in exploiting
the coupling between BTC and BLE, our analysis allowed us
to develop a proof-of-concept end-to-end attack that is highly
reliable across devices, mobile apps, type of traffic, density of
devices and range. We proposed, implemented, and evaluated
a set of effective countermeasure for Android, and disclosed
our findings and mitigations to Apple and Google.
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4k1lquq2m8rzzua/BTController.mp4?dl=0.

https://www.dropbox.com/s/4k1lquq2m8rzzua/BTController.mp4?dl=0
https://www.dropbox.com/s/4k1lquq2m8rzzua/BTController.mp4?dl=0


REFERENCES

[1] K. Fawaz and K. G. Shin, “Location privacy protection for smartphone
users,” in Proceedings of the 2014 ACM SIGSAC Conference on Com-
puter and Communications Security (CCS), 2014.

[2] Senate Judiciary Committee, “S.2171 - Location Privacy Protection
Act of 2014,” https://www.congress.gov/bill/113th-congress/senate-bill/
2171, 2014.

[3] T. D. Vo-Huu, T. D. Vo-Huu, and G. Noubir, “Fingerprinting Wi-Fi
Devices Using Software Defined Radios,” in Proceedings of the 9th ACM
Conference on Security & Privacy in Wireless and Mobile Networks, ser.
WiSec ’16, 2016.

[4] J. Yu, A. Hu, G. Li, and L. Peng, “A Robust RF Fingerprinting Approach
Using Multisampling Convolutional Neural Network,” IEEE Internet of
Things Journal, vol. 6, no. 4, pp. 6786–6799, 2019.

[5] K. Youssef, L. Bouchard, K. Haigh, J. Silovsky, B. Thapa, and C. V.
Valk, “Machine Learning Approach to RF Transmitter Identification,”
IEEE Journal of Radio Frequency Identification, vol. 2, no. 4, pp. 197–
205, 2018.

[6] S. Narain, T. D. Vo-Huu, K. Block, and G. Noubir, “Inferring user
routes and locations using zero-permission mobile sensors,” in 2016
IEEE Symposium on Security and Privacy (SP), 2016.

[7] K. Block, S. Narain, and G. Noubir, “An autonomic and permissionless
android covert channel,” in Proceedings of the 10th ACM Conference
on Security and Privacy in Wireless and Mobile Networks, ser. WiSec
’17. Association for Computing Machinery, 2017.

[8] 3rd Generation Partnership Project (3GPP), “Technical Specification
Group Services and System Aspects: System Architecture for the 5G
System; Release 16,” 2020.

[9] J. Martin, T. Mayberry, C. Donahue, L. Foppe, L. Brown, C. Riggins,
E. Rye, and D. Brown, “A study of mac address randomization in
mobile devices and when it fails,” Proceedings on Privacy Enhancing
Technologies, vol. 2017, pp. 365 – 383, 2017.

[10] Core Specification Working Group, “Bluetooth Core Specification: Re-
vision 5.2,” 2019.

[11] M. Cominelli, F. Gringoli, P. Patras, M. Lind, and G. Noubir, “Even
black cats cannot stay hidden in the dark: Full-band de-anonymization
of bluetooth classic devices,” in 2020 IEEE Symposium on Security and
Privacy (SP), 2020, pp. 534–548.

[12] J. Becker, D. Li, and D. Starobinski, “Tracking Anonymized Bluetooth
Devices,” Proceedings on Privacy Enhancing Technologies, 2019.

[13] L. Ferretti, C. Wymant, M. Kendall, L. Zhao, A. Nurtay, L. Abeler-
Dörner, M. Parker, D. Bonsall, and C. Fraser, “Quantifying sars-
cov-2 transmission suggests epidemic control with digital contact
tracing,” Science, vol. 368, no. 6491, 2020. [Online]. Available:
https://science.sciencemag.org/content/368/6491/eabb6936

[14] Apple Inc. & Google LLC, “Privacy-Preserving Contact Tracing - Apple
and Google,” https://www.apple.com/covid19/contacttracing/, 2020.

[15] C. Troncoso, M. Payer, J.-P. Hubaux, M. Salathé, J. Larus, E. Bugnion,
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