From 5G Sniffing to Harvesting Leakages from
Privacy-Preserving Messengers

Norbert Ludant
Northeastern University
Boston, USA
ludant.n @northeastern.edu

Abstract—We present the first open-source tool capable
of efficiently sniffing 5G control channels, 5GSniffer and
demonstrate its potential to conduct attacks on users privacy.
5GSniffer builds on our analysis of the 5G RAN control
channel exposing side-channel leakage. We note that decoding the
5G control channels is significantly more challenging than in LTE,
since part of the information necessary for decoding is provided
to the UEs over encrypted channels. We devise a set of techniques
to achieve real-time control channels sniffing (over three orders
of magnitude faster than brute-forcing). This enables, among
other things, to retrieve the Radio Network Temporary Identifiers
(RNTIs) of all users in a cell, and perform traffic analysis. To
illustrate the potential of our sniffer, we analyse two privacy-
focused messengers, Signal and Telegram. We identify privacy
leaks that can be exploited to generate stealthy traffic to a
target user. When combined with 5GSniffer, it enables stealthy
exposure of the presence of a target user in a given location (solely
based on their phone number), by linking the phone number to
the RNTL It also enables traffic analysis of the target user. We
evaluate the attacks and our sniffer, demonstrating nearly 100 %
accuracy within 30 seconds of attack initiation.

Index Terms—S5G, Control Channel Sniffing, Tracking, Traffic
Patterns, Linkage Attacks, Privacy-preserving Messengers, Pri-
vacy Leaks

I. INTRODUCTION

The 3GPP 5G is hailed as a major step towards more
ubiquitous and pervasive communications. It is indeed flexible
and extensible to support a variety of unique application
requirements, from Ultra-Reliable Low-Latency Communi-
cations to enhanced Mobile Broadband, as well as specific
industry requirements such as V2X, Smart Grid, and Remote
Healthcare [3], [8]. This capability to address unique needs
is very promising to adequately support a larger number of
applications, including critical ones such as self-driving cars,
robotics, and remote surgeries [11], [24], [58].

Cellular systems, however, have a history of privacy issues
since their second generation (GSM) that took security seri-
ously. Over the years, researchers were able to demonstrate
attacks against every generation of cellular systems from 2G
to 5G, by preying on design, implementation, and operation
flaws. For instance, that it is possible to clone SIM cards [14],
decrypt traffic [48], track users [25], [26], [27], [61], [13],
identify devices [51], spoof DNS [47], fingerprint traffic [34],
[10], conduct denial of service attacks [33], [50], [40], [38],
[23], [16], downgrade to insecure versions [50], reinstall old

Pieter Robyns
Hasselt University
Hasselt, Belgium

pieter.robyns @uhasselt.be

Guevara Noubir
Northeastern University
Boston, USA
g.noubir @northeastern.edu

keys [57], and inject malicious messages by over-shadowing
legitimate signaling [60], [19], [35], [41].

One of the promises of the 3GPP 5G efforts is to improve
privacy. Towards this goal, 5G introduced the Subscription
Concealed Identifier (SUCI), encrypting the Subscription Per-
manent Identifier (SUPI) to prevent sending it in the clear,
therefore defending against attacks on user privacy, such
as tracking. 5G also requires that the Temporary Mobile
Subscriber Identity (TMSI) be regenerated after each paging
and communicated to the User Equipment (UE) over an
encrypted channel [9, p. 99]. It is today believed that such
measures, if deployed, address the key privacy issues present in
previous 3GPP systems generations [17]. However, despite the
improvements in privacy, we find that sniffing the 5G control
channel is still possible today, which enables attacks on user
privacy. Such attacks are possible due to a combination of
fundamental design issues and optimizations techniques.

In this paper, we analyze the 3GPP 5G control channels and
mechanisms towards the goal of developing a reliable real-
time 5G sniffer. Our analysis reveals that decoding some of
the 5G control channels, in particular the Physical Downlink
Control Channel (PDCCH) is significantly more challenging
than in LTE (intentionally or unintentionally). For instance,
decoding requires descrambling with information (RNTI and
pdcch-DMRS—-ScramblingID) provided to the UE in en-
crypted messages and therefore not available to the sniffer.
Attempting to blindly decode control channels would require
brute-forcing over 2** combinations of missing information
per control channel message (involving at least one polar
decoding for each attempt). In addition to the infeasible
computational complexity, this leads to a high false-positive
rate as some of these combinations lead to a correct Cyclic
Redundancy Check (CRC) while they are not actual valid
messages, deeming a naive sniffer approach ineffective and
unreliable. We devise a set of techniques and optimizations
that enable the development of a reliable real-time 5G control
channel sniffer, including exploitation of redundancy in the
rate matching of the Downlink Control Information (DCI)
encoder, side channels, prioritization of RNTI processing,
and parallelism. We implemented and evaluated our sniffer,
demonstrating more than 3 orders of magnitude performance
improvement over a brute-force approach and the elimination
of the false positive DCIs (256.3 on average per DCI) encoun-

tered through a brute-force approach.

Our 5G sniffer is able to recover all RNTIs active in a
cell and the data traffic load of the given RNTIs. To illustrate
the privacy implications of such capabilities, we considered
two popular privacy-focused messenger applications, Signal
and Telegram (used by over 500 million people). We found
new vulnerabilities and features that when combined with our
5G sniffer allow to link the RNTI to a user (defined by its
phone number) and therefore reveal its presence within the
coverage area of the 5G gNodeB (gNB). Specifically, sending
a message with an incorrect Message Authentication Code
(MAC) or manipulated padding results in it being dropped
without notifying the receiver. We call this a stealthy message.
This enables an attack where an adversary aiming at deter-
mining the presence of a victim sends stealthy messages to
their phone number and analyzes the control traffic. Although
linking the RNTI to a specific user was previously mentioned
for 4G networks in [30], unlike in 4G, 5G control channel
parameters are conveyed in secure RRC messages. Therefore,
linking a unique RNTT is infeasible without the new techniques
we introduce in this paper (Section III-B). Furthermore, no
specific techniques were provided on how it can be achieved,
nor implementation/evaluation. Authors in [47] show it is
possible to link arbitrary RNTIs to TMSIs, but this does not
constitute a user-specific attack, and would need to rely on
other mechanisms to do so, such as attacks against paging.
However, paging security has been significantly enhanced in
5G (e.g., TMSI is changed on every paging and is never
reused). Thus, our work is not only the first to provide
techniques for such attacks to work in 5G networks, but it
also provides the first evaluation in a real-world scenario.
Our results show that the attack is highly effective, and the
success rate scales with exposure time to the attack. The attack
reaches a 94% true positive rate (TPR) of detection, and 4%
of false positive rate (FPR) for only 15 seconds of exposure.
The accuracy increases to 100% TPR and 2% FPR within 30
seconds of exposure time. We note that this kind of attack is
of independent interest, as it applies to phones connected over
other links than 5G (e.g., LTE, or Wi-Fi), to other applications
(WhatsApp uses the same protocol as Signal [59]), and enables
other attacks such as denial of service and battery draining.
Our contributions are:

o To the best of our knowledge, we propose the first real-
time and reliable control channel sniffer for 5G NR. Our
sniffer is capable of, for example, inferring encrypted
RRC information such as the scrambling ID of users from
information leaks, thereby reducing the computational
complexity for decoding a single message from 2% to
219 in the worst case. In addition, our techniques do not
suffer from the high false-positive rate of a naive brute-
force approach.

o We analyze the 5G control channels and introduce new
techniques to optimize the decoding for real-time oper-
ations enabling the exposure of, among other things, all
RNTI identifiers, and fine-grained user traffic scheduling.

PDCCH
CORESET #1

Synchronization
Signal Block
(SSB)

Fig. 1: Recording of a 5G gNB transmission from a live
operator’s 5G deployment, showing the SSB, two CORESET
configurations and SIB1

o We analyze privacy-focused messengers Signal and Tele-
gram and identify privacy leaks that enable stealthy
exposure of the presence of a user in a given location
(based on their phone number), by linking the phone
number to RNTI, and traffic analysis.

o We implement and evaluate the attack in a commercial
network (while preserving users privacy), demonstrating
nearly 100% accuracy within 30 seconds.

o We discuss several defenses to mitigate these attacks as
well as ethical disclosures to the relevant parties.

II. ESSENTIAL BACKGROUND TOWARDS A 5G SNIFFER

In this section, we describe the essential elements of 5G Ra-
dio Access Network (RAN) design, structure and mechanisms.
The 5G RAN specifications are complex and span thousands of
pages of 3GPP documents. Therefore, we focus on the aspects
relevant to understanding the requirements and challenges of
developing a promiscuous sniffer for the 5G RAN.

A. 5G New Radio Physical Layer

5G New Radio (NR) builds on top of the previous gener-
ation’s physical layer, Long-Term Evolution (LTE). It adds
support for new technologies by adding multiple layers of
operational flexibility. Such flexibility increases the complexity
of a sniffer, in terms of implementation as well as computation,
since some of the parameters (e.g., those communicated to the
UEs in encrypted messages) need to be inferred efficiently.

The 5G NR and LTE physical layers share many similari-
ties. They both rely on Cyclic Prefix Orthogonal Frequency-
Division Multiplexing (CP-OFDM), and the frame structure
is unchanged, with a frame length of 10 ms, split in 10
subframes of 1 ms. However, 5G NR introduces flexibility
in both time and frequency domains by introducing a new
concept, numerology, denoted by 4 € {0,...,6}. Numerology
is a parameter that determines the Subcarrier Spacing (SCS),
Af = 2" .15 kHz, ranging from 15 to 960 kHz [1]. In the
time domain, the slot time duration now scales inversely with
numerology as follows: Ty, = 1/2* ms, and the number of
slots per subframe with Ny, s = 2#. Thus, each subframe is
now formed by N5 of duration Tg;,; each one formed by
12 or 14 OFDM symbols, depending on the CP length [1].

The maximum bandwidth is also increased, and the resource
grid in 5G now ranges from 240 to 3300 subcarriers, de-
pending on the bandwidth and subcarrier spacing [6, p. 14].
The smallest physical resource in the grid is referred to as a
Resource Element (RE), and corresponds to one subcarrier in
one OFDM symbol. REs are grouped into Physical Resource
Blocks (PRBs), and one PRB consists of 12 REs.

Naturally, the use of large bandwidths can boost the overall
capacity of the network. However, the use of wide bands can
significantly impact the operation of low energy devices, such
as IoT devices, as they would incur a higher energy usage by
operating over larger portions of the spectrum. In order to sup-
port different use cases and devices, 5G introduces the concept
of Bandwidth Parts (BWPs). A BWP is a set of contiguous
physical resource blocks which can be a subset of the total
bandwidth of the band. In this way, different UEs can have
different BWPs assigned to them with different numerologies,
adapting to the user characteristics and requirements. One cell
can support up to four BWPs, and a given UE can have only
one BWP active at a time [7, p. 359]. A 5G sniffer needs to
efficiently infer these various configuration parameters.

B. Synchronization and Cell Information Acquisition in 5G

5G uses a set of always-on signals that are periodically
broadcast by the 5G base station (gNB). These dedicated
signals serve as a reference for UEs performing the initial steps
to connect to the network: cell search, initial synchronization
and acquisition of the minimum required system information.
5G reduces the number of always-on signals, e.g., Cell-
specific Reference Signal (C-RS) from LTE, and consolidates
several signals into a Synchronization Signal Block (SSB).
Figure 1 depicts the spectrum of a live 5G gNB downlink
transmission. The figure captures the most important channels
that our 5GSniffer leverages to extract both cell and user-
specific information, the SSB, which is easily recognizable
in the spectrum, and carries cell-wide information, and the
PDCCH, which includes resource scheduling information per
user, and will be discussed in depth in Section II-C.

The SSB occupies 240 subcarriers across 4 OFDM symbols,
and contains three key pieces of information: the Primary
Synchronization Signal (PSS) and Secondary Synchronization
Signal (SSS), well-known BPSK sequences, and the Master
Information Block (MIB). During cell search, the UE scans for
the SSB and computes the power and quality of the received
signal. Once a suitable cell is found, both PSS and SSS signals
are used to compute the Physical Cell ID (PCI) and to estimate
the time and frequency offsets. A UE (and sniffer) needs to
correct for such offsets to adequately synchronize with the
5G gNB downlink transmissions. The next step for a UE is
retrieving the MIB. To do so, the UE performs channel esti-
mation, equalization and decodes the MIB, which is encoded
with a robust polar coding scheme. MIB is a compact set of
23 bits that carry important cell operation information, such as
the System Frame Number (SFN), Cell Barred indication, and
a field, pdcch-ConfigSIB1, that indicates where to find
the next important block of information, System Information

PDCCH QPSK De- Rate de- Sub-block de-

symbols Demodulation Scrambling matching interleaving
DCI ¢ | CRC extraction IR 6l _ De- e polar decoding
bits masking interleaving

Important

New in 5G NR Similar to LTE
! l:l m modifications

Fig. 2: PDCCH to DCI decoding procedure in 5G NR.
Different colors indicate the similitude to its 4G counterpart

Block 1 (SIB1). SIBI1 is the last piece of information required
by a UE to connect to the network, as this block contains cell
selection criteria, information on the random access procedure,
and initial BWP and control channel information, which our
sniffer leverages. Although SIB1 is also periodically broadcast
in a 5G standalone cell, SIB1 is not transmitted through a
dedicated channel like the SSB, but through a common channel
used for all downlink data transmissions to all UEs [5].

C. Resource Scheduling in 5G NR

User data is carried in physical channels, such as the Phys-
ical Downlink Shared Channel (PDSCH) and Physical Uplink
Shared Channel (PUSCH). All UEs receive and transmit data
on assigned channels. The gNB is in charge of resource
scheduling and communicating to the UEs where to find their
assigned resources. This (meta) information is conveyed to
the users in the DCI, which is carried on a dedicated channel,
the PDCCH [5, p. 29]. A downlink portion of a BWP where
the PDCCH is transmitted is called a Control Resource Set
(CORESET). CORESETSs were introduced in 5G NR in order
to provide a variable configuration for different use-cases and
can be configured through upper layer signalling, i.e., Radio
Resource Control (RRC). For instance, CORESETS can span
multiple OFDM symbols, with variable number of contiguous
subcarriers, and with variable offset and periodicity. A CORE-
SET is configured within a BWP and the maximum number
of CORESET configurations per BWP is 3 [7, p. 770]. In
Figure 1 we see two different CORESET configurations from
a real deployed network, where CORESET 0 is a special
type that is configured through the MIB and only contains
scheduling information for SIB1. Although both CORESETSs
seem similar at first glance, they are offset in frequency and
their internal configuration, i.e., how the DCIs are recovered
from the PDCCH symbols, is substantially different. This is a
challenge for a passive sniffer, which needs to infer the control
channel configuration.

DCI includes the frequency and time resource allocation,
i.e., the number of PRBs and over how many OFDM symbols,
and the Modulation and Coding Scheme (MCS) used for
the transmission [4, p. 118-121]. Different DCI formats are
defined in the standard, with separate DCI formats for uplink
and downlink, and for different use cases. For example,
PDSCH scheduling uses DCI Formats 1_0 and 1_1, whereas

Format 3_0 and 3_1 are used for sidelink scheduling [4,
p- 86]. Naturally, UEs need to know which DClIs are directed
to them, this is indicated by the RNTI. The RNTI spans
0 to 2! — 1, with a subset of values being reserved for
common cell information, for instance, values 65534 and
65535 for paging and system information respectively. For
user-specific communications, the RNTT used is the Cell-RNTI
(C-RNTI), which is assigned to a UE during random access [5,
p- 56,94]. This C-RNTI is linked to a RRC connection, and
a new C-RNTI is assigned every time an RRC connection is
setup. Unless mentioned otherwise, we will refer to C-RNTI
as simply RNTI for the remainder of the paper. The RRC
connection, and consequently the RNTI, is released by the
gNB after the UE is inactive for a period of time configurable
by the operator. As scheduling information is broadcast in the
cell, and not protected, any passive sniffer can theoretically
obtain the resource scheduling of all UEs in a cell. However, as
discussed later, the RNTI is not sent explicitly. A UE knowing
its own RNTI can confirm a DCI match, but it is a more
challenging task for a sniffer as explained in Section III-A.
The first step a UE needs to perform to retrieve a DCI
is to determine to which physical resources it has been
mapped to. The minimum physical resource unit in PDCCH
is termed Control Channel Element (CCE), and it consists of
six Resource Element Groups (REGs), where each REG is one
PRB in one OFDM symbol. Out of the 12 subcarriers that form
one REG, three are dedicated to the PDCCH Demodulation
Reference Signal (DMRS), which are used as pilot subcarriers
to perform channel estimation. REGs can be bundled accord-
ing to a given REG bundle size L € {2,3,6} and bundles
can in turn be interleaved over the bandwidth of the CORE-
SET. CCEs can be aggregated, depending on the Aggregation
Level (AL), to accommodate different DCI sizes and adapt
to channel conditions by adding redundancy. The number of
aggregated CCEs to form one DCI can be 1, 2, 4, 8 or 16
CCEs. The PDCCH DMRS can be configured per UE, through
the upper layer parameter pdcch—-DMRS-ScramblingID
€ {0,...,2'6 — 1}, which is used as part of the seed value
for initializing the pseudo-random DMRS sequence of OFDM
symbols [6, p. 98]. We will use the notation ScramblingID for
pdcch-DMRS—-ScramblingID for the rest of the paper.
The process to obtain the DCI from PDCCH symbols is
depicted in Figure 2. Additional details can be found in the
5G standard [4], [6]. For a given AL and CCE-REG mapping,
the QPSK symbols are demodulated and the output bits are de-
scrambled with a sequence generated from a Gold sequence of
length 31 initialized with ¢;it = (npn77-2'% +n7p)mod23!,
where for a user-specific case, nyp is the upper layer pa-
rameter ScramblingID, or the cell ID otherwise. Note that
in 4G, the scrambling sequence was cell-specific, whereas in
5G this sequence is user-specific, and 4G used convolutional
coding instead of polar coding. Subsequently, de-scrambling,
rate matching, sub-block de-interleaving and polar decoding
are performed. Polar decoder parameters and rate matching,
performed by either puncturing, shortening or repetition, de-
pend only on the aggregation level and DCI size. After an

additional level of de-interleaving, used to distribute the CRC
bits among information bits, the UE confirms that the DCI is
intended for it by XORing its RNTI with the last 16 bits of
the 24-bit CRC and checking correctness. The final DCI bits
are obtained after extracting the 24-bit CRC in 5G, whereas
in 4G this CRC consisted of only 16 bits. These differences
provide both challenges and opportunities.

III. 5G SNIFFER: CHALLENGES AND TECHNIQUES

We introduce our tool 5GSniffer, which is, to the best
of our knowledge, the first open-source' implementation of
a promiscuous 5G control channel sniffer for 5G networks.
5GSniffer provides access to the resource scheduling infor-
mation of all users operating within a live 5G deployed
gNB. Given the flexibility in 5G deployments, our tool is
configurable for different 5G configurations, such as different
SCSs, CORESET configurations, and BWPs. Moreover, it can
decode the control channel from both Non-Standalone (NSA)
and Standalone (SA) 5G deployments.

As we will discuss in Section III-A, decoding 5G control
channel of all users in a cell raises significant new challenges
that did not exist in LTE. In order to address these challenges,
and some of the maturity and stability issues of existing 5G
RAN open source implementations [20], [55], we opted for
a clean-slate design and implementation supported by our
optimizations and scalability techniques. This decision also
frees us from design limitations that we would encounter had
we implemented our tool on top of existing 5G RAN open
source code. As such, our tool is designed for a dedicated
purpose, efficiently decoding the 5G control channels of all
users in a cell. Note that developing a sniffer is very different
from implementing a control channel decoder for a single user,
where all parameters for decoding are known.

5GSniffer is a passive tool and follows the principles that
a UE, connecting to the network, would perform to obtain
system information, as described in Section II-B. However, it
will lack some of the control information communicated to
the UEs in encrypted RRC messages and requires additional
mechanisms to efficiently overcome such limitations. At a
high-level, in order to decode the control channel, 5GSniffer
requires time and frequency synchronization with the gNB
downlink transmission, as well as basic cell information. This
is achieved by making use of the information provided by
the always-on unprotected 5G signals. Once this is achieved,
5GSniffer searches for possible DCIs while continuously
maintaining synchronization with the gNB cell. Further details
on the operation of our tool are provided in Section III-C.

Although 4G control channel sniffers have been imple-
mented in the past [36], [15], [22], devising an efficient 5G
control channel sniffer is not a trivial task. This is due to pecu-
liarities of the 5SG NR scheduling and configuration flexibility.
For instance, the encrypted signaling of the RRC layer of 5G
NR information element fields such as the ScramblingID as
well as CORESET and PDCCH, makes developing a control

IThe code will be made available at: https:/github.com/NorbLd/5GSniffer

channel sniffer significantly more challenging compared to
LTE, and a brute-force approach proves unreliable. Thus, our
proposed techniques and optimizations are vital to realize an
effective 5G sniffer.

A. Challenges

In 4G LTE, the control channel configuration was conveyed
through the Physical Control Format Indicator Channel (PC-
FICH), which was transmitted at the start of each subframe,
and was easily accessible to a passive sniffer. The information
contained in the PCFICH informs UEs of the number of
OFDM symbols used for PDCCH. In contrast, 5G NR’s phys-
ical layer flexibility offers multiple configurable parameters,
which requires dedicated signaling. As such, 5G removed the
PCFICH, and parameters such as CORESET and PDCCH
configuration, or search space configuration, are explicitly
configured through the upper-layer RRC. This information
can not be accessed by a passive sniffer, because the RRC
messages are encrypted. Therefore, our sniffer needs to blindly
determine the configuration of the control channel for a given
cell and user. The challenges are the following:

CORESET Physical Configuration. A passive sniffer first
needs to determine where to find the PDCCH. The unknown
parameters in a CORESET configuration are the frequency and
time domain resources allocated to the CORESET, i.e., number
of PRBs and number of OFDM symbols the CORESET spans,
the ALs used in the CORESET, and the CCE to REG mapping.
DCI Size. DCI formats that include scheduling for a given UE
are scrambled with the UE C-RNTI. There are four formats
with different DCI sizes that include scheduling in a cell:
Formats 1_0 and 1_1 for the downlink, and 0_0 and 0_1 for
the uplink. Formats 1_0 and 0_0 are referred to as fallback
formats, because they are known without further configuration,
and can be used to schedule resources for a given UE or
for common resources (System Information, paging, random
access). On the other hand, formats 1_1 and 0_1 have variable
sizes depending on the cell configuration, and the DCI size is
not known a priori to the passive sniffer. The DCI size ranges
from 12 to 140 bits, and will determine parameters in the rate
matching and polar decoding blocks of the DCI decoder.

RNTI and ScramblingID. Apart from cell-specific parame-
ters, a sniffer needs to blindly decode user-specific parameters
such as RNTI and ScramblingID. This raises two key issues:
computational complexity, and a high false positive rate. The
RNTTI is a 16-bit identifier that uniquely identifies a user within
a cell, and it is XORed with the 16 last bits of the 24-bit
CRC for 5G, or 16-bit CRC for LTE. However, there is a
particularity in 5G NR that greatly complicates the task of
retrieving a DCIL. In LTE, the RNTI was only used to XOR
with the CRC, whereas in 5G NR the RNTI is also used
as one of the inputs of the scrambling sequence used to de-
scramble the PDCCH bits after QPSK demodulation, as shown
in Figure 2 [6, p. 99-100]. Thus, although in 4G the RNTI
was not a necessary input to perform DCI decoding, and it
was obtained after de-masking the RNTI from the CRC, this
is not the case for a 5G DCI decoder. To further complicate the

task of a passive control channel decoder, the other input to the
scrambling sequence used is the ScramblingID, which is also
16 bits and configured through an RRC-encrypted message.
Therefore, a 5G sniffer decoder would have to brute-force 23!
scrambling sequence combinations to determine the RNTI and
ScramblingID, while not knowing if the scrambling sequence
was correct until checking the CRC in the last step of the DCI
decoding, which involves executing the polar decoder.

Due to the number of unknown parameters to a passive
listener, a naive approach, such as brute forcing, would require
to perform the decoding process, assuming the CORESET is
known, for: each aggregation level (4 bits), each ScramblingID
and RNTI (16 bits each) and DCI size, which ranges from 12
to 140 (8 bits). This adds up to 2** combinations, in order
to decode each DCI from the PDCCH. This, apart from a
computational complexity problem, creates also a reliability
problem. As described in Section II-C, a user will consider a
DCI valid when the CRC check is correct. The likelihood of
obtaining a correct CRC check when the data is in fact not
correct (false positive) is very low in the normal operation of a
user, as all parameters for decoding are known. However, this
is not the case for a sniffer that tries to blindly decode a large
set of unknown variables. We find that the number of false
positives increases significantly when trying all combinations
by brute-forcing. In order to quantify the false positive rate,
we carry out a set of experiments by performing brute-force
decoding of all combinations of RNTI and ScramblingID (232
values), over a set of DCIs. We find that, on average, the
number of false positives found per DCI is 256.3. A passive
attacker can not discern which -if any- of these found correct
DCIs are valid. Thus, additional techniques and optimizations
are needed to implement a reliable control channel sniffer.
Channel Estimation. Lastly, apart from the difficulties of
retrieving the DCI, a passive sniffer needs to maintain correct
time and frequency synchronization with the 5G gNB and
perform channel estimation and equalization to decode PD-
CCH. Although maintaining synchronization can be achieved
by tracking the broadcast SSB signal, an additional chal-
lenge arises when it comes to estimating the channel for
PDCCH equalization. 5G does not transmit a periodic cell-
wide reference signal. Instead, the data and control channels
are interleaved with DMRS. Therefore the PDCCH region is
interleaved with PDCCH DMRS, that can be used for channel
estimation. However, the sequence of pilots is generated with
ScramblingID as an input parameter, which is unknown to
the passive sniffer, and the sniffer needs to estimate the
channel with unknown PDCCH-DMRS pilots. As we will see
in Section III-B1, this is both a challenge and a side-channel
attack opportunity for a passive sniffer.

B. Developing an Efficient 5G Control Channel Sniffer

Due to the aforementioned challenges, developing a 5G
sniffer requires multiple levels of optimization and novel tech-
niques. We now describe some of the techniques we developed
to meet the challenges of an efficient control channel sniffer.

1) Optimizing DCI decoding: One of the biggest challenges
is to efficiently obtain scrambling parameters, RNTI and
ScramblingID, without brute forcing the 31 bit scrambling
sequence. We devise novel techniques and optimizations by
carefully analyzing 5G NR mechanisms details.
Determining ScramblingID. As discussed earlier, determin-
ing this parameter is crucial as it is part of the scrambling
sequence following QPSK demodulation. Thus, brute forcing
would requires executing the entire DCI decoding chain (see
Figure 2) for each possible value. However, we note that
the ScramblingID is also used as an input parameter for
the pseudo-random sequence used to generate the DMRS
accompanying the PDCCH [6, p. 107]. The PDCCH DMRS
pseudo-random sequence is generated with the following seed:

c= (2V(Nglotp! 414-1) (2N p+1)4+2N;p) mod 23¢ (1)

sym 'Ys,f

where [is the OFDM symbol within the slot and n{ ; is the
slot number within a frame. N;p is equal to the ScramblingID
for user-specific DClIs, or the Cell ID value otherwise. Note
that here, N;p is the only unknown parameter, as the sniffer
is synchronized to the 5G gNB base station. We exploit the
fact that ScramblingID is used as an input to generate the
DMRS sequence in two ways: (1) Our sniffer determines the
value of ScramblingID by computing the correlation between
the 5G gNB DMRS pilots and offline pre-computed DMRS
signals generated from all ScramblingIDs. In this way, the
ScramblingID can be determined before starting DCI decod-
ing, and brute forcing this value is substituted by computing a
correlation, a dot product that can be implemented very effi-
ciently with SSE/AVX support. (2) We speed-up the decoding
of DCIs and reduce the number of false positives by reducing
the number of CCEs and ALs where DCI needs to be decoded
from the output of the correlation instead of blindly trying all
possibilities, as an acceptable DCI will be accompanied by a
valid DMRS. The speed-up provided by this optimization can
be of up to 2 orders of magnitude.

Exploiting redundancy in DCI encoding. After de-
scrambling, PDCCH bits are passed through the de-matching
block, which matches the size of the input bits F, to the size
of the input bits of the polar decoder, N. Rate de-matching
input spans a set of values depending on the aggregation level,
E = AL-108 bits (since each CCE carries 54 QPSK PDCCH
symbols). Thus, E can take values 108, 216, 432, 864 or
1728 bits. On the other hand, the input size of the polar
decoder, IV, can only take specific standardized values for the
downlink control channel polar decoder, N = 128,256,512
input bit rate, which depends on the DCI size, K, and the
aggregation level, AL, and is calculated through a set of
formulas defined in the standard [4]. Rate matching can be
performed either by puncturing, shortening, or repetition. We
will focus on the repetition mode, which is used when & > N.
In this scheme, after polar coding, the first £ — N bits are
repeated at the end of the bit sequence to add redundancy and
match the number of bits necessary for a given aggregation
level. We exploit this redundancy of the repetition scheme
to determine the correct scrambling sequence. To do so, the

guessed scrambling sequence is determined as the sequence
that provides maximum likelihood between repeated bits after
de-scrambling. This removes the need to complete the entire
DCI decoding chain and speeds up the decoding per each DCI
by more than one order of magnitude. As ScramblinglID is
known from our previous technique, only the RNTI needs to be
extracted. Naturally, this optimization can only be employed
when there is a repetition. As AL values 8 and 16 contain
I = 864 and 1728 bits respectively, this optimization always
works for these aggregation levels. For AL values 4 and 2
this technique depends on the DCI size, K, which needs to
be between 12 and 33 bits long for AL 4 and between 12 and
17 for AL 2. For AL 1, repetition is never used. Note that
this technique is more beneficial the higher the AL, as the
computation effort of blindly decoding DCI increases with the
number of bits to process.

Prioritization of RNTI processing. In order to speed up
the detection of a valid RNTI, we implement a priority list
for RNTIs to be tried, which is reordered based on recently
successfully decoded RNTIs and their frequency. In this way,
the RNTI list is ordered by the likelihood of RNTI appearing
again. To determine this likelihood we verify if the RNTI
is still active by how recent the last communication with
the user was, i.e., below the RRC idle timing, and how
frequent it has been recently. This is motivated by the fact that
users communicating non-sporadically, e.g. consuming media
services or during a video call, will have resources scheduled
more frequently [15], [22]. The speed-up provided by this
method depends on the RNTI distribution in the cell, but it can
provide a speed gain of approximately 4 orders of magnitude.
Utilizing prior/side information. We conducted a measure-
ment campaign of 5G configurations for different operators
(e.g., T-Mobile, AT&T, Verizon, Vodafone), 5G configurations
(SA and NSA), and at different locations (North America and
Europe). We obtained interesting findings about the config-
uration of CORESET parameters. For the ScramblingID, we
found only three different configurations used across countries.
We conjecture that these configurations are set to certain
manufacturer-specific defaults. Beyond the implications for
fingerprinting of manufacturers, and enabling manufacturer-
specific attacks, the limited configuration enables further op-
timizations of the sniffer. The first configuration we found
applies to all users equally, namely that ScramblingID = 1008
+ CellID. The second configuration we found is also cell-
wide; here the ScramblingID is set to the Cell ID value. The
last configuration is the most interesting, as the manufacturer
sets the ScramblingID to the user’s RNTI plus the Cell ID.
This has very interesting implications, as in this case by only
computing the correlation with the DMRS symbols, we can
simultaneously infer the RNTI and ScramblingID. Therefore
the RNTI does not need to be blindly decoded through the DCI
decoding procedure. Moreover, by analyzing a large number of
RNTI assignments, we observed that some operators only use
a subset of the RNTI space to assign RNTIs, for example,
RNTI € {15000, --,25000}. Prioritizing this subset then
reduces the search time as expected.

PDCCH
Symbols
e OFDM PDCCH Flow
T Samples Symbols 1
Channel #>
SDR Synch. Mapper I DCI
PDCCH Flow
N

Fig. 3: Simplified schematic of the sniffer operation

2) Determining the cell configuration: Before decoding the
DCI, our sniffer needs to learn the cell CORESET config-
uration. This can be achieved by initially blindly scanning
the network, or by obtaining prior information from a device
with access to the network. In case that prior information
is not available, our sniffer obtains initial information from
the MIB, which configures CORESET 0, and from SIBI,
which already contains information of the initial BWP and
CORESET configuration. Additional configured CORESET
information can be obtained by performing an initial attach
procedure to the gNB, and listening to a RRC Setup message
from the gNB [7, p. 283]. This does not require an operator
valid SIM card, as this message is transmitted prior to UE
registration. However, some additional CORESETs might not
be configured until successful registration, in these cases our
5GSniffer can be used to infer this information blindly. This is
performed by scanning for DCIs with all possible CORESET
configurations, which will map the cell configuration. We note
that in order to map the CORESET configuration, including
parameters such as CORESET bandwidth and duration, the
sniffer only needs to initially scan for the PDCCH DMRS
sequence by correlating with pre-computed values. Although
the configuration mapping could take minutes, we found
CORESET configurations to be static in the current state of 5G
deployments, with the same configuration being used within
a span of 6 months. Therefore, even if the cell configuration
would have to be determined again, this would be a rare event.

Alternatively, it is possible to extract cell configuration
information from smartphones or USB modems with a Qual-
comm chip by using the Qualcomm Diag protocol to commu-
nicate with the device baseband. Tools such as QCSuper [45]
or Mobilelnsight [39] use the Diag protocol and extract raw
cellular frames, which includes RRC protocol messages. Thus,
a device such as an inexpensive 5G modem or smartphone
with an operator SIM card (e.g. an expired pre-paid SIM) can
extract the encrypted RRC messages carrying the cell config-
uration and use this input for 5GSniffer initial configuration.

3) Architectural design optimizations: In addition, we also
designed and optimized the SGSniffer software and implemen-
tation for efficiency and scalability. 5GSniffer is written in
C++ and the software is designed for parallelism and even
distributed deployment. We designed it with multi-threading
as a core functionality to enable computation speed-up. We
use ZeroMQ to send different PDCCH symbols to different
threads and perform DCI decoding computations in parallel.

— DL Rate (Kbps)
—— UL Rate (Kbps)

Throughput (Kbps)

0 10 20 30
Time (seconds)

Fig. 4: Target user decoded data rate pattern

Matlab-based
15.3 hours

5GSniffer
172 ms

5GSniffer Unoptimized
4min27sec

TABLE I: Decoding time of a 200 ms recording for a
Matlab-based implementation, and 5GSniffer with and without
optimizations

Moreover, ZeroMQ can be potentially used to distribute the
processing load across multiple servers.

C. Sniffer Flow of Operation & Performance

Figure 3 shows a process flow representation of our sniffer.
It can operate in an optimized real time mode or an in-depth
mode, taking either an I/Q sample stream from an Software
Defined Radio (SDR) or file source as input. To decode the
DCIs from the I/Q stream, the following steps are performed.

o The SDR block captures 1/Q samples at the bandwidth
and center frequency configured and passes them to the
Synchronization block.

¢ The Synchronization block is in charge of finding a cell
and synchronizing to it by finding SSB as described in
Section II-B. Then, after performing OFDM demodula-
tion, the symbols are passed on to the next block.

e The Channel Mapper block determines which OFDM
symbols contain PDCCH symbols based on the config-
ured CORESETs. This block manages the thread pool to
distribute the PDCCH symbols across multiple threads.

o The different parallelized PDCCH blocks will process
each assigned PDCCH symbol based on their configura-
tion. This includes correlating with PDCCH-DMRS and
decoding possible DCIs using the optimizations described
in Section III-B1. Finally, the DCIs output by the PDCCH
blocks are logged or passed to attacks processing blocks.

In order to provide a decoding time benchmarking com-
parison, we leverage the MATLAB 5G Toolbox capabilities
and develop a basic Matlab-based brute-force sniffer. We
then process the same 200 ms recording on Matlab and on
our 5GSniffer with and without optimizations. The results
provided in Table I display a computational speedup of more
than 5 orders of magnitude faster than an implementation
based on the Matlab 5G Toolbox, and 3 orders of magnitude
faster than a brute force approach. In order to validate our
DCI decoding accuracy, we generate SG waveforms containing
DClIs and use it as input to our sniffer. Using this ground truth

information, we verify that our sniffer does not miss DCIs
under ideal channel conditions.

IV. ATTACKS ON 5G PRIVACY

Our tool enables decoding of the control channel infor-
mation, and outputs resource scheduling information of all
UEs served by target cells. To illustrate both the security
capabilities of our tool and vulnerabilities in the 5G ecosystem,
we disclose a set of attacks that leverage the information
extracted with our tool.

A. Network Traffic Analysis

Control channel scheduling information includes the allo-
cated resources in time and frequency, and how many bits
each resource carries (derived from the MCS). From this
information, a passive sniffer can compute the number of bits
allocated to a user for an instant of time, i.e., the data rate, for
both downlink and uplink. By tracking this information over
time, an adversary can extract traffic patterns and monitor a
user of interest. This can also serve as a stepping stone for
follow-up attacks, such as encrypted traffic fingerprinting [34],
website fingerprinting [47] or video identification attacks [10].
Figure 5 represents an example of traffic patterns recovered
by our sniffer by listening to the resource allocation of a
5G gNB which our test device is attached to. We perform
different types of traffic in our test device, a voicecall, which
is characterized by a sustained downlink and uplink traffic
between 20 and 100 Kbps, a videocall, which requires higher
throughputs depending on the video quality, video streaming,
which can be differentiated by consistent downlink traffic,
between 150 and 300 Kbps in this case, and low uplink
traffic, and finally a file transfer, which is characterized by
a substantial spike in data rate over a short period of time. In
the next section we describe how our tool and traffic analysis
capabilities can be used to carry out a more sophisticated
attack, identifying a target user through the RNTL

B. Abstract User Identification

In a user identification attack, the goal of the adversary
is to determine whether a given user is present in a certain
area. To achieve this, the adversary must be able to link the
identity of the user to the identity of their device. Such attacks
have been demonstrated in previous work for LTE, UMTS
and GSM using both active and passive approaches. Active
approaches typically operate by setting up an International
Mobile Subscriber Identity (IMSI) catcher [56] and intercept-
ing the victim’s IMSI or TMSI whenever they connect to the
attacker’s base station. On the other hand, passive attacks
attempt to link these identifiers to some application-layer
identifier, for example by generating traffic to a phone number
and observing the resulting downlink paging message [18].

We now describe an attack that allows an adversary to iden-
tify the presence of a particular user connected to the 5G RAN
using our sniffer. This attack relies solely on the physical-
layer RNTT and therefore does not require knowledge of any
higher-layer identifiers such as the Globally Unique Temporary

Identifier (GUTI), IMSI, or International Mobile Equipment
Identity (IMEI) as in previous attacks. As such, usage of the
SUCI, IMEI randomization, or changing the SIM card do not
prevent the victim from being tracked. Furthermore, our attack
is completely passive on the radio level, and cannot be detected
by inspecting messages transmitted on the 5G RAN.
Adversary Model. The following requirements must be met
in order to perform the attack:

o The adversary is able to successfully receive downlink
messages intended for the victim, i.e., they are within
range of the gNB that is serving the victim’s UE. This
requirement is more relaxed compared to for example
IMSI catching [56], downgrade [52], or other Man-in-the-
Middle (MitM) attacks [17], [49], where the adversary
must be in proximity to the victim (e.g. to have them
connect to a rogue base station).

o The adversary has knowledge of at least one virtual iden-
tity of the victim, for example a Twitter handle, Facebook
account, email address, or phone number. These can
typically be acquired through Open-Source Intelligence
(OSINT) or social engineering. In addition, the victim
must have an app installed on their smartphone that
automatically interacts with any one of these identities.
Most modern smartphones, by default, receive push no-
tifications whenever an identity is interacted with.

e The victim has mobile data enabled, and is able to
receive IP traffic for the apps associated with their virtual
identities through 5G RAN at a rate higher than the idle
timer. This restriction is discussed later in more detail.

To perform the attack, the adversary uses our 5G sniffer to
eavesdrop on the PDCCH of the gNB serving the victim. This
can be achieved by placing a SDR running our tool within
range of the gNB. Next, the adversary artificially generates
downlink traffic towards the victim by interacting with any of
their online identities. For example, the adversary could send
a series of instant messages, tweets, or emails to the victim.

Since the adversary knows both the interval and size of the
transmitted messages and since they are received automatically
by the victim’s smartphone (e.g., through push notifications),
this activity can be correlated to the downlink resource alloca-
tions to determine the RNTT used by the victim. Consequently,
the adversary can confirm the presence of a certain online
identity in an area, without relying on high-layer identifiers.
Figure 6 shows a graphical representation of an example
attack where an adversary transmits Signal messages at a 2.5-
second interval towards a target phone number. The resulting
downlink resource allocation pattern for the targeted user’s
RNTT is easily recognizable as shown in Figure 4.

It is important to note that in order for the attack to succeed,
the apps running on the device of the victim must be able to
receive data at a higher rate than the idle timer configured
by the mobile operator. This timer determines when a UE is
considered idle and a new random access procedure must be
performed, thereby assigning a new RNTI to the UE. Since
the adversary wishes to identify a user based on the sequence

50

Throughput (Kbps)

— DL Rate 1500
— UL Rate

— DL Rate
— UL Rate

1000

100 500

VAN

0 10 20 30 0 10 20
Time (seconds) Time (seconds)

(a) Voicecall (b) Videocall

30 0 10 20 30 0 10 20 30

Time (seconds) Time (seconds)

(c) Video streaming (d) File transfer, 10 MB

Fig. 5: Measurements carried out with 5GSniffer of throughput traffic patterns over time enable network traffic analysis

1. Adversary sends Signal messages to +1 (555) 111111

>
Internet gNB
&

o0

A OO
ST @
%60 (\6
(@\& Q@Cﬁ s +1 (555) 222222
7’
o / Qo‘&‘f\/
Q‘b%%\ ((\&0 T 7
6‘%%‘%‘\@\@ = 2. Victim receives messages
3}510@&\3 7 1
. 3 o
+1.(555) 333333 . Mactm

A
i Adversary

Fig. 6: Example of a user identification attack performed
by sending Signal messages and passively sniffing using our
tool. The adversary infers the victim’s RNTI by correlating
downlink resource allocations to transmitted Signal messages

+1 (555) 111111

of downlink messages containing the victim’s RNTI, it should
remain the same for at least the length of this sequence.
Note that the attack described is vastly different from
a purely-physical attack, where an adversary using a setup
similar to a radar, with highly directional antennas capable
of discerning the location of signals emitted by other devices,
would focus on the uplink (lower power) to find a specific user.
In such scenario, an attacker would have to scan all directions
with very narrow beams and resolve all users in a cell. Also,
an attacker should be able to predict the exact time slot at
which a message will be acknowledged by a specific user. All
these challenges are hard to overcome in real scenarios.

C. Stealthy Tracking by Exploiting Privacy-Focused Messen-
gers

While the above methods for generating downlink traffic
towards a specific user are effective, they are not very stealthy;
most apps interacting with the online identities will show a no-
tification to the user whenever a new message is received. For
example, on most modern smartphones, sending an email to a
victim’s email address will by default result in a notification
from the installed mail app, thereby tipping off the target.

In previous works, several methods have been proposed that
allow an adversary to inject traffic towards a user, such that
they are not notified. These methods include placing silent
phone calls [37], sending silent SMS [44], [18], sending a

WhatsApp typing notification [50], and sending messages to
the Facebook “Other” folder [50]. However, these approaches
have several shortcomings in the context of tracking a user
on the 5G physical layer, as they were primarily designed
to trigger paging messages rather than generate downlink
traffic. Specifically, placing a silent phone call or triggering
a WhatsApp typing message does not generate significant
downlink resource allocations, which makes it hard for an
attacker to uniquely differentiate the target RNTI. Further,
silent SMS and phone calls can be trivially detected on phones
with an exposed Qualcomm DIAG interface, using mobile
security apps such as SnoopSnitch [54]. Finally, while sending
a Facebook message to strangers does not raise a notification,
the number of messages that can be sent in this way is
limited [21], and the victim can still see the messages sent to
them in the Facebook app [50], which could raise suspicion.

To overcome these issues, we show that an adversary
can exploit a design vulnerability in privacy-focused instant
messaging apps in order to stealthily inject traffic onto the
network, without triggering notifications. This allows an ad-
versary to track users over long periods of time without their
knowledge. We provide a proof-of-concept implementation for
Signal and Telegram. These apps were chosen because their
client implementations are open source, and can therefore be
modified to incorporate custom functionality. They also have a
very large user base in excess of 500 million users. However,
other messenger apps may be vulnerable as well. For instance,
WhatsApp relies on the Signal Protocol [59].

1) Signal: The Signal protocol uses the Double Ratchet
algorithm for exchanging messages using a shared root key. If
the two communicating parties do not yet possess a root key, it
is first established using the X3DH protocol [42]. The recipient
does not need to be online for the X3DH key exchange to
take place, as the sender can download the recipient’s “prekey
bundle” containing their public key from the Signal server.
As such, the sender can immediately send an initial message
that is end-to-end encrypted with an AEAD cipher to any
receiver [43, p. 6]. Since the phone number is used as the
account username in Signal, only knowledge of the recipient’s
phone number is required. We discovered that the Signal
client’s implementation of this protocol can be exploited by an
adversary in order to generate stealthy downlink traffic towards
the victim without triggering a notification. The attack was
successfully performed against the latest Signal version at the
time of writing (5.39.3 on Android and 6.40 on iOS).

To perform the attack, the adversary creates a modified
version of the Signal client where the initial message in a chat
is transmitted with a non-empty text field and an invalid MAC.
Alternatively, we found that the adversary can also create a
message that has an empty text field and valid MAC, but
is padded with arbitrary junk data. The larger the message,
the easier it will be for the adversary to detect peaks in the
downlink resource allocations. In practice, we found the size
of a single message to be limited to about 196 kB. Larger sizes
are rejected by the Signal server with a rate limiting error.

Since the message is end-to-end encrypted with an AEAD
cipher, the MAC or format of the message cannot be vali-
dated by the Signal server and is accepted. Next, the server
forwards the message to the victim, resulting in an increase
in resource allocations. Upon decryption, the receiver’s Signal
client finally discards the message due to its invalid format,
i.e. an empty text field or invalid MAC. Interestingly, with
this approach, delivery reports are still transmitted back to the
adversary, meaning the adversary can check whether or when
the stealth message was received. If the victim owns multiple
devices that use the same Signal account, a delivery report
will be sent for each device that received the stealth message.
Therefore, the adversary also learns the number of devices the
victim has Signal installed for the targeted phone number.

2) Telegram: Telegram makes a distinction between private
chats and secret chats. The latter being end-to-end encrypted
whereas the former is not. In order to start any type of chat,
the phone number of the victim can be used, analogously to
Signal. We first attempted a similar approach to the one we
applied for Signal, where invalid messages are sent through
an end-to-end encrypted secret chat towards the victim. On
Android, there is no notification for setting up the secret chat,
and the Telegram client replaces empty messages with the
string “Empty message”, while also displaying a notification.
However, by sending a message that is corrupted inside the
encrypted envelope, the message is silently discarded. On iOS,
a notification is shown that disappears after about two seconds.
The maximum size for messages in Telegram is 65535 bytes,
and since Telegram does not support end-to-end encrypted
group chats, they can only be directed towards a single user.

In order to overcome these limitations, we investigated
private chats as well. These chats are only ciphered between
the client and Telegram server. Unfortunately, since the server
can now inspect the contents of the message, the corrupted
message is detected and removed before forwarding it to
the victim. Therefore a different strategy must be employed.
By inspecting the source code of the Telegram client, we
discovered that messages have a disable_notification
flag, which when set prevents a notification from showing at
the receiver. Another feature in Telegram is that messages can
be remotely removed from a chat by the sender. An adversary
can combine these two features to send stealthy downlink
traffic of arbitrary size to any recipient by sending a large
message, e.g. an image, with the disable_notification
flag set, and then remotely deleting the message programat-
ically immediately after receiving the delivery report. We

900
800
700
600

©
o

90

120

Agg. PRBs
S

500

%3
S

150

400

D X B 6 P O b A o
o VP 7P 7@ o

Pattern periodicity (seconds)

X0 0 B % & N
LA S) 2

Pattern periodicity (seconds)
Fig. 7: Pattern identification correlation with varying sine wave
frequencies at two different times, shows a distortion of the
transmitted pattern frequency as a function of load

experimentally confirmed that the above method increases the
resource allocations for the victim proportionally to the size of
the message, without showing a notification on Android. Sim-
ilarly to our attack against secret chats, on iOS a notification
is briefly displayed despite the disable_notification
flag, but it disappears shortly afterwards. This was tested
against the latest versions of Telegram at the time of writing,
i.e., version 8.7.4 on Android and 8.7.1 on iOS.

D. Identifying Traffic Patterns from Scheduling Information

An attacker can use stealthy messages to generate downlink
traffic to a target user with unique patterns. The pattern needs
to take into account distortion artifacts of the scheduler, e.g.,
delay and reduced number of resources allocated if a cell is
congested, and noise from background traffic due to other
apps. Therefore, the attacker has to design a traffic pattern
robust against noise and variable scheduler delays.

In our evaluation, we use the pattern depicted in Figure 4. It
sends messages every 2.5 seconds, ensuring the user remains
with an active RRC connection, as the communication is more
frequent than the RRC inactivity timer [15], and the peaks
are sharp and distanced, thus distinguishable under traffic
noise. This pattern can be modeled as a modulated on/off
signal with amplitude A and period T'. To identify the pattern,
the attacker computes the resource allocation over time for
a given RNTI, and correlates with the expected pattern. We
use a sine wave for the filter-matching pattern, to tolerate
variations in the cell load. In particular, when the traffic peaks
spread over time, due to increased traffic, they still partially
contribute to the correlation unlike when using a square wave
function. Moreover, we find that due to scheduler delays,
specially under higher loads, the periodicity of the computed
pattern has a variable offset as high as half a second, and
the amplitude of the signal can also vary. This can be seen
depicted in Figure 7. As such, the correlation is computed
over a set of sine waves with varying frequency around the
expected pattern’s frequency, and the maximum correlation
across frequencies is taken. Furthermore, the mean of the
pattern is subtracted to eliminate background traffic noise.

V. EVALUATING 5G TRACKING IN THE WILD

To validate the practicality and reach of our attack, we
perform an experimental validation in a real world scenario,
such as the one represented in Figure 6.

(=}
oo
\

>
=
3
<
)
206
o
: 10
204+ — 10am
E y — 12 pm
E
g 0.2 -/ 5pm
= — 11 pm
O
0 | | | | |
0 5 10 15 20 25

Active RNTI Time (seconds)

Fig. 8: Empirical cumulative distribution function of the time
span of RNTT active connections at different times of the day

A. Experimental Setup

Our experimental setup is composed of the following el-
ements: the adversary, which consists of a laptop running
both our modified messenger (Signal/Telegram) client sending
stealthy messages and our control channel sniffer, 5GSniffer,
connected to a SDR, a USRP B210. We record and store
the raw 1Q samples in volatile memory (ramdisk) until the
successful conclusion of each of our experiments, and run
our decoder offline. This ensures that users’ privacy is never
compromised. Further information on ethical considerations
can be found in Section VI-D. As for the victim device, we
choose a smartphone with 5G capabilities, a Google Pixel 5,
due to its popularity and 5G SA mode compatibility. Moreover,
its Qualcomm chipset allows us to extract the ground truth
RNTI allocated to the device using Network Signal Guru [46].
We use the ground truth RNTI to validate if our attack was
successful. Lastly, the commercial 5G gNB giving service to
our 5G smartphone operates in 5G SA mode in band 71
(600 MHz) operating over a 10 MHz bandwidth with SSB
periodicity 20 ms and SCS 15 kHz. The cell is configured with
2 different CORESET configurations over this bandwidth and
4 different DCI sizes, two for uplink and two for downlink.

B. Results

To estimate for how long an adversary needs to perform
the attack, we first analyze how long RNTIs stay active
in an operator cell. We use our 5G sniffer to derive the
time span of each RNTI active connection. We perform this
measurement for different times of the day to measure the
RRC connection time as a function of number of users and
traffic activity. Figure 8 presents the empirical cumulative
distribution function of the RRC connection time. The average
number of users over the measurements are between 150 and
170 active users. We find some noticeable differences in the
duration of RRC connections at different times of the day.
Noon and 5 pm exhibit similar distributions, with 64% of the
communications lasting less than 15 seconds, having sporadic
communications. This value drops to 58% and 49% for 10 am
and 11 pm respectively, and the proportion of communications
that last longer at night is higher; although there are less
communications, 40% of them last longer than 20 seconds

I Std. Load
[High load

o
)

o
o

o
)

Detection probability
o
~

S

7.5 10 15 30
Exposure time (seconds)

Fig. 9: Probability of detecting the victim for high (peak hour)
and standard (off-peak) cell load for different exposure times

for 11pm, whereas 32% of the communications at 10 am, and
27% of them at 12 pm or 5 pm last longer than 20 seconds.

Next, we evaluate the performance of our end-to-end attack
in a real world scenario. We place our target device under
coverage of a 5G gNB, the Signal-to-noise Ratio (SNR) of
the target device is between 8 and 20 dB SNR. While the
phone is attached to the network, we use our modified Signal
app to transmit our pattern described in Figure 4 by sending
stealthy 196 kB messages and using Network Signal Guru (for
ground truth purpose), we record the RNTI assigned to our
test device. We take spectrum recordings and using our tool
we infer the resource scheduling for all RNTIs in the cell. We
then compute the detection probability or true positive rate
(TPR), as the number of times we succeeded in identifying
correctly our test RNTI from the scheduling pattern across all
experiments per scenario. We carry out the experiments 100
times per scenario.

We analyze the impact of the network load and its implica-
tions on resource scheduling and on the attack performance.
We perform our experiment attack at two different times, when
the load of the cell is relatively high in our given location,
i.e., peak hour, and during off-peak hours. Figure 9 depicts
the detection probability as a function of the victim exposure
time to the attack for high and standard load. We find that
for very short exposure times, i.e., below 10 seconds, the
pattern is barely recognizable and the detection probability
is below 50%. However, already at 10 seconds of attack, the
probability of detecting the target user increases to 84% and
64% for standard and high load respectively. The detection
probability of the standard load case increases to 94% and
100% as the exposure time increases to 15 and 30 seconds
respectively, whereas the detection rate achieves 90% for 30
second exposure time for the high load scenario.

Similarly, we perform measurements to determine the False
Positive Rate (FPR) of user detection, defined as the probabil-
ity of detecting a user when the user is not present. Our results
show that the FPR is greatly reduced as the exposure time
increases. In this way, we find that for a very short exposure
time, 7.5 seconds, the FPR is 14.5%, and decreases to 7%
already for 10 seconds. This values further decrease to 4%
and 2% when the exposure time is increased to 15 and 30

I
]

o
o

o
o

Detection probability
(=)
N

7.5 10 15 30
Exposure time (seconds)

Fig. 10: Probability of detecting the victim while the user
is actively using the network, during a voicecall and video
streaming for different exposure times. For videostreaming,
our traffic pattern is generated with 196 kB or 1 MB messages

seconds respectively, indicating high accuracy with low false
positive rate for recordings of more than 15 seconds.

In order to analyze the impact of background traffic in
our attack performance, we actively generate traffic in our
target device while we perform our attack. We generate
traffic through two different means, a voice call and video
streaming, which has higher downlink resource requirements.
For the video streaming experiments, we evaluate the detection
probability by transmitting a pattern generated with 196 kB
and a pattern generated with 1 MB transmissions. Figure 10
shows the probability of detecting the victim UE for different
recording times for background traffic video and voice. From
the results we can see that background traffic has an impact
on the detection probability of our attack. However, for voice
traffic, an attacker is still able to detect the presence of its
victim 92% and 78% of the time for 30 and 15 second of
exposure time respectively. A user generating video traffic is
a more challenging scenario, as it is using considerable more
resources in the downlink, possibly overshadowing our pattern.
In this way, with a 30 second recording our attacker is able to
succeed 71% of the times, but this probability drops to 44%
for a 15 second recording. Our results show that the attack
can be performed reliably even in this challenging scenarios
if the traffic transmitted is increased. By transmitting 1 MB,
the probability of the attack is increased above 80% already
for a 10 second recording, and this value increases to 96% for
a 30 second recording. Note that although transmissions using
the modified Signal client have a limit of 196 kB, this can be
achieved using Telegram as described in Section TV-C2.

VI. DISCUSSION AND COUNTERMEASURES
A. Practicality of User Identification Attacks

In order to perform a user identification attack in practice
using the approach detailed in this paper, a number of chal-
lenges must be overcome, which we will now briefly discuss.

First, the attacker must continuously transmit data towards
the UE of the victim to prevent the RNTI from changing,
without hitting any rate limit of the used application. In

practice, this can be trivially achieved: the volume of data
does not need to be large, provided data can be delivered on a
frequent basis to prevent the RRC inactivity timeout (which we
observed to be configured between 10 and 30 seconds). In our
Signal and Telegram experiments, we did not hit a rate limit for
these apps as long as the instantaneous rate and single message
size is below some vendor-defined threshold, even after several
hours of transmitting. Nevertheless, it should be noted that the
user may use any combination of applications or protocols to
deliver data to a victim. In this work we only provide a proof-
of-concept for stealth messages using Telegram and Signal, but
we surmise the true attack surface to be much larger, especially
if the attacker is not interested in remaining covert.

Second, the attacker must be located near the victim’s
current gNB in order to sniff downlink allocations for their
RNTIL In practice, ideal locations to sniff could be determined
based on OSINT related to the victim (e.g. home town, EXIF
data, visited places on social media, etc.). In some cases, note
that the attacker may also be interested in determining whether
the victim is not in a particular location.

Finally, while this paper considered tracking a single target,
we postulate that tracking multiple targets would also be prac-
tical. For example, an attacker could create Signal accounts
using Google Voice or temporary SMS accounts, and send
different modulated traffic patterns towards each targeted user.

B. Additional Stealthy Messages Attacks

In this paper, we limited our experiments related to stealthy
tracking attacks detailed in Section I'V-C to the identification
and tracking of a specific target through the 5G RAN. How-
ever, we conjecture that the consequences of the discovered
vulnerabilities are more far-reaching, and can lead to addi-
tional attacks outside the scope of this paper.

Resource exhaustion attacks. A side-effect of stealthy mes-
sages such as the ones described in previous sections, is that
the receiving client application will perform some processing
in order to parse the message contents. In the case of Signal
for example, the client will first perform a MAC validation
and decryption of “196 kB of data, before the discarding the
data as invalid. Since these messages can be programatically
transmitted by an adversary on demand over a long period of
time, various resource exhaustion attacks can be performed,
such as exceeding a victim’s mobile data plan limits, waste of
memory and CPU cycles, remote draining of a victim’s phone
battery, and saturation of the operator cellular network.
Public chat group privacy. Both Signal and Telegram support
the creation of private and public chat groups (“New Groups”
with a shareable link for Signal, and “Public Groups” for
Telegram). An adversary could join a specific public group
and perform stealth messaging attacks in order to generate
downlink traffic towards all group members. Since certain
online communities use group chats to communicate and
coordinate (e.g., activists groups), the techniques described in
this paper could be abused by an adversary to identify, exhaust
resources, and locate individuals who are members of specific
communities of interest.

Non-cellular technologies. Stealth messaging attacks could
also lead to the linking of a phone number to other, non-
cellular identifiers, as long as the adversary is in a position to
passively intercept downlink traffic. For example, note that the
same principles discussed in Section IV-C could be applied to
identify the random MAC address of a phone connected to
an encrypted Wi-Fi network. This may even extend to wired
networks if the victim has a messenger app installed on a
desktop for example. We believe further exploration of this
topic would be an interesting avenue for future research.

C. Countermeasures

The fact that the RNTI remains static during an RRC
connection, and that the victim’s correct RNTI can be blindly
derived as described in Section III-B plays an important role in
enabling privacy attacks on 5G users. Given this observation,
we now propose a number of countermeasures to mitigate
these vulnerabilities. While some of these countermeasures
require changes on the specification level that would need to
be incorporated in a future 3GPP release, others can be readily
implemented by application developers.

RNTI obfuscation and randomization. Instead of using a
unique RNTI per RRC connection, the network could assign
multiple RNTIs and choose randomly which RNTIs to use for
each transmission, hindering traffic analysis per user for an
attacker. However, this approach would increase computation
overhead at the UE, who has to scan for multiple RNTIs.
Alternatively, the RNTI could be changed frequently during
an active RRC connection through secure communications. We
believe this to be feasible, as a new field newUE-Identity,
which is sent encrypted through upper-layers, has been in-
cluded recently for other purposes in the standard, and effec-
tively assigns a new C-RNTI [7, p. 28].

Increase scrambling sequence seed size. By increasing the
bit size of ScramblingID and the RNTI, which together form
the scrambling sequence seed, our attack would require more
correlations to uncover the ScramblingID and more decoding
iterations to brute-force the RNTI. Depending on the resources
of the attacker, this can make blind decoding the DCIs
computationally infeasible.

Alerting users and raising awareness. The previous two
countermeasures we discussed would require changes to the
5G standard in order to mitigate privacy attacks, which may
take a long time to implement. In the meantime, developers
of popular messaging apps could roll out a patch that notifies
users whenever an invalid message is received by the mes-
senger client. At the same time, awareness regarding identifi-
cation and tracking attacks should be raised such that a user
can recognize when receiving such notifications is cause for
concern. While these measures do not prevent an attack from
occurring, the fact that the adversary can no longer stealthily
perform the attack means that a user can decide to switch off
their mobile phone or report the incident to authorities. Similar
countermeasures were previously implemented for silent SM'S
attacks. An example is SnoopSnitch, an app that warns users
whenever a silent SMS is received [54].

Traffic shaping applications. In order to link a device
identity to a user’s online identity, our attacks rely on IP
data delivered towards the user’s device reliably. Application
developers could offer a secure mode where the notifications
are postponed or delayed by a random offset, mitigating
the traffic shaping capabilities of an attacker. While such
countermeasures have an impact on user experience, this may
be a trade-off that privacy-conscious users are willing to take.

D. Ethical Considerations

Since our experiments were performed on commercial 5G
networks, we put the highest level of care to ensure that
the users’ privacy is never compromised and no disruption
of regular service occurred. Specifically, for the operators,
we note that passive sniffing cannot disrupt their networks.
For the privacy attacks discussed in Section IV, experiments
were only performed using test phones under our control.
Stealth messages were only transmitted to phone numbers
owned by the authors, and traffic analysis was performed
only on the RNTIs of test phones. The correct RNTI to
monitor in this case was determined by extracting it from
the phone using Network Signal Guru [46]. The remainder
of collected data, such as the active RNTI time shown in
Figure 8, consists only of aggregate statistics about regular
users, which does not affect their individual privacy. While we
acknowledge that, in the process of deriving these statistics,
sensitive encrypted information of users could inadvertently be
contained within the gathered I/Q samples, these samples were
stored on a temporary in-memory storage medium (ramdisk),
processed only for the purposes outlined in this study, and
subsequently deleted after completion of our measurements.
This ensures no invasion of user privacy occurred or can occur
in the future. Finally, we disclosed the identified messenger
vulnerabilities to Signal and Telegram, following responsible
disclosure guidelines.

VII. RELATED WORK

Cellular control channel sniffers. The first work to present
a fine-grained control channel sniffer capable of decoding
active RNTIs and monitor downlink traffic is LTEye [36].
It was followed by multiple open-source tools that improved
the decoding performance, reliability and speed, such as
OWL [15] and FALCON [22]. Commercial sniffers are avail-
able, although scarce and expensive, such as Airscope [53] or
Wavejudge [32]. To the best of our knowledge, our work is
the first open-source efficient 5G control channel sniffer in the
literature that solves the new challenges in 5G DCI sniffing.
Detecting the presence of a user. User detection can be per-
formed actively, for instance by means of IMSI catching [56],
downgrade [52], or other MitM attacks [17], [47], [49], [18],
and recently, 4G stealthy user tracking by overshadowing
both downlink and uplink channels [35]. Passive localiza-
tion through unprotected broadcast channels has also been
extensively researched in cellular networks. Paging has been
exploited for user tracking since 2G. The authors in [37] show
its possible to track a specific user by performing multiple

silent phone calls to a target phone number and linking it to
a TMSIs that appears several times in the observed sniffed
paging messages, as TMSI is changed infrequently. Authors
in [50] demonstrate tracking paging attacks are also possible
in 4G networks, as the GUTI is not reallocated between
paging instances. They further expand paging tracking by
using stealthy messages generated through social media apps
instead of silent SMS, due to the availability of multiple
tools to detect such attacks. Even when GUTI is indeed re-
allocated, authors in [25] find that operators’ implementation
of GUTI reallocation in 4G is predictable and can be exploited
to track users. Moreover, authors in [27] show that the fixed
paging occasions (computed from IMSI) in 4G networks can
be exploited to associate a victim’s identity, e.g. phone number,
to paging occasion, allowing an attacker to determine the
presence of a user even when GUTI reallocation is enabled.
Furthermore, the authors also disclose a new attack that forces
the network to page a user with its IMSI in some exceptional
cases. Note that 5G enhanced the security of the paging
channel to mitigate given attacks. The paging occasion in 5G is
now computed from the TMSI [2, p. 35] instead of IMSI, and
the TMSI is now compulsorily changed after each paging [9,
p. 99]. Moreover, long-term identifiers such as IMSI cannot
be used as paging identities in 5G.

In the context of identifying users using radio network
identifiers, the authors in [47] show it is possible to map
the RNTI to the TMSI by listening to the random access
channel and retrieving the RRC Connection Request, which
includes the TMSI. However, the authors indicate it is not
a targeted attack as it does not link to a specific user unless
used in conjunction with previously mentioned paging attacks.
Moreover, as a precondition, the user needs to be idle and have
a valid TMSI. Specifically, our user detection attack does not
require any knowledge of such identifiers, and relies solely on
the RNTI. Furthermore, as the attack does not rely on paging
vulnerabilities, it is still valid in 5G systems, whereas other
paging attacks are no longer valid due to the paging enhanced
protection previously mentioned. Furthermore, our attack is
not constrained to idle users, and can be performed if the user
is currently active. Similarly to [47], the work by Jover [30]
mentions that it is possible in 4G to map the RNTI to the TMSI
by means of silent SMS, but does not provide experimental
evaluation of its effectiveness in the real-world, where many
challenges such as other user traffic interference or scheduling
inconsistencies can deem the mapping ineffective.
Additional user-privacy threats. Apart from compromising
user privacy through tracking users, cellular networks have
been target of multiple other attacks on user-privacy. For
instance, traffic fingerprinting, such as video identification [10]
or website identification [47], [34], eavesdropping calls [48],
DNS redirection to malicious websites [47] or exposing device
capabilities [51]. Many threats on security and privacy are a
consequence of cellular network design, such as unprotected
broadcast channels [28] or lack of integrity protection of
the control plane [49]. Thus, considerable efforts have been
devoted into developing mechanisms to automatically detect

vulnerabilities in cellular networks [31], [29], [33], [12].

VIII. CONCLUSION

In this work, we present the first open-source tool capable of
efficiently sniffing the 5G control channel, 5GSniffer. We dis-
cuss the challenges of decoding the 5G control channel, how it
is significantly harder than in LTE, and we present a series of
techniques we devise to provide real-time reliable decoding.
We also discover that privacy-preserving messengers, such as
Signal and Telegram, can be exploited to generate stealthy
traffic to a target user. We pair the traffic analysis of our
control channel decoder with stealthy messages to determine
the presence of a user in a cell. Our experimental evaluation
shows that our attack is reliable, and the success rate scales
with exposure time to the attack. The attack reaches a 94%
true positive rate of detection, and 4% false positive rate for
only 15 seconds of exposure, which improves to 100% and
2% respectively within 30 seconds of exposure time.

ACKNOWLEDGMENT

This work was partially supported by grants
NAVY/N00014-20-1-2124, NCAE-Cyber Research Program,
and NSF/DGE-1661532.

REFERENCES

[1] 3GPP. LTE; Evolved Universal Terrestrial Radio Access (E-UTRA);
Physical channels and modulation (3GPP TS 36.211 version 14.2.0
Release 14), 2017.

[2] 3GPP. 5G; NR; User Equipment (UE) procedures in idle mode and in
RRC Inactive state (3GPP TS 38.304 version 16.1.0 Release 16), 2020.

[3] 3GPP. Technical specification group services and system aspects; release
16 description; summary of rel-16 work items (tr 21.916 release 16),
2020.

[4] 3GPP. 5G; NR; Multiplexing and channel coding (3GPP TS 38.212
version 16.4.0 Release 16) , 2021.

[5] 3GPP. 5G; NR; NR and NG-RAN Overall description; Stage-2 (3GPP
TS 38.300 version 16.4.0 Release 16), 2021.

[6] 3GPP. 5G; NR; Physical channels and modulation (3GPP TS 38.211
version 16.2.0 Release 16) , 2021.

[71 3GPP. 5G; NR; Radio Resource Control (RRC); Protocol specification
(3GPP TS 38.331 version 16.1.0 Release 16), 2021.

[8] 3GPP. 5G; Vehicle-to-Everything (V2X) services in 5G System (5GS);
Stage 3 (3GPP TS 24.587 version 16.3.0 Release 16), 2021.

[9] 3GPP. 5G; Security architecture and procedures for 5G System (3GPP

TS 33.501 version 16.10.0 Release 16), 2022.

Sangwook Bae, Mincheol Son, Dongkwan Kim, CheolJun Park, Jiho

Lee, Sooel Son, and Yongdae Kim. Watching the Watchers: Practical

Video Identification Attack in LTE Networks. In 37st USENIX Security

Symposium (USENIX Security 22), Boston, MA, 2022.

Alcardo Alex Barakabitze, Arslan Ahmad, Rashid Mijumbi, and Andrew

Hines. 5G network slicing using SDN and NFV: A survey of taxonomy,

architectures and future challenges. Computer Networks, 2020.

David Basin, Jannik Dreier, Lucca Hirschi, Sasa Radomirovic, Ralf

Sasse, and Vincent Stettler. A formal analysis of 5g authentication.

In Proceedings of the 2018 ACM SIGSAC Conference on Computer

and Communications Security, CCS *18, New York, NY, USA, 2018.

Association for Computing Machinery.

Ravishankar Borgaonkar, Lucca Hirschi, Shinjo Park, and Altaf Shaik.

New Privacy Threat on 3G, 4G, and Upcoming 5G AKA Protocols.

Proceedings on Privacy Enhancing Technologies, 2019(3):108-127, July

2019.

Marc Briceno, Ian Goldberg, and David Wagner. GSM Cloning, 1998.

Nicola Bui and Joerg Widmer. OWL: A Reliable Online Watcher

for LTE Control Channel Measurements. In Proceedings of the 5th

Workshop on All Things Cellular: Operations, Applications and Chal-

lenges, ATC 16, New York, NY, USA, 2016. Association for Computing

Machinery.

[10]

(11]

[12]

[13]

[14]
[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

[35]

Agnes Chan, Xin Liu, Guevara Noubir, and Bishal Thapa. Broadcast
control channel jamming: Resilience and identification of traitors. In
2007 IEEE International Symposium on Information Theory, 2007.
Merlin Chlosta, David Rupprecht, Christina Popper, and Thorsten Holz.
5G SUCI-Catchers: Still Catching Them All? In Proceedings of the
14th ACM Conference on Security and Privacy in Wireless and Mobile
Networks, WiSec 21, page 359-364, New York, NY, USA, 2021.
Association for Computing Machinery.

Simon Erni, Martin Kotuliak, Patrick Leu, Marc Roschlin, and Srdjan
Capkun. AdaptOver: Adaptive Overshadowing Attacks in Cellular
Networks. arXiv, pages 210605039, 2021.

Simon Alexander Erni. Protocol-aware reactive lte signal overshadowing
and its applications in dos attacks. Master’s thesis, Department of
Computer Science, ETH Ziirich, 2020.

EURECOM. Openairinterface 5G Wireless Implementation.
gitlab.eurecom.fr/oai/openairinterface5g, 2020.

Facebook. Limits to sending messages on Messenger. https://www.
facebook.com/help/messenger-app/1425082951086094, August 2022.
Retrieved: August 18, 2022.

Robert Falkenberg and Christian Wietfeld. FALCON: An Accurate Real-
Time Monitor for Client-Based Mobile Network Data Analytics. In 2079
IEEE Global Communications Conference (GLOBECOM), 2019.
Koorosh Firouzbakht, Guevara Noubir, and Masoud Salehi. On the
performance of adaptive packetized wireless communication links under
jamming. [EEE Transactions on Wireless Communications, 13(7), 2014.
Caroline Frost. 5g is being used to perform remote surgery from
thousands of miles away, and it could transform the healthcare industry.
Business Insider, 2019.

Byeongdo Hong, Sangwook Bae, and Yongdae Kim. GUTI Reallocation
Demystified: Cellular Location Tracking with Changing Temporary
Identifier. In Proceedings 2018 Network and Distributed System Security
Symposium, San Diego, CA, 2018. Internet Society.

Syed Rafiul Hussain, Omar Chowdhury, Shagufta Mehnaz, and Elisa
Bertino. LTEInspector: A Systematic Approach for Adversarial Testing
of 4G LTE. In Proceedings 2018 Network and Distributed System
Security Symposium, San Diego, CA, 2018. Internet Society.

Syed Rafiul Hussain, Mitziu Echeverria, Omar Chowdhury, Ninghui Li,
and Elisa Bertino. Privacy attacks to the 4g and 5g cellular paging
protocols using side channel information. Network and Distributed
Systems Security (NDSS) Symposium, 2019.

Syed Rafiul Hussain, Mitziu Echeverria, Ankush Singla, Omar Chowd-
hury, and Elisa Bertino. Insecure connection bootstrapping in cellular
networks: The root of all evil. In Proceedings of the 12th Conference
on Security and Privacy in Wireless and Mobile Networks, WiSec *19.
Association for Computing Machinery, 2019.

Syed Rafiul Hussain, Imtiaz Karim, Abdullah Al Ishtiag, Omar Chowd-
hury, and Elisa Bertino. Noncompliance as deviant behavior: An
automated black-box noncompliance checker for 4g Ite cellular devices.
In Proceedings of the 2021 ACM SIGSAC Conference on Computer
and Communications Security, CCS °21, New York, NY, USA, 2021.
Association for Computing Machinery.

Roger Piqueras Jover. LTE security, protocol exploits and loca-
tion tracking experimentation with low-cost software radio. CoRR,
abs/1607.05171, 2016.

Imtiaz Karim, Syed Rafiul Hussain, and Elisa Bertino. Prochecker: An
automated security and privacy analysis framework for 4g Ite protocol
implementations. In 202! IEEE 4l1st International Conference on
Distributed Computing Systems (ICDCS), pages 773-785, 2021.
Keysight. SJO01A WaveJudge Wireless Analyzer Toolset. https://www.
keysight.com/us/en/product/SJ001A/wavejudge-5000.html.

Hongil Kim, Jiho Lee, Eunkyu Lee, and Yongdae Kim. Touching the
untouchables: Dynamic security analysis of the LTE control plane. In
2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco,
CA, USA, May 19-23, 2019. IEEE, 2019.

Katharina Kohls, David Rupprecht, Thorsten Holz, and Christina PSpper.
Lost traffic encryption: Fingerprinting lte/4g traffic on layer two. In
Proceedings of the 12th Conference on Security and Privacy in Wireless
and Mobile Networks, WiSec 19, page 249-260, New York, NY, USA,
2019.

Martin Kotuliak, Simon Erni, Patrick Leu, Marc Roeschlin, and Srdjan
Capkun. LTrack: Stealthy tracking of mobile phones in LTE. In
31st USENIX Security Symposium (USENIX Security 22), Boston, MA,
August 2022. USENIX Association.

https://

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]
[46]

[47]

[48]

[49]

[50]

[51]

[52]
[53]
[54]
[55]
[56]
(571
[58]

[59]

[60]

Swarun Kumar, Ezzeldin Hamed, Dina Katabi, and Li Erran Li. LTE
Radio Analytics Made Easy and Accessible. In Proceedings of the 2014
ACM Conference on SIGCOMM, SIGCOMM ’14, 2014.

Denis Foo Kune, John Kolndorfer, Nicholas Hopper, and Yongdae Kim.
Location leaks over the GSM air interface. In NDSS, 2012.

Mina Labib, Vuk Marojevic, and Jeffrey H. Reed. Analyzing and
enhancing the resilience of LTE/LTE-A systems to RF spoofing. In
IEEE Conference on Standards for Communications and Networking,
CSCN 2015, Tokyo, Japan, October 28-30, 2015. 1EEE, 2015.

Yuanjie Li, Chunyi Peng, Zengwen Yuan, Jiayao Li, Haotian Deng,
and Tao Wang. Mobileinsight: Extracting and Analyzing Cellular
Network Information on Smartphones. In Proceedings of the 22nd
Annual International Conference on Mobile Computing and Networking,
MobiCom ’16, 2016.

Marc Lichtman, Roger Piqueras Jover, Mina Labib, Raghunandan Rao,
Vuk Marojevic, and Jeffrey H. Reed. LTE/LTE-A jamming, spoofing,
and sniffing: threat assessment and mitigation. IEEE Communications
Magazine, 2016.

Norbert Ludant and Guevara Noubir. Sigunder: a stealthy 5g low power
attack and defenses. Proceedings of the 14th ACM Conference on
Security and Privacy in Wireless and Mobile Networks, 2021.

Moxie Marlinspike and Trevor Perrin. The Double Ratchet Algo-
rithm. https://signal.org/docs/specifications/doubleratchet/doubleratchet.
pdf, 2016.

Moxie Marlinspike and Trevor Perrin. The X3DH Key Agreement
Protocol. https://signal.org/docs/specifications/x3dh/x3dh.pdf, 2016.
Karsten Nohl and Sylvain Munaut. GSM Sniffing. 27th Chaos
Communication Congress, https:/fahrplan.events.ccc.de/congress/2010/
Fahrplan/attachments/1783\\\ _101228.27C3.GSM- Sniffing.Nohl\ _
Munaut.pdf, December 2010. Retrieved: August 18, 2022.

P1 Security. QCSuper. https://github.com/P1sec/QCSuper, 2021.
Xiaohong Pei. Network Signal Guru. https://www.qtrun.com/en/?page_
id=34. Retrieved: June 4, 2022.

David Rupprecht, Katharina Kohls, Thorsten Holz, and Christina Popper.
Breaking LTE on layer two. In IEEE Symposium on Security & Privacy
(SP), 2019.

David Rupprecht, Katharina Kohls, Thorsten Holz, and Christina Popper.
Call Me Maybe: Eavesdropping Encrypted LTE Calls With ReVoLTE.
In USENIX Security Symposium (SSYM), 2020.

David Rupprecht, Katharina Kohls, Thorsten Holz, and Christina PSpper.
IMP4GT: IMPersonation Attacks in 4G NeTworks. In ISOC Network
and Distributed System Security Symposium (NDSS). ISOC, February
2020.

Altaf Shaik, Ravishankar Borgaonkar, N. Asokan, Valtteri Niemi, and
Jean-Pierre Seifert. Practical attacks against privacy and availability in
4G/LTE mobile communication systems. In 23rd Annual Network and
Distributed System Security Symposium (NDSS 2016), 2016.

Altaf Shaik, Ravishankar Borgaonkar, Shinjo Park, and Jean-Pierre
Seifert. New vulnerabilities in 4g and Sg cellular access network
protocols: Exposing device capabilities. In WiSec '19. ACM, 2019.
Haoqi Shan and Wangiao Zhang. LTE Redirection: Forcing Targeted
LTE Cellphone into Unsafe Network. In DEF CON 24, 2016.
Software Radio Systems. SRS AirScope. https://www.srs.io/products/
#SRS-airscope.

SRLabs. SnoopSnitch - SRLabs Open Source Projects. https://
opensource.srlabs.de/projects/snoopsnitch. Retrieved: June 6, 2022.
SRS. Software Radio Systems. Open source SDR 4G/5G software suite.
https://github.com/srsran/srsRAN, 2020.

Daehyun Strobe. IMSI Catcher. Seminararbeit Ruhr-Universitat
Bochum, 2007.

Muhammad Taqi Raza and Songwu Lu. On Key Reinstallation Attacks
over 4G/5G LTE Networks: Feasibility and Negative Impact, 2018.
Robotics Online Marketing Team. S5g-powered medical robot performs
remote brain surgery. Robotics Online, 2019.

WhatsApp. WhatsApp Encryption Overview: Technical
White Paper, version 6. https://www.whatsapp.com/security/
WhatsApp-Security- Whitepaper.pdf, November 2021. Retrieved:
June 6, 2022.

Hojoon Yang, Sangwook Bae, Mincheol Son, Hongil Kim, Song Min
Kim, and Yongdae Kim. Hiding in plain signal: Physical signal
overshadowing attack on LTE. In 28th USENIX Security Symposium
(USENIX Security 19), Santa Clara, CA, 2019. USENIX Association.

[61] Chuan Yu, Shuhui Chen, Zhiping Cai, and Jests Diaz-Verdejo. LTE
Phone Number Catcher: A Practical Attack against Mobile Privacy. Sec.
and Commun. Netw., 2019.

