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Abstract. Today’s throttled uplink of residential broadband renders a broad class
of popular applications such as HD video uploading and large file transfer imprac-
tical. Aggregation of WiFi APs is one way to bypass this limitation. Motivated by
this problem, we present BAPU (Bunching of Access Point Uplinks) to achieve
two major goals: (1) support commodity clients by refraining from client modi-
fications, (2) support both UDP and TCP based applications. We justify the need
for client transparency and generic transport layer support and present new chal-
lenges. In particular, a naive multiplexing of a single TCP session through mul-
tiple paths results in a significant performance degradation. We describe BAPU’s
mechanisms and design. We developed a prototype of BAPU with commodity
hardware, and our extensive experiments show that BAPU aggregates up to 95%
of the total uplink capacity for UDP and 88% for TCP.

1 Introduction

Today, mobile devices are equipped with high-resolution cameras and are quickly be-
coming the primary device to generate personal multimedia content. Such fast growth
of User Generated Content (UGC) naturally leads to an ever increasing demand of in-
stant sharing of UGC through online services, e.g., YouTube and Dailymotion, or in
an end-to-end manner. In addition, there is a trend of instantly backing up personal
files in “Cloud Storage” like Dropbox or iCloud. All these services require sufficient
uplink bandwidth for fast data transfer. While today’s ISPs offer high-speed downlink,
uplink bandwidth is usually throttled. As a result, instant sharing of HD content or fast
data backup in the “Cloud” is still impractical in today’s residential broadband. Conse-
quently, there is a need to scale backhaul uplinks.

1.1 Aggregating AP to Bypass Broadband Limitations

Given that WiFi capacity typically exceeds the broadband uplink capacity by at least
one order of magnitude, a single client WiFi can communicate with multiple APs in
range and aggregate the idle bandwidth behind them. Several AP aggregation solutions
(e.g., FatVAP [17] and THEMIS [12]) have been proposed in the past few years. Their
rationale is to route TCP/UDP sessions through different APs such that the traffic load
splits across multiple broadband links, thereby achieving a higher aggregated through-
put. Yet, a single TCP/UDP connection is assigned to a single AP, in which case the
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Fig. 1: Residential uplink bandwidth usage.
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Fig. 2: Available APs in Wardriving.

connection throughput cannot exceed the single broadband link capacity. Since most
uplink hogging applications such as iCloud establish single transport layer connections
for data transfer, current AP aggregation solutions are not suitable for single session
uplink scaling, unless the application is redesigned to adapt to the AP aggregation tech-
nology. Recently, Link-Alike [15] multiplexes single UDP flow across multiple APs.
However, Link-Alike’s design is specific to UDP file transfer, resulting pieces of files
to arrive in out-of-order sequence, which prohibits TCP based applications (e.g., HD
video streaming) that require a strictly in-order delivery and deadline meeting. Besides,
multiplexing single TCP sessions through multiple paths is a challenging problem (and
will be discussed later). Moreover, client modifications are required to support TCP. In
this work, we require a new AP aggregation solution offering complete transparency on
the client with generic support for either TCP or applications.

1.2 Feasibility of AP Aggregation

While WiFi aggregation allows bypassing broadband limitations, it is yet unclear whether
aggregation is practical in reality. We now present our recent study on urban WiFi and
broadband resources, revealing several interesting insights regarding the feasibility of
AP aggregation in residential broadband.
Mostly idle broadband uplinks: Since Feb. 2011, we have developed and deployed a
WiFi testbed in Boston’s urban area, aiming to monitor the usage pattern of residential
broadband. This testbed consists of 30 home WiFi APs running customized OpenWRT
firmware with two major broadband ISPs, Comcast and RCN. During a 18 month
period, we have collected over 70 million records. Figure 1 shows the uplink bandwidth
usage during a 24 hour time window. Throughout the day, there is at least 50% chance
that uplink is completely idle. Even during peak hours, there is over 90% chance that the
uplink bandwidth usage is below 100 Kbps. Consequently, there exists a considerable
amount of idle uplink bandwidth, making AP aggregation a viable approach.
WiFi densely deployed in residential area: Our recently conducted Wardriving mea-
surements in 4 residential areas in Boston identify 22000 APs, 14.2% of which are
unencrypted. As shown in Figure 2, there are on average 17 APs available at each lo-
cation, with an average 7 to 12 APs on each channel. This enormous presence of WiFi
justifies the feasibility of AP aggregation in urban area.
WiFi becoming open and social: Driven by the increasing demand of ubiquitous In-
ternet access, there is a new trend that broadband users share their bandwidth as public
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Fig. 3: BAPU system architecture and example application scenarios. Scenario 1 (left): Sender 1
shares an HD video with a remote end user. Scenario 2 (right): Sender 2 backs up a large file to
iCloud. The uplink aggregation is enabled via BAPU-enabled Home-AP and Monitor-APs.

WiFi signal to mobile users. Mainstream home WiFi APs, e.g., LinkSys and D-Link, al-
ready offer a standard feature which hosts two SSIDs, one encrypted for private use, the
other unencrypted for public sharing. FON [9], a leading company in this area, claims
to have over 7 million social hotspots worldwide. Given this trend of WiFi becoming
social and cloud-powered, a software solution on APs allows much easier progressive
adoption of AP aggregation technologies compared to a few years ago.

Based on this discussion, we present BAPU, a complete software solution for WiFi
APs allowing broadband uplink aggregation. BAPU features complete transparency to
client devices and high aggregated throughput for both TCP and UDP, even in lossy
wireless environment. Our major contributions are summarized as follows:
Transparency to client: BAPU does not require any modification to clients. The client
device conducts regular 802.11 communications with its home AP while AP aggrega-
tion happens in a “transparent” way. Also, all legacy network applications benefit from
such transparency and seamlessly utilize BAPU.
Efficient aggregation for both TCP and UDP: Multiplexing a single TCP flow through
multiple paths raises many technical challenges, making efficient aggregation non-
trivial. We propose a novel mechanism called Proactive-ACK. Through an in-depth
analysis of TCP stack behavior, we show how Proactive-ACK performs efficient TCP
multiplexing. BAPU achieves high aggregated throughput for both TCP and UDP.
Prototype with commodity hardware: We have prototyped our complete BAPU sys-
tem on commodity 802.11n WiFi APs with OpenWRT firmware.
Evaluation: We conduct an extensive set of experiments to evaluate BAPU in various
realistic network settings. Our results show that BAPU efficiently achieves over 95%
and 88% of total uplink bandwidth for UDP and TCP transmissions, respectively.

2 System Overview

For ease of understanding, we first introduce two typical application scenarios that ben-
efit from BAPU – see Figure 3.

Scenario 1. Instant Sharing of HD Video: In order to retain the control of personal
content, Sender 1 streams his HD video in real time directly from his hard drive to



Destination 1. Both users are connected to their own Home-APs. Sender 1’s uplink is
throttled by his ISP to 1 ∼ 3Mbps, preventing him to handle the 8Mbps HD video in
real time. However with BAPU, the idle uplink of the neighboring Monitor-APs are
exploited to boost uplink throughput. BAPU-Gateway, the Home-AP of Destination 1,
aggregates and forwards multiplexed traffic to Destination 1.

Scenario 2. Instant Backup of Large File: Sender 2 wishes to backup his HD
video clip to some cloud storage service such as iCloud. With the 3Mbps uplink rate,
it takes over an hour to upload a 30 minute HD video. With BAPU, uploading time is
greatly reduced by deloying a BAPU-Gateway in front (or part) of the cloud storage
servers for handling parallel uploads from Home-AP and neighboring Monitor-APs.

BAPU Protocol Description
In BAPU, Sender is associated with its Home-AP, and the uploading of data is ag-

gregated via unencrypted wireless link. The data, however, is protected with some end-
to-end security mechanism (e.g., SSL/TLS). Home-AP and Monitor-AP are configured
to run in both WiFi AP mode and WiFi monitor mode4. The WiFi link between the
Sender and its Home-AP generally provides high bandwidth, up to hundreds of Mbps
with 802.11n. The link between a BAPU-AP and the Destination, however, is throt-
tled by the ISP. At the remote end, we place a BAPU-Gateway immediately before the
Destination. The connection between the BAPU-Gateway and the Destination is either
wired or wireless high-speed link. Note that being in proximity, unicasts between Sen-
der and Home-AP (AP mode) can be overheard by (some of) the Monitor-APs (monitor
mode). At a high level, BAPU is a centralized system with the controller residing at
BAPU-Gateway, providing an uplink aggregation carried out as follows (Figure 4).

Sender Home-AP Monitor-AP BaPu-Gateway Destination

Reception Report

Sched. to mon-AP

Tunneled Pkt
Fwd. Pkt

IP Packet (overheard)

BaPu-APs

Registration

(Release Pkt)

Spoofed TCP ACK

Real TCP ACK
(Dropped)

Fig. 4: BAPU Protocol Traffic Flow. The ACKs (red color) are managed for TCP only.

1. Sender starts a TCP/UDP upload to Destination through its Home-AP via WiFi.
2. Home-AP and Monitor-AP overhear WiFi packets and identify “BAPU” session by

checking the destination IP and port.
3. BAPU-APs register themselves to BAPU-Gateway.
4. Home-AP and Monitor-AP capture Sender’s packets in monitor mode, and collabo-

rate to upload data for Sender, following a schedule determined by BAPU-Gateway.
4 Modern WiFi drivers (e.g., ath9k) support multiple modes for one physical WiFi interface.



5. Home-AP and Monitor-AP send reports to BAPU-Gateway for each packet.
6. In an UDP session, BAPU-Gateway determines which BAPU-AP will forward the

captured packet, and broadcast a scheduling message to all BAPU-APs.
7. A TCP session is much more challenging to support than UDP. To properly mul-

tiplex Sender’s single TCP flow through multiple paths, we devise a new mecha-
nism called Proactive-ACK: BAPU-Gateway sends spoofed TCP ACKs to Sender
as BAPU session goes on. Proactive-ACK is designed to make BAPU work effi-
ciently with legacy TCP congestion control.

8. The scheduled AP forwards packets to Destination tunnelled through BAPU-Gateway.

3 Uplink Aggregation

In this section, we discuss technical challenges and describe our solutions for BAPU
system to achieve an efficient and practical aggregation system. We remark that BAPU
shares some similarities in the high-level architecture with previous work (e.g., Link-
alike [15], FatVAP [17]). However, from pure practicality aspects, the applicability of
those systems is severely limited due to heavy modification of client devices or support
for only specific applications (e.g., large file transfer, UDP). Contrary, BAPU targets
transparency and high-throughput transmissions for both UDP and TCP applications.

3.1 Network Unicast

First, the transparency goal requires that legacy transport protocols must be usable for
data transmission from Sender to Destination. Thus, Sender must be able to transmit
data to Destination via network unicast through its Home-AP. Second, the network
unicast is more reliable, because the MAC layer handles retransmissions in case of
802.11 frame loss. Consequently, network unicast between Sender and Home-AP is an
essential requirement in BAPU, while prior work [15] chose broadcast for simplicity.
Packet Overhearing: In WiFi networks, network unicast and broadcast differ in the
next-hop physical address in the MAC layer. This complicates the packet overhearing
capability at Monitor-APs, since the Sender uses its Home-AP’s physical address as the
next-hop address in the 802.11 header, while Monitor-APs automatically discard the
packet due to a mismatched physical address. To allow Monitor-APs to capture over-
heard packets, BAPU’s solution is to configure BAPU-APs to operate simultaneously in
two modes: AP mode and monitor mode. The former mode is used for serving clients in
the AP’s own WLAN, whereas the latter is used for overhearing packets in raw format.
Packet Identification: Each packet sent from the Sender (BAPU protocol’s step 1)
contains the session information in the packet’s IP header such as the protocol, the
source and destination IP addresses and ports. With this information, Home-AP can
uniquely identify the Sender (step 2). In contrast, Monitor-APs may have ambiguity in
identifying the Sender, as Senders from different WLANs may (legally) use the same
IP address. To resolve such conflict, we create a frame parser for the packet’s MAC
header to obtain the BSSID that identifies the WLAN the session belongs to. Therefore,
any session in BAPU is now uniquely determined by the following 6-tuple <BSSID,
proto, srcIP, dstIP, srcPort, dstPort>.



Duplicate Elimination: Unicasting a packet may involve a number of (MAC-layer) re-
transmissions due to wireless loss between the Sender and its Home-AP. This increases
the transmission reliability. Nevertheless, it is possible that a nearby Monitor-AP can
overhear more than one (re)transmission of the same packet and eventually forward
unnecessary duplicates to Destination, flooding Monitor-AP’s uplink. To identify the
duplicate packets, we keep records of IPID field of each overheard IP packet. Since
IPID remains the same value for each MAC-layer retransmission, it allows Monitor-
APs to identify and discard the same packet. It is worth noting that in TCP transmission,
the TCP sequence number (SEQ) is not a good indicator to identify the duplicate pack-
ets, as it is unique for TCP retransmission, but not for MAC-layer retransmissions.

3.2 Tunnel Forwarding

The transparency goals requires that the high-level application be unaware of the ag-
gregation protocol in BAPU. A seemingly straightforward solution is that Home-AP
and Monitor-APs forward the Sender’s packets with spoofed IP addresses. It is, how-
ever, impractical for two reasons: 1) many ISPs block spoofed IP packets; 2) forwarded
packets by Monitor-APs are unreliable, because they are raw packets overheard from
the air. Our approach is that each BAPU-AP conveys the Sender’s data via a separate
TCP tunnel. Since we support a transparency for aggregation over multiple paths, the
techniques for tunnelling and address resolving in each single path require a careful
design at both BAPU-APs and BAPU-Gateway.
Tunnel Connection: Once a BAPU-AP identifies a new Sender-Destination session
(step 2) based on the 6-tuple, it establishes a tunnel connection to BAPU-Gateway. Re-
gardless of the session protocol, a tunnel connection between the BAPU-AP and BAPU-
Gateway is always a TCP connection. The choice of TCP tunnel is partially motivated
by the TCP-friendliness. We desire to aggregate the idle bandwidth of BAPU-APs with-
out overloading the ISP networks. Besides, since TCP tunnel can provide a reliable
channel, it helps keep a simple logic for handling a reliable aggregated transmission.
Forwarding: In the registration (step 3) to BAPU-Gateway, the BAPU-AP receives an
APID as its “contributor” identifier for the new session. The APID is used in all mes-
sages in the protocol. Both control messages (registration, report, scheduling) and data
messages are exchanged via the reliable TCP tunnel. On reception of a scheduling mes-
sage with matching APID, the Monitor-AP encapsulates the corresponding Sender’s
packet in a BAPU data message and sends it to BAPU-Gateway (step 8), which then
extracts the original data packet, delivers to the Destination. In BAPU, short control
messages only introduce small overhead in the backhaul.
NAT: In WLAN, the Sender is behind the Home-AP, typically a NAT box. In BAPU, the
Sender’s data are conveyed to the Destination via separate tunnels from each participat-
ing BAPU-AP, which carries out NAT translation with NAT mapping records obtained
from BAPU-Gateway in step 3. Besides, since the downlink capacity is enormous, we
allow all reverse (downlink) traffic from Destination to Sender to traverse along the
default downlink path. In addition, as there might be multiple tiers of NAT boxes in the
middle, we must ensure that the NAT mapping for a session is properly installed on all
NAT boxes along the path, and the first few packets of a new session are not tunnelled.



3.3 Scheduling

The bandwidth aggregation performance depends on the efficiency of multiplexing data
among BAPU-APs to best utilize the idle uplink bandwidth. In BAPU, we adopt a cen-
tralized scheduler at BAPU-Gateway. There are two main factors to select this design.
First, it does not only simplify the implementation, but also allows easy extension of
the design with extra logic to further optimize the scheduling strategy. Second, a sched-
uler usually requires complex processing and memory capability, which might over-
load the BAPU-APs with much lower capability if scheduling decisions are distribut-
edly performed by BAPU-APs. Our scheduling strategy is based on received reports in
step 6 and 7 of the protocol. Each report from a BAPU-AP contains a sending buffer
size obtained from the Linux kernel (via ioctl). This value specifies how much a
BAPU-AP can contribute to the aggregation. Based on reports, BAPU-Gateway applies
First-Come-First-Served strategy to select a forwarder among BAPU-APs who have
captured the same packet. The rationale for choosing this approach are (1) Fairness:
Sharing bandwidth takes into account the available bandwidth of participating BAPU-
APs because AP owners have different subscription plans. (2) Protocol independence:
Scheduling decision is made based on the BAPU-APs’ sharing capability, not on the
particular transport protocol.

4 TCP with Proactive-ACK

4.1 TCP Issues with Aggregation

Brief overview on TCP: TCP ensures successful and in-order data delivery between
Sender and Destination. The Sender maintains a CWND (congestion window) during
the on-going session, which determines the TCP throughput. The Sender’s CWND size
is affected by acknowledgements from the Destination. First, the growth rate of CWND
depends on the rate of receiving acknowledgements, i.e., the link latency. Second, miss-
ing acknowledgement within a RTO (retransmission timeout) causes the Sender to is-
sue a retransmission. On reception of out-of-order sequences, the Destination sends a
DUPACK (duplicate acknowledgement) to inform the Sender of missing packets. By
default [3], the Sender will issue a fast retransmission upon receiving 3 consecutive
DUPACKs. Both retransmission and fast retransmission cause the Sender to cut off the
CWND accordingly to adapt to the congested network or slow receiver.
Performance issues with aggregation: TCP was designed based on the fact that the
out-of-order sequence is generally a good indicator of lost packets or congested net-
work. However, such assumption no longer holds in BAPU.

Out-of-order packets: In BAPU, packets belonging to the same TCP session are
intentionally routed through multiple BAPU-APs via diverse backhaul connections in
terms of capacity, latency, traffic load, etc. This results in serious out-of-order sequence
at BAPU-Gateway, which eventually injects the out-of-order packets to the Destination.

Double RTT: Also, due to the aggregation protocol, data packets in BAPU are de-
livered to the Destination with a double round-trip-time (RTT) compared to a regular
link. This causes the Sender’s CWND to grow more slowly and peak at lower val-
ues. Consequently, with an unplanned aggregation method, the TCP congestion control



mechanism is falsely triggered, resulting in considerably low throughput. As we show
later in Section 5, a simplified prototype of BAPU, which share similarities with the
system in [15], gives poor TCP throughput.
Simple solution (SIMPLEBUFFER) does not work: To address the TCP performance
issue, we investigate a simple approach: data packets forwarded by BAPU-APs are
buffered at BAPU-Gateway until a continuous sequence is received or a predefined
buffering timeout is reached before delivering it to the Destination. This solution, how-
ever, encounters the following issues: 1) Optimality: Due to the difference in capacity,
latency, loss rate among backhaul uplinks, it is unclear how to determine the optimal
buffer size and timeout. 2) Suboptimal RTT: The buffering mechanism results in dou-
ble RTT issue. 3) Performance: We implemented the buffering mechanism at BAPU-
Gateway, and verified that it does not help improving the TCP throughput (Section 5.2).

4.2 BAPU’s Solution

We introduce a novel mechanism called Proactive-ACK (step 7) to support TCP with
uplink aggregation. The principle is to actively control the exchange of acknowledge-
ments instead of relying on the default behaviour of the end-to-end session. By Proactive-
ACK, we solve both out-of-order packet and double RTT issues. In the following para-
graphs, we call acknowledgements actively sent by BAPU-Gateway spoofed, while the
ones sent by the Destination are real acknowledgements.
Spoofing Proactive-ACK: In BAPU, most of out-of-order packets are caused by the ag-
gregation mechanism via multiple BAPU-APs. To avoid delivering out-of-order packets
to the Destination and the resulting cut-off of the CWND at the Sender, we main-
tain a sequence map at BAPU-Gateway, indicating reported, delivered or pending
sequence numbers. Once BAPU-Gateway collects a continuous range of reported se-
quence numbers, BAPU-Gateway sends a spoofed ACK back to the Sender. The intu-
ition is that all the packets that are reported by some BAPU-APs are currently stored in
their buffer. Due to the reliability of the TCP tunnel, the reported packets will be eventu-
ally forwarded to BAPU-Gateway in reliable manner. Therefore, immediately sending a
spoofed Proactive-ACK back to the Sender avoids false DUPACKs and helps maintain
a healthy CWND growth at the Sender. Also, the RTT is not doubled.
Eliminating DUPACKs: Since spoofed ACKs keep the Sender’s CWND continuously
grow, BAPU-Gateway can take time and buffer all out-of-order data packets forwarded
from BAPU-APs, and deliver only in-order packets to the Destination. Therefore, in
BAPU, out-of-order packets and associated DUPACKs are eliminated from Destination.
Spoofing DUPACKs: It is possible that some packets are actually lost in the air between
the Sender and BAPU-APs. Concretely, if the report for an expected TCP sequence
number is not received within a certain time, it is implied to be lost on all participating
BAPU-APs. Now that BAPU-Gateway sends a spoofed DUPACK back to the Sender in
order to mimic the TCP fast retransmission mechanism for fast recovery.
Managing Real ACKs and TCP Semantics: Since BAPU-Gateway sends spoofed
ACKs to the Sender, on reception of real ACKs from the Destination, BAPU-Gateway
discards the real ACKs. However, BAPU-Gateway does save the TCP header fields in
the real ACKs, such as advertised receiver window and timestamp, which maintains the
TCP semantics and the state of the TCP connection. While BAPU-Gateway generates



the spoofed ACKs, it uses the latest header field values extracted from real ACKs to
prepare the acknowledge segment.

We have one important remark on TCP semantics. If an AP which has been sched-
uled to forward a selected packet is suddenly offline, such packet lost would not be
recognized by Sender because it has received spoofed ACK. In this case, we resort to
Home-AP which carries out unicast between itself and Sender and should have a backup
copy. Despite the slight difference in TCP semantics, we verify that Proactive-ACK
gives a significantly improved TCP throughput. We present these results in Section 5.

5 Evaluation

Sender
Linux PC

Destination
Linux PCTraffic Shaping Box

(htb & netem)
BaPu-Gateway

PC, NAT Box

7 BaPu-APs 
running OpenWRT

2Mbps

20Mbps

Fig. 5: BAPU Experiment Setup.

Table 1: Distance vs. Network RTT.

Regional: 500 - 1,000 mi 32ms [2]
Cross-continent: ∼ 3,000 mi 96ms [2]
Multi-continent: ∼ 6,000 mi 192ms [2]
Inter-AP in greater Boston 20ms ∼ 80ms

Inter-AP RTT are measured by our Open
Infrastructure WiFi testbed [1] in greater Boston,
covering Comcast, RCN, and Verizon.

In this section, we evaluate the performance of BAPU for UDP and TCP in vari-
ous system settings. Our experiment setup is shown in Figure 5. Our testbed consists
of a Sender, 7 BAPU-APs, a BAPU-Gateway, a Destination and a traffic shaping box.
All APs are Buffalo WZR-HP-G300NH 802.11n wireless routers. This model has a
400MHz CPU with 32MB RAM. We reflashed the APs with OpenWRT firmware, run-
ning Linux kernel 2.6.32 and ath9k WiFi driver. In our experiments, we select one
BAPU-AP as a Home-AP which the Sender is always associated to, the other 6 BAPU-
APs act as Monitor-APs to capture the traffic in monitor mode. The BAPU-Gateway
runs on a Linux PC, and the Destination runs behind the BAPU-Gateway. The Sen-
der and the Destination are both laptops with 802.11n WiFi card, running the standard
Linux TCP/IP stack. To emulate traffic shaping as with residential broadband, we use
the traffic shaping box between the BAPU-APs and BAPU-Gateway. We use Linux’
iptables and tc with the htb module to shape the downlink bandwidth to 20Mbps
and the uplink to 2Mbps. Also, to emulate network latency between BAPU-APs and
BAPU-Gateway, we use netem to shape the RTT with different values. The bandwidth
and latency parameter are selected to represent the typical bandwidth capacity and la-
tency in residential cable broadband measured in Boston’s urban area (Table 1).

In our experiments, we issue long-lived 30 minutes iperf flows (both TCP and
UDP) from Sender to Destination. We choose 1350Byte as TCP/UDP payload size to
make sure that the whole client IP packet can be encapsulated in one IP packet while an
BAPU-AP sends it through its TCP tunnel. All throughput values reported in our exper-
iment are the iperf throughput, which is the goodput. In the evaluation, we compare
throughput of UDP and TCP in a variety of scenarios: A. BAPU – BAPU system with-
out any buffering or Proactive-ACK mechanism; B. SIMPLEBUFFER – BAPU system
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without Proactive-ACK, but enhanced by buffering at BAPU-Gateway; C. BAPU-PRO
– this is the full BAPU system.

5.1 BAPU: Efficient UDP, Poor TCP

System efficiency with UDP throughput: We now first measure BAPU’s efficiency by
the throughput with UDP, as it provides a light-weight end-to-end transmission between
Sender and Destination. Figure 6a shows the achieved aggregated UDP throughput with
numbers of participating BAPU-APs increasing from 1 to 7. We observe that the aggre-
gated UDP throughput increases proportionally with the number of BAPU-APs, and
achieves 12.4Mbps with 7 BAPU-APs. To put this figure into perspective, note that
related work by Jakubczak et al. [15] achieves similar UDP throughput but without
support for TCP or client transparency.
Low TCP throughput: We conduct the same experiments also for TCP transmission.
Figure 6a shows that the aggregated TCP throughput does not benefit much when the
number of BAPU-APs increases. The TCP aggregated throughput is always lower than
the UDP’s in the same setup, and the gap between UDP and TCP performance increases
along with the number of BAPU-APs.
Aggregation efficiency: In addition to measuring aggregated throughput, we evalu-
ate our system based on another metric, aggregation efficiency. We define aggregation
efficiency as the ratio between practical throughput over the maximum theoretical good-
put. Due to the TCP/IP header and BAPU protocol overhead, the actual goodput is less
than the uplink capacity. With all protocol header overhead accounted, we derive the
maximum theoretical goodput as the given backhaul capacity of 2Mbps. As shown in
Figure 6b, BAPU UDP can harness close to 100% idle bandwidth. Even if we consider
the extra overhead incurred by BAPU protocol messages, UDP aggregation efficiency



 0

 2

 4

 6

 8

 10

 12

 14

1 2 3 4 5 6 7

A
g

g
re

g
a

te
d

 T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

Number of APs

BaPu TCP
BaPu-Pro TCP

(a) Aggregated TCP throughput

 40

 50

 60

 70

 80

 90

 100

1 2 3 4 5 6 7

E
ff

ic
ie

n
c
y
 o

f 
a

g
g

re
g

a
ti
o

n
 (

%
)

Number of APs

BaPu-Pro TCP / max TCP
BaPu-Pro TCP / max BaPu TCP

BaPu TCP / max TCP
BaPu TCP / max BaPu TCP

(b) Aggregation efficiency

Fig. 9: BAPU-PRO vs. BAPU: comparison with 2Mbps 32ms RTT uplinks.
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is still over 90% in all cases. In contrast, the aggregation efficiency for TCP degrades
quickly as more BAPU-APs join the cooperation. With 7 BAPU-APs, BAPU transforms
only 50% of idle bandwidth to effective throughput.
Discussion on BAPU’s poor TCP performance: We can observe several factors in
Section 4 that decrease the aggregated TCP throughput. In this section, we carry out
an analysis on the Sender’s CWND size in BAPU. To justify our analysis, we in-
spect the TCP behavior by examining the Linux kernel TCP stack variables. We call
getsockopt() to query the TCP INFO data structure containing the system time
stamp, Sender’s CWND, number of retransmissions, etc. We also modified the iperf
code to log TCP INFO for each call to send application data. Figure 7 shows the
CWND growth in a 120 second iperf test with 7 BAPU-APs (theoretical through-
put is 2Mbps × 7 = 14Mbps) in comparison with standard TCP through a single AP
with 14Mbps uplink capacity. The Sender’s CWND remains at a very low level. Our
captured packet trace at the Sender shows that lots of DUPACK packets and RTO incur
a lot of retransmissions, resulting in low TCP throughput.

5.2 Does SIMPLEBUFFER help TCP performance?

As discussed in Section 4, a simple buffering mechanism does not solve the TCP per-
formance issue due to difference in BAPU-AP uplink characteristics (latency, packet
loss). In this section, we experimentally show that a buffering mechanism cannot help
in improving the TCP throughput. Figure 8 depicts the throughput comparison between
BAPU and SIMPLEBUFFER. Surprisingly, the throughput is even degraded with SIM-
PLEBUFFER. Our trace inspection shows a lot of TCP Timeout Retransmissions due to
the packets being buffered at BAPU-Gateway for too long.
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Fig. 11: BAPU-PRO TCP throughput.

5.3 BAPU-PRO Performance

We now conduct a comprehensive set of experiments to evaluate the performance of
BAPU-PRO. First, we validate our Proactive-ACK mechanism by comparing BAPU-
PRO against BAPU. Second, we measure the performance of BAPU-PRO under a vari-
ety of network settings (network latency, wireless link quality, etc.). Finally, we demon-
strate that BAPU-PRO is feasible for both, streaming and large file transfer applications.
TCP Throughput – BAPU-PRO vs. BAPU: We carry out the same iperf test as de-
scribed in Section 5.1 with BAPU-PRO. As shown in Figure 9a, the aggregated TCP
throughput of BAPU-PRO significantly outperforms the one of BAPU. With 7 BAPU-
APs, BAPU-PRO achieves 11.04Mbps, i.e., 62% improvement over BAPU. Further-
more, Figure 9b shows that BAPU-PRO achieves at least 88% aggregation efficiency
in our setup, and it achieves at least 83% of the upper limit of standard TCP through-
put. These results demonstrate that BAPU-PRO can achieve high aggregated throughput
with high aggregation efficiency for TCP in practical settings.
Proactive-ACK benefit: To justify our Proactive-ACK mechanism, we adopt the same
method as in Section 5.1 to examine the TCP CWND growth. Figure 10 shows that
BAPU-PRO allows the CWND to grow to very high values, contributing to the high
throughput. For convenience, we also run a regular TCP session with a throttled band-
width 11Mbps (similar to the BAPU-PRO’s resulted throughput). The CWND growth
for BAPU-PRO and regular TCP shares a similar pattern, which implies that our design
and implementation can efficiently and transparently aggregate multiple slow uplinks.
Impact of network latency: For TCP transmissions, RTT is an important factor that
has impact on the throughput. We measure the performance of BAPU with different
network latency settings listed in Table 1. Besides fixed latency values for each typi-
cal setting, we also assign to each BAPU-AP a random RTT value between 20ms and
80ms. We carry out this test for 10 runs and report the average throughput. As shown
in Figure 11a, BAPU-PRO throughput slightly declines as network latency increases. In
random latency setting, the resulted throughput shows no significant difference.
Impact of lossy wireless links: The wireless links in a real neighbourhood can be very
lossy for a variety of reasons, such as cross channel interference and distant neighbor-
ing APs. Besides, since Monitor-APs switch between transmit and receive mode, they
cannot overhear all transmitted packets. To estimate the potential of BAPU highly lossy
wireless environments, we emulate packet loss at Monitor-APs by dropping received
packets with a probability P . No losses were inflicted on Home-AP, because Sender
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carries out unicast to Home-AP, and 802.11 MAC already handles packet loss and re-
transmissions automatically. We conduct the experiment with 3 values of P : 20%, 40%,
and 60%. As indicated in Figure 11b, the throughput reduction on lossy wireless links
is very limited in all cases. The good performance can be explained by the link diversity
combined with the centralized scheduling mechanisms. The probability of some packet
not overheard by at least one Monitor-AP is negligible small, especially in case of
high number of participating APs. This also explains why 7 BAPU-APs achieve higher
throughput with P = 60% than with P = 20%.
Streaming vs. large file transfer: One important goal in BAPU’s design is to sup-
port instant sharing of high-bitrate HD videos directly between users using streaming.
The motivation behind is that today the major online streaming services (e.g., Net-
flix) run on TCP based streaming technologies, such as HTTP based Adaptive Bitrate
Streaming. Real time streaming generally requires stable instantaneous throughput. In
this experiment, we study the potential of BAPU as a solution to high-bitrate real-time
streaming. To emulate HD streaming, we use nuttcp to issue a TCP flow with a fixed
11Mbps sending rate. As shown in Figure 12, nuttcp achieves a reasonably stable
instantaneous throughput during a 100 second session. It implies that BAPU can sus-
tain high-bitrate streaming through aggregated uplinks. In comparison, the iperf flow
with unlimited sending rate shows much higher fluctuation.

6 Related Work

While BAPU is inspired by design principles of previous work, it addresses unique
constraints and goals and presents a set of novel techniques that achieve high efficiency.
Previous research has addressed TCP performance improvements over wireless links by
using intermediate nodes that assist in the recovery of lost packets, e.g., Snoop TCP [5],
and Split TCP [18]. Multiple radio links for improving throughput have also been ex-
plored from several perspectives including traffic aggregation [17], multipath forward-
ing [15], and mitigation of wireless losses [21, 22]. In addition to systems that rely on
multiple radio interfaces [4], other solutions and algorithms have been proposed for a
single client radio interface that switches across multiple access points while providing
upper layers of the network stack with a transparent access [8, 17, 20, 28]. Solutions to
overcome limited APs backhaul through aggregation using such a virtualized radio in-
terfaces include the initial Virtual-WiFi [20] system where two TCP connection are ser-



viced by two different APs, FatVAP [17] and ARBOR [28] that achieve fast switching
by smart AP selection, and Fair WLAN [12] for fairness. These systems require tech-
niques for fast switching across access points to reduce impact on TCP performance,
e.g., delay and packet loss as discussed in Juggler [16] and WiSwitcher [11]. An analyt-
ical model [25] is proposed to optimize concurrent AP connections for highly mobile
clients. They also implement Spider, a multi-AP driver using optimal AP and channel
scheduling to improve the aggregated throughput. Unlike BAPU, these papers do not
focus on aggregating the throughput for single transport layer connection, which is crit-
ical for client transparency. Divert [22] and ViFi [6] reduce path-dependent downlink
loss from an AP to a client. However, rather than improving the wireless link qual-
ity, BAPU targets aggregation of the wired capacity behind APs. In BAPU, the sender
regularly communicates with its home AP. As discussed, BAPU borrows ideas from
Link-alike [15] where access points coordinate to opportunistically schedule the traffic
over backhaul links. Contrary to Link-alike, BAPU does not require client devices to
use broadcast. Moreover, BAPU transparently supports protocols like TCP. Being com-
pletely transparent to the clients and constraining each link AP-Destination flow to be
TCP-friendly makes efficient multipath transport a key component of our system. We
stress that, in contrast to BAPU, the large body of related work on multipath transport,
cf. [7, 10, 13, 14, 19, 23, 24, 26, 27], does not support transparent, unmodified client
devices and TCP/IP stacks while efficiently aggregating AP backhaul.

7 Conclusion

In this work, we present the design and implementation of BaPu, a complete software
based solution on WiFi APs for aggregating multiple broadband uplinks. First, based
on our large scale wardriving data and long term measurement in Boston’s residential
broadband, we show that the high AP density and under utilized broadband uplinks
suit solutions that harness idle bandwidth to improve uplink throughput. Contrary to
related work, BaPu offers a client transparent design, generic support for legacy de-
vices, and a large variety of network applications. To this end, BAPU employs a novel
mechanism (Proactive-ACK) to address the challenges of multiplexing single TCP ses-
sions through multiple paths without degrading performance. To analyze the benefits of
BaPu, we have carried out an extensive set of experiments for both UDP and TCP in a
variety of realistic network settings. BaPu achieves over 95% aggregation efficiency for
UDP and over 88% for TCP – even in lossy wireless environment. As a future work, it
would be interesting to reproduce and compare the results in different neighborhoods
and different countries. Also, incentive mechanisms and support from AP manufactur-
ers and subscription providers need to be developed in order for BAPU to be useful for
both AP owners and users.
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