Distributed Link Bonding for
Hybrid Wireless Networks

Hooman Javaheri, Guevara Noubir, Senior Member, IEEE, Yin Wang

Abstract—In this paper, we explore a distributed network-layer cooperation strategy called Distributed Link-Bonding (DLB). Our focus
is on heterogeneous networks with devices equipped with two types of radio frequency (RF) links: short-range high-rate interface (e.g.,
IEEE802.11), and a long-range low-rate interface (e.g., cellular). The principle behind this strategy is to exploit the benefits from both
traffic diversity and channel diversity through traffic-multiplexing, where multiple nodes pool their long-range links together to improve
their effective throughput and the network efficiency. We consider several types of traffic and show that the proposed technique can
achieve significant improvements of delay, perceived throughput, and network utilization through analysis, simulations and prototypes.
We discuss several network architecture and finally propose Neptune, an architecture and implementation of the DLB concept that
combines transparency to the applications, simple scheduling, and robustness and efficiency for TCP.

Index Terms—Diversity, Cooperation, Hybrid Wireless Networks.

1 INTRODUCTION

OBILE phone data services are transforming the mo-

bile world with applications such as web brows-
ing, video/music streaming, cloud computing, and dis-
tributed online games. Although, a set of third genera-
tion technologies have been developed and deployed for
several years, the quality of service is still unsatisfactory.
Users experience slow mobile Internet access, dead-
signal areas and localized poor system performance.
This is because the wireless link quality can change
significantly over space and time, due to shadowing,
multipath fading and interference. Moreover, the user
traffic pattern might also be quite different over time.
As a result, some long-range wireless links are highly
congested, while others are underused. Therefore, the
overall network utilization is low.

To solve these problems, instead of deploying more
base stations, which is the conventional approach
adopted by operators to improve the service coverage,
we propose to exploit user cooperation and benefit from
both channel diversity and traffic diversity. We call this
strategy Distributed Link-Bonding (DLB). In DLB, the
long-range links of the cooperating mobile nodes are
bundled together using the local high-speed wireless
network and the traffic from all the nodes in cooperation
are being multiplexed through this bundled link. As a
result, the traffic load can be balanced among all long-
range links. Therefore, if one mobile node is in a fading
or shadowing condition, it can still reroute the traffic
through other nearby nodes. Furthermore, due to multi-
plexing, the average delay, the perceived throughput and
network utilization can also be significantly improved.

e H. Javaheri, G. Noubir and Y. Wang are with the College of Computer
and Information Science, Northeastern University, Boston MA, 02115.
E-mail: {hooman, noubir, yin}@ccs.neu.edu

More potential is achievable if the base station is aware
that the mobile nodes are in a DLB mode, as the base
station can always pick the nodes with the best signal
condition to transmit, and the data will be eventually
forwarded to the nodes in weak signal condition. For
the broadcast or multicast traffic, the DLB system would
work better, because the data only need to transmit
once through the long-range wireless links and the data
will be re-broadcast in the local high-speed network.
For example, in the case of live TV broadcast, one
node might receive very low quality videos due to its
limited bandwidth, but with DLB a group of nodes pool
their links together to receive the high quality videos.
DLB can be also useful in military and disaster rescue
scenarios, where constrained mobile devices can pool
their resources to build a more powerful long-range
distributed link.

The proposed DLB technique has the advantage of
being practical in terms of implementation and deploy-
ment. It can be implemented as a software middleware
on the existing hardware and be transparent to the
applications. Therefore, the existing applications would
have an improved performance without requiring any
awareness or modification.

For the proposed cooperation to become popular, there
is a need to develop mechanisms that reward coopera-
tive nodes, detect and punish selfish behavior, and pro-
tect privacy [1], [2]. Such mechanisms are very important
for the success of a distributed diversity system, but they
are out of scope of this paper, and will be the subject of
our future research. Our main focus is on understanding
and demonstrating the potential of DLB.

In Section 2, we first present the system model and our
cooperative approach. Then, we analyse the performance
of DLB in serial multiplexing mode. We present the
simulation results for both serial multiplexing mode and
parallel multiplexing mode with exponential traffic and

heavy-tail traffic. In Section 3, we discuss several possi-
ble architectures for DLB, and describe two proxy-based
DLB solution — tunnelling-based DLB and Neptune DLB.
In the end, we present our prototype experimentation
results.

1.1 Contributions

We explore the potential of cooperation under Dis-
tributed Link-Bonding, which exploits both channel di-
versity and traffic diversity, to improve the performance
of the hybrid wireless networks. We show that the
proposed strategy is a simple and effective method to
improve the signal coverage, delays, perceived through-
put and network utilization through analysis, simula-
tions and experiments. We also develop prototypes for
the proposed DLB system. Our prototypes demonstrate
that the proposed architecture and mechanisms can be
implemented on current mobile phones, transparent to
applications, and easy to use with simple user controls.
Furthermore, we show that although the used links can
have significant differences in delays, our solution does
not suffer from the typical out of order packet problem
that usually degrades TCP performance.

1.2 Related work

In this section, we provide a quick overview of some of
the research that has been done and that overlaps with
the concepts, problems, and solutions that we address in
this paper.

The fundamental diversity and multiplexing principle
in communication systems have been studied in [3], [4].
Link Aggregation or Multi-Link Trunking (MLT) on the
link layer for wired Ethernet is proposed in [5]. It allows
multiple physical links to be grouped into one logical
Ethernet link to provide fault-tolerance and high-speed
communication between routers. Multi-homed transport
protocols such as the IETF Stream Control Transmission
Protocol (SCTP) [6] provides the link redundancy and
multi-sessions, but it does not account for the wire-
less environment with multiple types of air-interfaces.
Furthermore, it is not commonly deployed in the cur-
rent Internet and requires the application to be aware
of the network protocol to benefit from fault-tolerance
and parallel sessions. Indirect TCP (I-TCP) [7], used to
improve the performance of TCP for mobile wireless
communications, splits a single TCP connection into
two independent sequential TCP links to prevent the
performance fluctuation caused by wireless communica-
tions from propagating to the fixed network. One of the
advantages of this method is that it requires no change
to the TCP protocol on the hosts. One aspect of our Nep-
tune prototype for the DLB implementation is inspired
by this idea (See Section 3.3) and used to embed our
distributed diversity strategy. Wireless Mesh Networks
have also been proposed as a cooperative approach to
wireless communications, and studied in [8], [9], [10].
It allows neighbors to connect their home networks

together to share their Internet access via gateways that
are distributed in their neighborhood. Within wireless
mesh networks, a multi-radio unification protocol for
IEEE 802.11 wireless networks is proposed in [11]. More
recently, several aspects of improving cellular networks
through ad hoc networks relaying were investigated [12],
[13], [14]. Most earlier work focusses on the capac-
ity improvement (unicast and multicast) using relaying
(usually requiring modifications to the cellular network
architecture) and not on the potential gains of bonding the
radios of multiple moderate-performance cellular links.

In our previous work [15], [16], we have introduced
several distributed cooperation techniques based on sig-
nal combining and implemented on physical layers. In
this paper, we proposed a new type of cooperation
based on traffic multiplexing. To the best of our knowl-
edge, this is the first work that proposes an architecture
for Distributed Link-Bonding over two radio interfaces,
provides an analysis and simulations to determine the
expected delays and throughput, and a software mid-
dleware implementation for current mobile phones that
is transparent to existing mobile applications.

2 DISTRIBUTED TRAFFIC MULTIPLEXING

In this section, we propose DLB and explore its poten-
tial. The principle behind this strategy is to exploit the
benefit from both traffic diversity and channel diver-
sity through traffic-multiplexing, where multiple nodes
pool their long-range links together to improve their
effective throughput and the network efficiency. We first
motivate the benefits of traffic multiplexing and link-
bonding techniques; then introduce the model used in
the analysis; and present the analytical and simulation
results. In Section 3, we present several possible methods
to implement DLB and our prototype implementation on
some current smart phones.

2.1

The considered DLB system consists of a group of m
nearby mobile nodes or mobile stations (MS), and base
stations or base transceiver stations (BTS). The base sta-
tions are controlled by the base station controller (BSC),
which dictates the carrier frequencies, communication
power and rate, etc. The base stations are also connected
to the backbone which leads to the telephone network
and the Internet. Communication between mobile sta-
tions and base stations is through long-range low data-
rate links (e.g., GPRS, EDGE, HSDPA, 1xEvDO). Mobile
stations can also communicate with each other through
short-range high data-rate links (e.g., WiFi). In this paper,
we focus on the case where all actively cooperating
mobile stations are within one-hop of each other through
the high data-rate link. For example, in Figure 1 a base
station BT'S; is communicating with a mobile station
MS; and another mobile station M S, in the vicinity
through long-range low data-rate links; the links from

System Model and Approach

Virtual
Wi-Fi
Cellular Link
— Wired Link
BTS,

Fig. 1. Configuration of the proxy based DLB platform.

MS, to M Ss, from M S, to M S3, and from M S5 to M S,
are short-range high data-rate links.

The application on the mobile nodes generates re-
quests, and sends them to the remote application servers
through their long-range cellular links. The responses
such as web pages from the application servers are
returned back to the mobile nodes. In the proposed DLB
system, we assume the long-range cellular links are lim-
ited by low speed at a certain data-rate. For our analysis,
we consider the following system characteristics and
parameters:

User Traffic Distribution: For our analysis and simu-
lations, we assume that the nodes generate requests ac-
cording to specific distributions. We consider that a node
is blocked until its request is fulfilled. We consider a
Blocked-Poisson distribution for the user traffic (note that
this is different from the traditional Poisson distribution).
Here a user generates requests according to a Poisson
process with rate A but blocks until the current request
is fulfilled. This process is motivated by the fact that
mobile phones’ users usually make one request at a time
(e.g., browse a web page and wait until it is completely
loaded before making a new request).

Service Time: This corresponds to the size of a web page,
or the length of a session. We consider two types of
distributions: exponential and heavy-tail. The exponential
distribution is commonly used to model the traffic in
networks and for queuing analysis, but the investigation
of the Internet traffic has suggested that the request
durations on the Internet are often according to heavy-
tail distributions [17], [18], [19]. For heavy-tailed traffic,
in terms of the size or duration of the requests there are
not only many short requests, but also a few very long
requests, which are not exponentially bounded [20], [21].
In contrast, the exponential traffic with the same mean
would have far more medium size requests.

App Server
\
NS
o
BTS1 BSC § 3
Ling Internet
X Cooperation Group Table
gﬂ\ \\\3, 10.00.11<—> 70.5685
g‘ “ g o 10.0.0.12 &—>166.24.1.32
i 10.0.0.13 &—>166.24.1.15
Q
i § Q
BSC DLB Proxy

Cooperation Modes: We consider two cases: non-
cooperative mode and cooperative mode. In the non-
cooperative mode all the traffic generated by each
node/user is transmitted over the nodes’” own long-
range links. In the cooperative mode, the traffic generated
by the cooperating nodes is multiplexed over all long-
range links. The combined capacity can be viewed as the
sum of the capacities of all the nodes’ long-range links.
In this mode, we consider two ways of multiplexing the
user traffic:

o Serial-multiplexing consists of queuing each
user/node’s request until all previous requests
are serviced. This means that the request is
processed at the combined rates of all long-range
interfaces.

o Parallel-multiplexing processes all requests simulta-
neously. The speed of processing a request depends
on the number of active requests in the system.

While parallel-multiplexing is more realistic from
an implementation and deployment perspective, it is
harder to evaluate analytically. We evaluate the serial-
multiplexing analytically and compare it to the parallel-
multiplexing simulations. We also experimentally evalu-
ate the parallel-multiplexing.

Evaluation Metrics: We study two characteristics of
these systems:

o Average Service Delay: This is the average amount of
time that a packet stays in the system. The service
delay is the waiting period plus the transmission
period. The waiting period starts when a packet is
dispatched from the application layer for transmis-
sion. If the queue is not empty or if the channel is
occupied, the packet is put on hold until it reaches
the head of the queue and the channel is cleared.
The transmission period is the actual amount of time
it takes to finish transferring the packet. This period
depends on the packet length and the transmission
rate.

o Perceived Throughput: This is the expected ratio of

request length and the processing time plus the

waiting period. In other words, it is the throughput

that users actually experienced. It can be defined as
—)

=+ D7

m

PT = E(

where L denotes the request length, D is the waiting
period before a request’s processing starts, and ' is
the aggregate service rate.

2.2 Stationary Regime for Blocked-Poisson Traffic,
and Exponential Service Time

In this part, we analyse the system in non-cooperative
mode and cooperative DLB serial-multiplexing mode
using Queuing theory and a Markov-chain model. Serial-
multiplexing is a simplified model, so we can derive its
performance analytically. The performance of parallel-
multiplexing will be evaluated through simulations (see
Section 2.3) and prototype experiments.

Non-Cooperative Mode: Each node is working indepen-
dently. Assume the incoming traffic is a Poisson process
with arrival rate A, and the transmission rate of the long-
range link is ;.. And the system is running in the blocking
mode, in which no new requests would be generated
if the current request is still not complete. It can be
modelled as a two-state Markov-chain, Figure 2.

Fig. 2. Markov chain for each node in non-cooperative
mode

A straightforward analysis gives the following results.
Global Balance Equations:

Pi=p-Py, p=Xp
The average number of requests in the system is:
N =M (p+A)

It can be easily shown that the perceived throughput
is equal to p.

DLB Serial Multiplexing Mode: For ease of analysis,
we assume that all the cooperative nodes have long-
range interfaces with the same characteristics (i.e., same
average transmission rate ;). The incoming traffic from
each node is a Poisson process with the same arrival rate
A. And each of the node is also running in the blocking
mode. This system can be modelled as a Markov chain
with m + 1 states (see Figure 3). State i corresponds to

the state when the system has i pending requests. In the
serial-multiplexing mode, only one request is processed
while other requests are queued. Since the system has
m cooperating nodes, the processing speed is m times
faster in comparison to the non-cooperative mode.

Let N}, denote the number of requests in the system at
time kd (including the one being processed), P; denotes
the stationary probability of being in state ¢, and P ;
denotes the transition probability from state i to state j.

Pi; P{Npy1 = jIN, = i}

Pyo = P{0 requests arrive from m nodes}
— e—nMé

= 1—mAé+0(9)

P i>1 P{0 arrivals from m — ¢ nodes, 0 departs}

ef(mfi))\é . efmp,é

= 1—(m =149 —mpud+ o(0)

P{1 requests arrive from m nodes}
= mA - e—nMé
= mAd + 0(9)

Pi>1,+1 = P{1 arrives from m — i nodes, 0 departs}
_ (m _ Z)>\5 . ef(mfi)/\é . efm;ui
= (m—1)Ad+0(9)
Py = P{0 requests arrive from m — 1 nodes,

1 departs}

_ e—(m—l)/\é . (1 o e—mu,é)

= mud + o(d)

P{0 arrives from m — i nodes, 1 departs}
—(m—1)A\d

P11 =

mud

= e ~mud - e

= mud + o(d)

The Global Balance Equation is:
Pi : (m - Z)/\ = P7;+1 smu
Let p = A/u. Then, from the balance equations:

m—1

PiJrl =

p- P
m .
(m—1)!p

P, = ———— P
(m—i—1)m? 0

Since >°I" P, =1, we have

m—1)pt
PoZ[Zﬁ] ;

=0

m

1-m\é

1—(M=DA6 —mud

Fig. 3. Markov chain for m cooperating nodes in serial-multiplexing mode.

and
' m.. m p] .
P=[(m—-i—-1!(—)"- S
(A My

The average number of requests in the system is:

N:Zi-Pi

=0

To compute the average delay, let us consider a newly
arrived request. We first compute the current system
state probability: P(N; = i|N; # m), 0 < ¢ < m. This
corresponds to the probability that i requests are already
in the system. The number of queued requests cannot be
m or larger, because users are blocked after each request.
Therefore, if there are already m queued requests no new
request would arise.

P(Ny =i, Ny #m)
P
1-P,

For each P(N; = i|N; # m) the delay is X; + --- +
X;+ X, where X; denotes the time to process (transmit)
existing request ¢ and X is the time to process the
new request. The average time for processing each of
these requests is (i + 1)/(mu). This holds true even for
the request being processed because of the memoryless
characteristic of the exponential distribution. Note that
we cannot compute the average delay directly using
Little’s Theorem, because the effective arrival rate of the
system is unknown but less than A, which is due to
the blocking nature of our request generation process.
Combining all the cases, we obtain the following average
delay for finishing a transmission request:

m—1
T = Y (Xi+-+X;+X) PN, =Ny # m)
=0
_— m‘1(¢+1) P,
N mp ' 1—P,

(=)

i=

Using the same approach the perceived throughput is
as the following.

1—-(Mm—2)A6 —mud 1—-mud
Y
.y
mué
T1 . P
PT = /—e‘ﬁ . *_dL
H i=0 (fntf) L= P

Our simulation of the Blocked-Poisson traffic with
exponential service time and serial-multiplexing exactly
matches the above analytical results (See Figures 4
and 5). These results will be discussed the next section.

2.3 Traffic Pattern and Simulation

Our simulation testbed is built up using Matlab and
Simulink. We simulate two types of traffic — Blocked-
Poisson and heavy-tail in both serial-multiplexing and
parallel-multiplexing. In this section, we present the sim-
ulation results in terms of service delay and perceived
throughput.

2.3.1 Blocked-Poisson Traffic (Serial vs.
Multiplexing)

Depending on the types of applications, parallel-
multiplexing might be more practical and closer to the
reality in comparison with serial-multiplexing. However,
the analysis of parallel-multiplexing is more complex,
and it is difficult to obtain a closed-form formula for
it, because in such DLB system the service rate for
completing a request depends on the number of requests
within the system.

To evaluate the performance, we simulate both multi-
plexing schemes. We normalize the average service time
per request to 1 unit of time (i.e., p = 1). We vary the
arrival rate for each node between 15; and 103u. Note
that we can use the arrival rates higher than the service
time because our arrival process is Blocked-Poisson (the
length of the queue never exceeds m). For each plotted
point, we run the simulation for 500,000 units of time.

As reported in Figures 4 and 5, at low and moder-
ate load both schemes show a significant reduction in
delay and increase of perceived throughput. We also
observe in some situation the serial-multiplexing slightly
outperforms the parallel-multiplexing. This is because
the service delay consists of the waiting time and the
transmission time. Although in the serial-multiplexing
case the request would wait if another request is under
transmission, this would not slow down the request un-
der transmission. Overall, serial-multiplexing performs

Parallel-

better. For example, assume there are 2 requests with the
same size arrive in the system, and system service rate is
1 request per unit of time. So, in serial-multiplexing, one
request takes 1 unit of time, and the other request takes
2 units of time (1 unit of time for waiting and 1 unit of
time for transmitting). The average is 1.5 units of time. In
contrast, in parallel-multiplexing, both requests takes 2
units of time. However, we note that serial-multiplexing
exhibits a higher variance of service delay (jitter).

Average delay
o
>

Serial
Parallel

. . .
10° 107 107" 10° 10
Load (Wy), p=1

Fig. 4. Average delay per packet for serial and parallel-
multiplexing with exponentially distributed service time.

2.3.2 Heavy-Tail Traffic

The distribution of the size of web pages is commonly
modelled as more of a heavy-tail than an exponential
distribution. Because the analysis of the cooperative
mode is much harder for this type of traffic, we also
use simulations to quantify the performance improve-
ment resulting from DLB. In our simulations, we use
Pareto distribution, which is a popular distribution for
modelling more realistic traffic which exhibits a heavy-
tail [20], [21]. Let [be the random variable that represents
the duration of the request. According to the Pareto
distribution, the probability density function for [is

ab®
p() =71y 12b

where a and b are the parameters, which define the shape
and scale of the distribution respectively.

Figure 6 indicates that under heavy-tail traffic, sig-
nificant increase of the perceived throughput can be
achieved when the load is low or moderate. We
also observe that the serial-multiplexing outperforms
the parallel-multiplexing, and in some situations the
difference is substantial. For example, the parallel-
multiplexing results in up to 45% lower perceived
throughput than the serial-multiplexing compared to a
15% in exponential traffic, see Figure 7 and Figure 8.

We also compared the performance of DLB under
heavy-tail and exponential traffic. Figures 9 and 10 show
the performance of serial-multiplexing DLB under both
traffic for the same average request length. In some

Serial
Parallel

Perceived Throughput

Load (My) , u=1

Fig. 5. Perceived Throughput as a function of
load for exponentially distributed service time and
m = 1,---,5.

Serial
Parallel | |

Perceived throughput

05
10

. . . .
107 107 10° 10’ 10° 10
Load (»/ Average Request Length), Average request Length=1

Fig. 6. Perceived throughput as a function of load for
heavy-tail trafficand m =1,--- , 5.

situation such as moderate load, heavy-tail traffic re-
sults in a perceived throughput up to 80% better than
exponential traffic. This is because for the heavy-tailed
traffic there are many short requests, but also a few very
long requests. In contrast, the exponential traffic with the
same mean would have a far more medium size requests.
And transmitting long requests is more efficient than
short requests, given the same total amount of data. For
example, assume there are 2 requests each with 1 unit
of size arriving at the system, and the system transmit
rate is 1 unit of size per unit of time. So one request
takes 1 unit of time, and the other request takes 2 units
of time (1 unit of time for waiting and 1 unit of time for
transmitting). So they together take 3 units of time. In
contrast, assume one long request with 2 units of size, ,
which is the same amount of data as the previous case,
it would take only 2 units of time to complete.

2.4 Scheduling and Rate Allocation

Each of the long-range link has different speed and delay.
Rate allocation is important to the DLB system, because
it decides how the packets from the traffic source are
scheduled and routed through the cooperative network.

095

0.9

0.85

Paarallel to Serial Throughput Ratio

m=1
——m=2
m=3 |

—e—m=4

08

——m=5

0.75 2 7 ‘o f
10” 10™ 107 10 10 10

Load (Mu) , p=1

Fig. 7. Ratio of perceived throughput of parallel to
serial-multiplexing for exponentially distributed service
time.

0.6 4
m=1

——m=2

Parallel to serial Throughput Ratio (Heavy—Tail)

05 > m=3
—8—m=4

——m=5

.
10° 107 107" 10° 10' 10° 10
Load ()/ Average Request Length), Average Request Length=1

Fig. 8. Ratio of perceived throughput of parallel to
serial-multiplexing for heavy-tail traffic.

Failing to have such a rate allocation algorithm, which
accounts for the network condition, would cause the
local network to congest on some links while underuse
other links. Thus, it degrades the overall system perfor-
mance.

Fortunately, this problem can be easily addressed in
our cooperative environment. This is because the pro-
posed DLB system has a simple topology that there is
only one hop between cooperative nodes through the
local high-speed network. Besides, the two types of air-
interface used in the DLB systems are orthogonal, so the
local wireless communications would not interfere with
the long-range wireless communications.

The strategy we adopt in the DLB system is a water-
filling algorithm (also called local-queue balancing [22]
or back-pressure [23]). For each cooperating node the
long-range communication queue status (i.e., length and
delay) is monitored and reported to the master node.
When the traffic from the application layer arrives at the
DLB packet dispatcher of the master node, it measures
the queue status for each assisting nodes and dispatch
the packet to the assisting node with the best queue
condition such as minimum queue length or shortest

Heavy-Tail Traffig
Poisson Traffic

Perceived throughput (Serial Scheme)
@

.
= = 10 o o' o 10
Load (1 Average Request Length), Average Request Length=1

Fig. 9. Comparison of perceived throughput under
exponential and heavy-tail traffic for serial-multiplexing.
Both traffics have the same average request length.

m=1
——m=2

m=3

——m=4|]

—e— m=5

Heavy-Tail to Poisson Throughput Ratio

. . . .
107 107" 10° 10' 10° 10
Load (#/ Average Request Length), Average Request Length=1

Fig. 10. Ratio of perceived throughput for heavy-tail
traffic to exponential using serial-multiplexing. For the
same average request length, heavy-tail traffic results
in substantially better throughput.

queue delay. For ease of implementation, our prototypes
adopt the queue length as the metric. This strategy can
improved to reflect the original local-queue balancing
and back-pressure techniques utilising different queues
for different destinations.

This rate allocation algorithm has the benefit that
the channel condition can be calculated quickly and
accurately as the queue length or delay is an effective
measure of the channel condition. Besides, the algorithm
is relatively simple, it would not cause much overhead
on the CPU or network bandwidth. However, dispatch-
ing packet with such method would not prevent the
packets from reaching the destination out of order, which
would cause severe degradation to the performance
of existing transport layer protocols such as TCP. In
Section 3.3, we address the packet re-ordering issue in
detail, propose solutions, and implement them within
our DLB prototype.

3 DISTRIBUTED LINK BONDING PROTOTYP-
ING

In this section, we first discuss the potential architectures
and approaches for implementing DLB. We present a
tunnelling-based DLB prototype and the Neptune proto-
type. Both prototypes are implemented as system plug-
ins that can run in the current network stack. We discuss
the problems we have encountered during prototyping
and propose solutions. Finally, we present our experi-
mentation results and the achieved performance of DLB
on smart phones.

3.1 Cooperative Solutions

In the previous section, we show that the proposed DLB
system can significantly improve the network efficiency
and boost the perceived throughput for current cellular
systems. Several approaches are possible to implement
DLB, such as DLB-Aware Applications, DLB-Aware Net-
work Layer, Multi-homed Transport Protocols, and Proxy
Based Protocols. All these approaches can be implemented
in software on existing hardware. However, some of
them necessitate modifications of existing applications
or existing Internet protocols. These are undesirable con-
straints. In our implementation, we built two prototypes,
a - Tunneling Based Proxy and the - Neptune prototype.
Both prototypes not only run on existing hardware, but
also impose no changes on the current Internet. Besides,
our prototypes are implemented as system plug-ins, and
can be turned on and off by the user with a single click.
They are transparent to the application layer, so most of
the existing applications can benefit from DLB without
any modifications.

We first discuss the possible schemes for implementing
DLB:

o DLB-Aware Applications: DLB can be implemented

at the application layer. Cooperation at the applica-
tion layer requires modifications of the application
or a complete rewrite of the application. There are
many peer-to-peer cooperative applications. For ex-
ample, Skype uses cooperation between nodes to
improve the call quality, raise the call completion
rate and traverse firewalls; PPLive uses cooperation
between nodes to deliver fast online video stream-
ing; BitTorrent uses cooperation to accelerate file
download.
In the DLB scenario, for upload traffic, whenever
an application client initiates a data connection, the
application client splits the data and sends it to a
list of cooperating nodes. The data is forwarded
to the destination application server, and finally re-
assembled by the application server. The download
traffic flows in a similar way. However, this method
is not generic and cannot be shared by all the
applications. A lot of work that has to be done for
each application, which makes it impractical and not
scalable from a software engineering perspective.

o DLB-Aware Network Layer: Some modifications

can be made to the network layer stack to support
DLB. One way is to enable the loose source routing
in the Internet Protocol. In the IP protocol, there are
two header options - Strict Source and Record Route
(SSRR) and Loose Source and Record Route (LSRR) to
allow the packet sender to partially or completely
specify the route that the packet takes through
the network. Without specifying these options, each
router on the Internet determines the routing path
solely based on the packet’s destination and its
own routing table. We can leverage the loose source
routing option to realize the DLB cooperation.

The DLB cooperation can be implemented in the
following way: When the traffic arrives at the net-
work layer on a mobile node, for each packet a
cooperating node’s IP address is added to the loose
source routing record field in the IP header options.
This forces the packet to travel over one of the
cooperating nodes. In such a way, the traffic can be
balanced over all the cooperating nodes. In the same
way, when the traffic is travelling back from the ap-
plication server to the mobile node, the application
server also needs to add a cooperating node to the
source routing record to make sure the packets go
through these cooperating nodes.

Although this method looks promising, it still raises
many issues. First of all, to implement this strategy,
it not only requires modifications of the IP stack on
the client side, but also requires the modifications of
the IP stack on the application servers too. It is un-
desirable and unrealistic to make those changes on
all the application servers throughout the Internet.
Furthermore, the source routing options are usually
blocked for the concerns of security attacks such as
Internet address spoofing and Denial-of-Service.
Multi-homed Transport Protocols: A typical multi-
homed transport protocol is the IETF Stream Control
Transmission Protocol (SCTP) [6]. Similar to UDP,
SCTP is a message based transport protocol in con-
trast with TCP, which is a stream based protocol.
SCTP provides reliable data transfer and partial or-
dering of the data delivery. Among many of the fea-
tures that SCTP supports, multi-streaming is the one
we are interested in. It allows multiple independent
streams to be transmitted in parallel. For example,
a web page may contain html files, javascript files,
and images. SCTP allows transmitting those files
simultaneously.

The DLB cooperation can be implemented using
SCTP. When the traffic arrives at the transport layer
(for both uploading and downloading), the DLB
system starts multiple SCTP streams in a way that
each one passes through a cooperating node. SCTP
ensures the reliable transmission of each of the
streams. On the receiver side, those streams are
eventually delivered to the application layer.

One of the limitations of such a solution is that it re-

quires all the Internet servers to run SCTP. But SCTP
is not universally deployed on the current Internet.
Another drawback is that to leverage parallel multi-
streaming, the application needs to be aware of it. It
is not completely transparent to the application. The
application has to make sure each of the streams is
independent and can be transferred independently.
As a result, this also requires the modifications of
applications.

o Proxy Based Protocols: In order to avoid chang-
ing the server side network stack and applications,
proxies can be introduced into the system to bridge
between the existing systems and the DLB cooper-
ative environment. A diagram of the proxy based
DLB platform can be seen in Figure 1.

In this approach, the system redirects the appli-
cation’s uplink traffic to an Agent running on the
mobile client. The Agent dispatches the data to go
through each of the cooperating nodes and the
destination is set to be a Remote Proxy (or DLB
Proxy) on the Internet. The Remote Proxy then acts
as a remote Network Address Translation (NAT) and
forwards the packets to the final destination, which
is an application server. For the downlink, all traffic
from the application server is sent to the DLB proxy,
which then sends the traffic to a set of cooperating
nodes, and eventually the Agent on each cooperating
nodes relays it to the original recipient.

Since all the traffic goes through this DLB proxy,
a potential limitation of this method is that the
proxy might become a bottleneck. Nevertheless, the
advantages of this solution are promising and our
prototypes adopt this proxy based approach. As the
DLB cooperation gains momentum, more proxies
can be deployed at the edge of the Internet and even
at the server side.

3.2 Tunnelling-Based Architecture and Prototype

Our first prototyping attempt is a tunnelling-based ar-
chitecture. It uses the packet encapsulation technique
commonly used in Virtual Private Networks (VPN) to
create a virtual tunnel between the local cooperating
nodes and the Remote Proxy. The system implementation
is based on the Click Modular Router [24], [25] and runs
on Linux. For the ease of implementation (in this first
prototype), we use laptops with cellular PC cards as
the mobile stations. The detailed software and hardware
configuration can be found in Section 3.4. In the second
prototype — Neptune (See Section 3.3), we are able to run
the DLB system on the Google Android-based mobile
phones[26]. The DLB system consists of two parts: an
Agent running in each mobile node and a Remote Proxy
running on a server accessible from the Internet.

The Agent is a software plug-in to the OS of the mobile
node. It contains several components:

o Status Update: A service to broadcast and collect
the identity and the status of cooperating nodes.

This allows each node to discover other cooperative
nodes. It also allows other nodes to learn the status
information such as the pending queue length, the
link quality and delay. These will be used in the
packet scheduler to decide which node should be
used for forwarding the traffic.

o Data Collection: A module to capture all the data sent
from mobile applications. This is implemented as a
virtual network interface bound with a virtual IP ad-
dress. After changing the routing table of the mobile
node, all of the outgoing packets are sent through
this interface, and therefore captured and processed
by our system. This requires no modifications to the
existing applications. Our implementation uses an
IP over UDP encapsulation technique, which means
that each IP packet is wrapped inside a UDP packet.

o Packet Scheduler: A module to decide which coop-
erating node (including itself) it should forward to,
based on the rate allocation algorithm (Section 2.4).
It then encapsulates the packet in a UDP packet and
forwards it to the selected node.

o Packet Forwarding: A service on the node to receive
the incoming UDP packets and forward them to
the destination. Upon receiving a packet, the UDP
header is removed to extract the original IP packet.
If the destination of this IP packet is another co-
operating node or the Remote Proxy, it encapsulates
this packet in UDP again and sends it out. If the
destination is itself, it delivers the packet to the
application.

The Remote Proxy is a lightweight service which can
be run on any Internet server. It acts like a NAT router
providing packet forwarding and network address trans-
lation services.

When a UDP packet arrives at the proxy from a
cooperating nodes, the proxy strips off the UDP header
and gets the original IP packet. Then the proxy exe-
cutes a network address translation (NAT) to modify the
source address to its own address. Finally the packet is
transmitted through the wired network and delivered to
the destination. The reverse process from the destination
back to the mobile node is similar. Upon receiving an IP
packet from the destination, the proxy performs a NAT
and changes the destination address to the original ini-
tiator and feeds it to the packet scheduler. The scheduler
then decides which cooperating node it should forward
to based on the rate allocation algorithm, encapsulates it
in a UDP packet, and forwards it to the selected node.
For a better performance, we recommend that it would
be placed as close to the mobile nodes as possible. This
would reduce the number of hops required to relay
packets.

Switching the DLB service on and off is easy. It can
be done by a start/stop of the Agent process and an
update to the routing table. One of the reasons to choose
IP over UDP is that the firewalls are placed between
mobile nodes and the Internet by the cellular operators
for security purposes. So we cannot use the techniques

like IP over IP or NAT directly because the modified
IP packets will be dropped by the operator’s firewall.
Our experimentation result shows that the UDP packet
encapsulation is fast with negligible overhead.

We have conducted several experiments with the
tunnelling-based DLB system. The results are presented
in Section 3.4. We found that it works well for the
UDP traffic, but the TCP traffic performance is unstable.
One serious problem with this implementation is that
our tunnelling-based DLB prototype is a network layer
system, so it is unaware of the packet ordering. This can
significantly degrade the performance of TCP. Packets
re-ordering can happen quite often when the traffic is
split over multiple different operators. This was one
the main motivations to use an alternative solution in
our Neptune approach and prototype, which will be
described in the next section.

3.3 Neptune Architecture and Prototype

As described previously, the performance of TCP can be
significantly degraded due to the arrival of out-of-order
packets [27]. In the DLB system, packet reordering can
happen frequently as the long-range links of the cooper-
ative nodes have different rates and delays (our experi-
ments sometimes show several hundreds of milliseconds
difference between two cellular links when using two
different operators). In TCP, the out-of-order packets
result in duplicate acknowledgements (DUPACKSs) from
the receiver. The sender, which receives these DUPACKSs,
cannot differentiate if they are due to an out-of-order
delivery or that a packet was lost and DUPACKSs are
the result of subsequently received packets. Current TCP
designs and implementations were optimized for wired
networks where out-of-order arrivals are rare and packet
loss due to transmission errors is small. So, TCP mis-
interprets the out-of-order packet delivery as a packet
loss due to congestion. These assumptions are no longer
true in our DLB wireless and heterogeneous cooperation
environment.

A simple and quick fix is to intentionally drop the
DUPACKS, but this would just be a band-aid solution.
It does not solve the fundamental problem, and can
cause side effects when dropping useful DUPACKSs.
Some other solutions [28], [29] use timestamps or addi-
tional TCP header bits to detect spurious retransmission
and therefore eliminate the retransmission ambiguity. In
[30], the authors propose RR-TCP to adaptively vary
dupthresh to avoid false fast retransmits proactively.
Other solutions such as TCP-DOOR [31], designed for
MANET environment with occasional out-of-order pack-
ets, detects out-of-order packets by using additional
sequence numbers. TCP-PR, proposed in [32], neglects
DUPACKSs completely, and relies solely on timers to de-
tect packet loss. However, those solutions only consider
the case of one single congestion path, which does not
correspond to our DLB scenario where each link results
in an independent transmission path.

10

According to the type of packet reordering that hap-
pens in our DLB system, where the packets are a mix of
multiple independent transmission paths, we consider a
solution that addresses the congestion control for each
cooperative link separately. Our prototype Neptune is
based on this idea.

As a proxy-based approach, Neptune shares a similar
structure as our previously described tunnelling-based
prototype. It also consists of two components: an Agent
running in each mobile node and a Remote Proxy which
is accessible from the Internet. Unlike the tunnelling-
based prototype which deals with the packets at the
network level, Neptune is working at the transport level,
to resolve the packet re-ordering problem. The Neptune
system is described below.

Inspired by Indirect-TCP [7], Neptune splits one TCP
link into several connected TCP links. A local NAT is
added to complete the data collection task. When the
application initiates a TCP connection to a remote appli-
cation server, NAT is applied to redirect the connection
to a dummy service stub in the Agent. The application
is unaware of this change, and feels as if it is connected
to the remote application server. This is quite different
from the tunnelling-based approach.

For the uplink, once the Agent captures the traffic
stream of the application, the cooperation starts. It first
transforms the traffic data into its own message format
with a sequence number for each message. Notice that
those messages are different from the TCP packets re-
ceived from the application. The message is currently set
to a fixed size of 4KB, which defines the minimum data
unit to be transferred within Neptune. The scheduler
then dispatches those messages to a group of cooperat-
ing nodes according to the rate allocation algorithm. The
Agents in other cooperating nodes forward the messages
to the Remote Proxy through independent TCP links. As
a result, each of these links handles its own congestion
independently. Eventually, the received messages from
all the cooperating nodes are reassembled at the Remote
Proxy according to their sequence numbers. The Remote
Proxy then establishes another TCP connection to the
destination application-server and forwards the data to
it.

For the downlink, the data sent back from the appli-
cation server can be obtained from the same TCP link
which is connected to the application server. The Remote
Proxy then transforms the traffic data into messages with
sequence numbers. The scheduler dispatches them back
to the cooperating nodes through the same TCP links
that are previously connected from them. Each of the
cooperating nodes forwards the messages to the source
node. The Agent at the source node reassembles and
delivers them to the application through the service stub.

This approach uses separate TCP links, which allows
independent congestion control, for the links between
each cooperating node and the Remote Proxy. From our
experimental results (Section 3.4), we show that this ap-
proach can effectively avoid the performance fluctuation

found in the tunnelling-based prototype. As we can see,
Neptune splits the original TCP connection from the
application to the application server into three separate
TCP connections: from the application to the Agent stub,
from the Agent to the Remote Proxy, and from the Remote
Proxy to the application server.

We implemented the Agent of Neptune on the Google
Android platform. It runs as a background service, but
it can be controlled through an Android Activity with
UL A screen shot of Neptune Agent controller is shown
in Figure 11. Most of the job is done automatically in the
background, and the user can simply switch it on and
off through a single button. Note that in order to run
Neptune, the user needs to have root privileges on the
Android phone to gain permission for certain API calls.

T @ 10:31 AM

LA

- Press to start the Neptune agent. -

Fig. 11. Neptune Agent controller on Google Android
platform.

M @ 10:26 AM
DLB Test

1 2 5
| || || |

10 25 50
| || || |

(@)Download () Upload
stop
[—

Status: Running...

Size: 1190940/2097152
Speed: 341.8203125kbps
Time Elapsed: 27s

ETA: 205

Fig. 12. A testing tool for DLB prototype.

11

3.4 Experimentation

First, we conducted several experiments with the
tunnelling-based prototype. The experimental testbed con-
sists of a computer which serves as the Remote Proxy,
and the Agents running on multiple laptops with PC
cards. We use two types of cellular PC cards: an HSDPA
Sierra Wireless Aircard 860 from AT&T and a 1xEVDO
Rev. A Pantech PX-500 from Spint (Table 1). The laptops
are running the Fedora Linux with kernel 2.6.21. The
Click Modular Router is version 1.6.0. For this prototype,
the reason why we choose to use laptops, rather than a
direct implementation on the phones, is that substantial
kernel modifications are necessary in order to make the
tunnelling-based prototype work, and the Click Modular
Router is only available on the desktop Linux not on the
Linux based mobile phones yet.

The measurements we carried aim at determining the
overhead cost and providing a proof of concept for DLB.
We developed and run a UDP speed test program that
sends packets at a constant rate higher than what is
sustainable by each of the cellular PC cards but still
acceptable by the Internet. We use a 500KB/s data rate
with a UDP packet size of 1KB. Table 2 summarizes our
measurements. As we can see for the protocol with no
ordering requirement such as UDP, our measurements
indicate that tunnelling-based DLB prototype can be a
very effective solution to boost the throughput with very
little overhead. However, through our experiments, we
also observe that for the TCP protocol, which has strict
constraints on the packets ordering, our tunnelling-based
DLB prototype fails to give consistent results and the
performance fluctuated substantially (sometimes reach-
ing a throughput even lower than what a single path can
achieve). From our investigation, out-of-order packets
are the source of the performance hit as discussed in
Section 3.3.

We also conducted extensive experiments with our
Neptune prototype. Neptune runs on existing smart
phones and aims at solving the problems faced in the
tunnelling-based DLB prototype. Neptune is implemented
for the Google Android platform. In our experiments,
we use two types of Android phones, the 1IXEVDO Rev.
A Motorola Droid from Verizon and the HSPA HTC
G1 from T-Mobile (Table 1). We also include an Apple
iPhone 3G from AT&T to cover more cases. Because
Neptune is not designed for iOS running on the iPhone
3G, we also use a laptop tethered with the iPhone 3G,
so we can use the PC implementation of Neptune. This
is a similar method that we used in the experiments of
the tunnelling-based prototype.

To measure the performance of Neptune, we also cre-
ated a testing application (Figure 12) to test download-
ing/uploading with different sizes using HTTP (Most of
the mobile traffic is HTTP e.g., web browsing, Internet
radio, YouTube video). In the debug mode, the Neptune
Agent can record the transient speed (at the second
level), so that we can monitor the details of the running

12

Manufacture Model Technology Operator Software OS
Motorola Droid 1xEvdo Rev.A Verizon Android OS 2.1 Linux Kernel
2.6.29
HTC Gl HSPA T-Mobile Android OS 1.6 Linux Kernel
2.6.29.6
Apple iPhone 3G | HSDPA AT&T iPhone OS 3.1.2
Sierra Wireless Aircard HSDPA AT&T Fedora 7 Linux Kernel 2.6.21
860
Pantech PX-500 1xEvdo Rev.A Sprint Fedora 7 Linux Kernel 2.6.21
TABLE 1
DLB Testing Environment Setup
HSDPA 1xEvDO DLB Mode
I am 9308 ToTid 0376 transm1§51on buffgr, which causes our transient speed
12 pm 890.4 1249.6 2046.4 calculation to be inaccurate. Nevertheless, the average
4 pm 935.2 1370.4 2148.0 speed over a long period is still accurate enough.
8 pm 934.4 1336.8 2218.4
TABLE 2 Download Test
UDP download speed tests for tunnelling-based DLB. 2500~ Non-Coop (Draid 1

(kbps)

performance for each cooperative node.

As expected, the specific results vary depending on
the location and the time. Most of our experiments are
conducted around the Northeastern University campus
in Boston. Figure 13 and 14 show the performance of
downloading and uploading of the Neptune DLB system
with two Verizon Droid phones (same operator). As
expected, the Neptune DLB system can almost double
the throughput in both downloading and uploading. We
also observe that the variance of the single link upload
speed is smaller than the single link download speed.
This can be explained by the fact that there is less upload
traffic in comparison to the download traffic. With less
competition, the upload speed graph looks smoother
than the download speed graph. We note that even when
bonding two phones of the same operator, we measure
performance improvement. This is due to the fact that a
single phone radio is more limited then the radio of the
base station and does not reach the base station capacity.

Figure 15 and 16 show the performance of download-
ing and uploading of the Neptune DLB system with
one Verizon Droid and one T-Mobile G1. From our
measurements, the average speed of the Verizon network
is around 900 kbps for downloading, and 600 kbps for
uploading; T-Mobile network is much slower with an
average speed of 500 kbps for downloading and 250
kbps for uploading. Therefore, in the cooperative DLB
system, the slow network users can benefit even more.

We also experimented the Neptune DLB system with
one Verizon Droid and one AT&T iPhone 3G. Similar
results can be found in Figure 17 and 18. However, the
upload throughput of iPhone 3G displays a periodical
pattern. This is because the Neptune Agent is not actually
running on the iPhone 3G. Instead, as we mentioned it is
running on a laptop tethered with iPhone 3G. The OS in
the laptop is the desktop Linux. It has a much larger

Non-Coop (Droid 2)
—— DLB (Droid x 2)

ZOOOMW\WAW“ | W \

500 : Y

-
ol
o
o

1000f!!

Throughput (kbps)

1 60 120 180 240 300
Time (s)

Fig. 13. Downloading throughput of Neptune DLB with
two Verizon Droid phones in cooperation.

Upload Test

- = Non-Coop (Droid 1)
Non-Coop (Droid 2)
— DLB (Droid x 2)

1500

10001

Throughput (kbps)

1 60 120 180 240 300
Time (s)

Fig. 14. Uploading throughput of Neptune DLB with two
Verizon Droid phones in cooperation.

4 CONCLUSION

In this paper, we introduce DLB - a distributed co-
operation technique for hybrid wireless networks. Our
analysis and simulations reveal that it is a simple and
effective technique to improve the signal coverage, de-
lay, perceived throughput and network utilization. To

Download Test

2500 T
- = Non-Coop (G1)
Non-Coop (Droid)|
—— DLB (Droid+G1)
20001

§ NW@ M\
o
e}
X 1500} ! o
: Iy
oy
= 1000]
< U e R
< gt AR
= g e 0 S \
N \V,/\‘ ol toh
500(—+= - T —
| v PRSI
\ ‘(’ YN
0 ‘ ‘ ‘ ‘
1 60 120 180 240 300

Time (s)

13

Download Test

Non—Coop (iPhone)
2500(- - - Non-Coop (Droid)
—— DLB (Droid+iPhone)
B f\(\/\ /\(\
g h
g A 3 A Ml N ! |
= 1500 \Jﬁ \/v \/ V\,\! \/
o
< n
2 , "
© 1000} A
I-E " I) AR 0t
! \\v Vaon N L y/ "l,’ \ "w /! '\ "
500} ! Y VAT ‘\M,\j \ i \\\,‘ vl \ .
N D) W
o V
0
1 60 120 180 240 300
Time (s)

Fig. 15. Downloading throughput of Neptune DLB with Fig. 17. Downloading throughput of Neptune DLB with
one Verizon Droid and one Tmobile G1 in cooperation.

Upload Test

l| == Non-Coop (G1)
1500 Non-Coop (Droid)|
—— DLB (Droid+G1)

1momﬂwkﬁwﬁ -y MJMNMlNﬂP
O

Throughput (kbps)

500

1 60 120 180 240 300
Time (s)

Fig. 16. Uploading throughput of Neptune DLB with one
Verizon Droid and one Tmobile G1 in cooperation.

demonstrate that the proposed technique is practically
feasible, we propose an architecture, and develop pro-
totypes on for current mobile phones (Android) and
the linux operating system. Our experiments show that
existing applications can benefit from a significant per-
formance boost without modifications.

one Verizon Droid and one AT&T iPhone 3G in coopera-
tion.

Upload Test

i Non-Coop (iPhone)
15007 ___ Non-Coop (Droid)
—— DLB (Droid+iPhone)

1000} /1) /\\ M (\Vl

5001 \.‘ '

Throughput (kbps)
=
Ié
=
\
g;/—
=

1 60 120 180 240 300
Time (s)

Fig. 18. Uploading throughput of Neptune DLB with one
Verizon Droid and one AT&T iPhone 3G in cooperation.

[10] D.S.J. D. Couto, D. Aguayo, J. Bicket, and R. Morris, “A high-
throughput path metric for multi-hop wireless routing,” MobiCom
'03: Proceedings of the 9th annual international conference on Mobile
computing and networking, 2003.

[11] A. Adya, P. Bahl, J. Padhye, A. Wolman, and L. Zhou, “A multi-
radio unification protocol for ieee 802.11 wireless networks,”
BROADNETS ’04: Proceedings of the First International Conference
on Broadband Networks, 2004.

[12] H. Luo, R. Ramjee, P. Sinha, L. E. Li, and S. Lu, “Ucan: a
unified cellular and ad-hoc network architecture,” in MobiCom
"03: Proceedings of the 9th annual international conference on Mobile
computing and networking. New York, NY, USA: ACM, 2003, pp.
353-367.

[13] R. Bhatia, L. E. Li, H. Luo, and R. Ramjee, “Icam: Integrated cellu-
lar and ad hoc multicast,” IEEE Transactions on Mobile Computing,
vol. 5, no. 8, pp. 1004-1015, 2006.

[14] L. K. Law, S. V. Krishnamurthy, and M. Faloutsos, “Capacity
of hybrid cellular-ad hoc data networks,” in Proceedings of IEEE
Infocom, 2010.

[15] H. Javaheri, G. Noubir, and Y. Wang, “Cross-layer distributed
diversity for heterogeneous wireless,” Wired/Wireless Internet Com-
munications (WWIC), pp. 259-270, 2007.

[16] ——, “Distributed cooperation and diversity for hybrid wireless
networks,” Wired/Wireless Internet Communications (WWIC), pp.
27-39, 2010.

[17] V. Paxson and S. Floyd, “Wide area traffic: the failure of poisson
modeling,” IEEE/ACM Transactions on Networking (TON), vol. 3,
no. 3, pp. 226244, 1995.

IEEE802.11s Working Group. http:/ /grouper.ieee.org/groups/802/11}18] M. E. Crovella and A. Bestavros, “Self-similarity in world wide

REFERENCES

[1] L. Buttyan and].-P. Hubaux, “Stimulating cooperation in self-
organizing mobile ad hoc networks,” Mob. Netw. Appl., vol. 8,
no. 5, pp. 579-592, 2003.

[2] M. Feldman and J. Chuang, “Overcoming free-riding behavior
in peer-to-peer systems,” SIGecom Exch., vol. 5, no. 4, pp. 41-50,
2005.

[3] T.S. Rappaport, Wireless Communications: Principles and Practice 2
edition. Prentice Hall PTR.

[4] D. P. Bertsekas and R. Gallager, Data Networks 2 edition. Prentice
Hall PTR.

[5] IEEE P802.3ad Link Aggregation Task Force.
http:/ /www.ieee802.0rg/3/ad/index.html.

[6] R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer,
T. Taylor, I. Rytina, M. Kalla, L. Zhang, and V. Paxson, “Stream
control transmission protocol,” IETF RFC 2960, 2000.

[71 A.Bakre and B. Badrinath, “I-TCP: indirect TCP for mobile hosts,”
Distributed Computing Systems, International Conference on, vol. 0,
p- 0136, 1995.

(8]

[91 Motorola’s mesh networks. http://www.meshnetworks.com.

web traffic: evidence and possible causes,” SIGMETRICS ’96:

Proceedings of the 1996 ACM SIGMETRICS international conference
on Measurement and modeling of computer systems, pp. 160-169,
1996.

F. Hernandez-Campos, J. S. Marron, G. Samorodnitsky, and F. D.
Smith, “Variable heavy tails in internet traffic,” Performance Eval-
uation, vol. 58, no. 2+3, pp. 261-261, 2004.

T. D. Neame, M. Zukerman, and R. Addie, “A practical approach
for multimedia traffic modeling,” in Broadband Communications,
1999, pp. 73-82.

M. Zukerman, T. Neame, and R. Addie, “Internet traffic modeling
and future technology implications,” 2003.

B. Awerbuch and T. F. Leighton, “A simple local-control ap-
proximation algorithm for multicommodity flow,” Foundations of
Computer Science, Annual IEEE Symposium on, vol. 0, pp. 459468,
1993.

L. Tassiulas, “Adaptive back-pressure congestion control based on
local information,” IEEE Transactions on Automatic Control, vol. 40,
no. 2, pp. 236250, Feburary 1995.

The Click Modular Router. http://www.read.cs.ucla.edu/click/.
E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. E. Kaashoek, “The
click modular router.” ACM Transactions on Computer Systems,
vol. 18, no. 3, 2000.

Google Android Platform. http://code.google.com/android/.

E. Blanton and M. Allman, “On making TCP more robust to
packet reordering,” SIGCOMM Comput. Commun. Rev., vol. 32,
no. 1, 2002.

R. Ludwig and R. H. Katz, “The Eifel algorithm: making TCP
robust against spurious retransmissions,” SIGCOMM Comput.
Commun. Rev., vol. 30, no. 1, 2000.

S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky, “An extension
to the selective acknowledgement (SACK) option for TCP,” RFC
2883, 2000.

M. Zhang, B. Karp, S. Floyd, and L. Peterson, “RR-TCP: A
reordering-robust TCP with DSACK,” Network Protocols, IEEE
International Conference on, 2003.

FE. Wang and Y. Zhang, “Improving TCP performance over mo-
bile ad-hoc networks with out-of-order detection and response,”
MobiHoc, 2002.

S. Bohacek,]. Hespanha, L. Junsoo, C.Lim, and K. Obraczka,
“A new TCP for persistent packet reordering,” Networking,
IEEE/ACM Transactions on, vol. 14, 2006.

[19]

[20]

[21]

[22]

(23]

[24]
[25]

[26]
[27]

(28]

[29]

(30]

[31]

[32]

Hooman Javaheri Hooman Javaheri is currently a Ph.D student in the
College of Computer and Information Science at Northeastern Univer-
sity. He received a B.S. degree in Electrical Engineering from Sharif
University of Technology, Iran, and an M.S. degree in Computer Science
from Northeastern University. His research interests include wireless
communication networks, RF interaction with biological systems, and
biologically enabled computation and communication.

Guevara Noubir Guevara Noubir’s research covers both theoretical and
practical aspects of secure and robust wireless communication systems.
He holds a PhD in computer science from the Swiss Federal Institute
of Technology in Lausanne (EPFL, 1996). He joined Northeastern
University in 2001 and is now an associate professor of computer
science. He was a senior research scientist at CSEM SA (Switzerland)
between 1997 and 2000 where he led several research projects and
contributed to the definition of the third generation Universal Mobile
Telecommunication System (UMTS). He is a recipient of the NSF
CAREER Award. Dr. Noubir held visiting positions at Eurecom, MIT, and
UNL.

14

Yin Wang Yin Wang is currently a Ph.D student in the College of Com-
puter and Information Science at Northeastern University. Previously, he
received a B.S. degree in Computer Science from Nanjing University,
China and an M.S. degree in Computer Science from Northeastern
University. His research interests include Mobile Ad hoc Networks,
Cellular Networks, Mobile Devices and Embedded Systems.

