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Abstract—Rogue Base Station (RBS) attacks, particularly those
exploiting downgrade vulnerabilities, remain a persistent threat
as 5G Standalone (SA) deployments are still limited and User
Equipment (UE) manufacturers continue to support legacy net-
work connectivity. This work introduces ARGOS, a comprehen-
sive O-RAN compliant Intrusion Detection System (IDS) deployed
within the Near Real-Time RAN Intelligent Controller (RIC),
designed to detect RBS downgrade attacks in real time, an area
previously unexplored within the O-RAN context. The system
enhances the 3GPP Key Performance Measurement (KPM)
Service Model to enable richer, UE-level telemetry and features a
custom xApp that applies unsupervised Machine Learning models
for anomaly detection. Distinctively, the updated KPM Service
Model operates on cross-layer features extracted from Modem
Layer 1 (ML1) logs and Measurement Reports collected directly
from Commercial Off-The-Shelf (COTS) UEs. To evaluate system
performance under realistic conditions, a dedicated testbed is im-
plemented using Open5GS, srsRAN, and FlexRIC, and validated
against an extensive real-world measurement dataset. Among the
evaluated models, the Variational Autoencoder (VAE) achieves the
best balance of detection performance and efficiency, reaching
99.5% Accuracy with only 0.6% False Positives and minimal
system overhead.

Index Terms—5G, O-RAN, xApps, ML, RBS, IDS

I. INTRODUCTION

The rise of 5G mobile networks represents a major shift
in telecommunications, opening the door to innovative appli-
cations through faster connectivity and minimal delay. As the
telecom industry nears the midpoint of 5G adoption, a growing
number of Mobile Network Operators (MNOs), particularly in
Asia and North America, are focusing on network densification
and transitioning to 5G Core Standalone (SA) architectures
[1]. This transition is intended to unlock the full potential
of 5G SA, with global subscriptions expected to reach 3.6
billion by 2030 [2]. Nonetheless, studies indicate that LTE
and earlier mobile networks will continue to be used globally,
suggesting that 5G SA will coexist with legacy networks
well into the next decade, especially as user devices remain
compatible with older cellular technologies. This raises the
problem of backward compatibility with older generations,
which continue to expose legacy vulnerabilities. Downgrade
attacks take advantage of this, forcing devices to connect
through less secure legacy networks, compromising the con-
nection’s integrity. Such attacks are commonly carried out by

adversaries using Rogue Base Stations (RBS), which operate
as International Mobile Subscriber Identity (IMSI) catchers
[3]–[8]. Thus, as we move beyond 5G and towards 6G,
networks must be equipped to detect and classify malicious
entities and traffic within their vicinity.

From both operational and security perspectives, a key
advancement in 5G is the adoption of the software-defined
Open Radio Access Network (O-RAN) architecture, which in-
troduces a new level of programmability to traditional cellular
infrastructures. O-RAN redefines the traditionally monolithic
and vendor-proprietary RANs by introducing a disaggregated,
modular architecture that promotes openness, interoperability,
and programmability. Embracing the principles of Software-
Defined Networking (SDN), O-RAN enables centralized con-
trol and dynamic network optimization across the RAN. Cen-
tral elements of this architecture are the RAN Intelligent Con-
trollers (RICs), located in the Control Plane, both supporting
modular, “plug-and-play” applications, also known as xApps
and rApps, that enable specialized functions such as real-
time monitoring and policy enforcement. Recent studies have
increasingly leveraged the RIC for both network optimization
and the implementation of Intrusion Detection Systems (IDS)
and Intrusion Prevention Systems (IPS), addressing a range of
attack vectors.

However, no prior work has explicitly addressed downgrade
attacks by proposing a practical solution aligned with current
and future cellular network deployments and smartphone man-
ufacturing constraints. Moreover, much of the existing research
relies on synthetic data or constrained measurements, failing to
reflect the characteristics of existing cellular network deploy-
ments. To address these gaps, we introduce ARGOS1, the first
comprehensive system integrated with O-RAN for detecting
RBS attempting to launch downgrade attacks, combining an
IDS xApp with an enhanced telemetry collection mechanism
within the Near Real-Time RIC (NearRT-RIC). It collects di-
verse physical layer (PHY-layer) indicators, such as Reference
Signal Received Power (RSRP), Reference Signal Received
Quality (RSRQ), and Signal-to-Interference-plus-Noise Ratio

1Argos Panoptes, the “all-seeing” giant in Greek mythology, had a hundred
eyes and symbolized perpetual vigilance, reflecting ARGOS’s continuous
monitoring against RBS threats.
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(SINR), extracted from User Equipment (UE) Measurement
Reports and Modem Layer 1 data, and leverages Machine
Learning (ML) models to detect the presence of malicious
cells within the surrounding area. Furthermore, to address the
limitations of restricted real-world measurements, we evaluate
our system using an extensive, real-world dataset collected
from over 10 areas across two major U.S. cities, covering
two MNOs and four Commercial Off-The-Shelf (COTS) UEs.
Finally, to assess the performance of our framework, we built a
custom testbed using Open5GS [9], srsRAN [10], and FlexRIC
[11] as reference platforms for the core network and O-RAN
infrastructure. Our system achieves up to 99.5% Accuracy
and 96.7% Precision, demonstrating both its reliability in
detecting rogue cells over time and its robustness against
false alarms. The remainder of the paper is organized as
follows: Section II reviews related work, while Section III
provides the necessary background. Section IV outlines the
threat model and architectural design of the proposed IDS.
Section V presents the benchmarking and experimental results,
whereas Section VI details the ethical considerations adhered
to throughout this work. Finally, Section VII concludes the
paper with implications for future work.

II. RELATED WORK

5G introduces substantial security improvements over pre-
vious generations; however, it still inherits vulnerabilities that
persist from legacy systems such as LTE [12], enabling various
attacks, such as IMSI Catching. IMSI catchers, implemented
through RBS, have been widely studied across all cellular gen-
erations [5], [13]. These attacks allow adversaries to actively
impersonate legitimate base stations, prompting UEs to reveal
their IMSI in plaintext, leading to subscriber identity exposure,
tracking, and localization [14]–[17]. Beyond IMSI disclosure,
RBS facilitates a range of threats, drawing attention from both
academia and standardization communities [13], [18]. Several
efforts have explored real-time detection, classification, and

localization of target RF emissions across time, frequency, and
spatial domains [19], [20]. Although these approaches demon-
strate strong effectiveness, they typically depend on specialized
infrastructure. In contrast, our solution operates solely based
on data collected from UEs, eliminating the need for dedicated
hardware. The 3rd Generation Partnership Project (3GPP)
introduced an optional RBS detection framework within its
technical specifications [21], and further dedicated an entire
technical report to this issue [22]. The report identifies critical
RBS threat scenarios and introduces mitigation strategies,
including enhanced UE-Measurement Reporting, wherein UEs,
in collaboration with trusted cells, report detailed metrics on
neighboring and camped cells. However, these proposals lack
concrete implementation strategies or timelines for integration
into the specification.

The ongoing risk posed by RBS is further amplified by
the continued reliance on legacy mobile networks like LTE
[23]. This enables bidding-down attacks, downgrading UEs
from 5G to less secure generations, and exploiting weaker
authentication and encryption protocols [3], [7], [24]. In [3],
researchers demonstrate a downgrade attack from 5G-SA to
2G on commercial networks. Similarly, [7] reveals a vul-
nerability in LTE where UEs reveal their capabilities before
establishing RRC security, allowing adversaries to intercept
and manipulate these messages to initiate a downgrade. Efforts
to address downgrade vulnerabilities include cryptographic so-
lutions, such as the broadcast authentication protocol proposed
in [8], which leverages Schnorr-based Hierarchical Identity-
Based Signatures (HIBS).

Given the limitations of current defenses, recent work has
explored O-RAN as a promising path forward. Its architecture
has motivated extensive research into leveraging O-RAN as a
foundation for IDS [25]–[33], enabling intelligent threat mon-
itoring within the RAN infrastructure. A prominent example
is 5G-SPECTOR [25], a framework targeting Layer 3 protocol
exploit detection, utilizing a security audit (MOBIFLOW) and
xApp (MOBIEXPERT). Similarly, [26] presents an Artificial
Intelligence (AI)/ML-driven IDS that also functions as a real-
time resource allocator. In [27], the authors propose UE-
level detection of RBS by training ML models on signal
stability metrics within the NearRT-RIC and distributing them
back to the UEs. A related effort, [31], focuses on jamming
detection using UE-reported Channel Quality Indicator (CQI)
and RSRP values, employing the Kolmogorov-Smirnov test
to flag anomalies. [28] deploys an IDS within the NearRT-
RIC security module, targeting model poisoning attacks in
ensemble learning setups. [32] similarly uses cross-domain
AI models embedded in xApps, combining data from both
the RAN and transport networks. Pushing detection to lower
layers, Det-RAN [30] proposes a real-time IDS at the gNB-
DU, leveraging PHY-layer features such as IQ samples and
CSI. Meanwhile, [29] focuses on the Open Fronthaul (O-FH)
interface, applying deep learning to detect and mitigate DDoS
attacks. Finally, 6G-XSec [33] introduces a two-stage IDS



combining unsupervised anomaly detection via xApp with a
Large Language Model (LLM) for threat interpretation.

Although these studies present insights for IDS, none has
explicitly focused on detecting RBS, particularly in the context
of downgrade attacks. Moreover, they lack actual implemen-
tation, relying on simulations and artificial datasets that fail to
capture the constraints of real-world mobile networks and UE
behavior. In this work, we address these gaps by designing,
implementing, and evaluating a real-time IDS system within
O-RAN, utilizing a real-world setup. The system is evaluated
using real-world measurements collected directly from COTS
UEs operating on public commercial networks across multiple
MNOs. The system accurately detects malicious cells within a
given area, offering a practical implementation that advances
ongoing research in RBS detection.

III. 3GPP/O-RAN TELEMETRY MECHANISMS

In this section, we present the necessary background, in-
troducing the architecture of LTE/5G networks, the telemetry
mechanisms underpinning the Measurement Reporting pro-
cess, and the key components and interfaces that define O-
RAN.

A. Cellular Network Operations

1) 5G & LTE Cellular Networks: The architecture of 5G
systems is composed of three principal entities, as depicted in
Figure 1: (1) the UE, typically a smartphone equipped with a
Universal Subscriber Identity Module (USIM) subscribing to
commercial networks and identified by a unique user identi-
fier known as the Subscription Permanent Identifier (SUPI),
referred to as IMSI in LTE and earlier generations; (2) the
gNodeB (gNB), the 5G base station operating within the RAN,
which connects the UE to the MNO’s core network; and (3)
the 5G Core Network (5G-CN), a service-based architecture
(SBA) enabling authentication, security, and session manage-
ment through different Network Functions (NFs). The gNB
may interface either with a 5G Core Network (5G-CN) in the
5G SA architecture or with an LTE Evolved Packet Core (EPC)
in the 5G Non-Standalone (NSA) architecture.

The initial procedure for UE connectivity begins with cell
attachment and network registration. The UE performs initial
cell selection by detecting and decoding System Information
Block (SIB) messages broadcast by nearby gNBs. Subse-
quently, it initiates random access via the Physical Random
Access Channel (PRACH) to achieve uplink synchronization
and is assigned a Radio Network Temporary Identifier (RNTI)
for future radio communications. Upon successful random
access, the establishment, maintenance, and release of radio
connections are managed by the Radio Resource Control
(RRC) protocol [34]. To establish an RRC connection, the
UE sends an RRCSetupRequest message containing an es-
tablishment cause and an identifier. The identifier is either a
randomly generated UE identity or a previously assigned S-
Temporary Mobile Subscriber Identity (S-TMSI). If the gNB

accepts, it responds with an RRCSetup message providing con-
figuration information. The handshake is then completed with
an RRCSetupComplete message. Following the RRC establish-
ment, the Non-Access Stratum (NAS) procedures commence
to facilitate UE registration with the core network. The UE
exchanges NAS messages with either the Access and Mobility
Management Function (AMF) in the 5G-CN or the Mobility
Management Entity (MME) in the EPC. The NAS procedure
is initiated with a Registration Request (in 5G) or Attach
Request (in LTE), containing the UE’s temporary (TMSI)
or permanent identifiers, such as the Subscription Concealed
Identifier (SUCI) in 5G or the IMSI in earlier generations.
Authentication and security procedures follow, involving the
Authentication and Key Agreement (AKA) protocol. Upon
successful authentication, the NAS procedure concludes with
a Registration Complete or Attach Complete message and the
UE transitions to user-plane data transmission.

Once a secure radio connection between the UE and the net-
work has been established, the UE enters the RRC Connected
state. In this state, the network can transmit system in-
formation to the UE through dedicated signaling, primarily
using the RRCReconfiguration message. This procedure is
used to modify an already established RRC connection by
configuring various parameters, including Resource Blocks,
Radio Link Control (RLC) channels, Secondary Cells (SCells),
and Layered Throughput Management (LTM) [34]. Once the
UE successfully acknowledges the reconfiguration process, it
responds with an RRCReconfigurationComplete message to
confirm the changes. If the network is in an idle state, the
UE can optionally stay in RRC Inactive state, as depicted in
Figure 1, instead of completely releasing the RRC connection
and later on recover it via the RRC Resume procedure. During
the RRC Resume procedure, the exchange of messages such
as RRCResumeRequest, RRCResume, and RRCResumeCom-
plete occurs.

2) UE Measurement Reports: Following the successful
establishment of the RRC connection, the network can instruct
the UE to perform specific measurements through the meas-
Config Information Element (IE), typically conveyed within
the RRCReconfiguration [34], as shown in Figure 1. This IE
defines the measurement configuration that the UE should fol-
low, specifying which frequencies, cells, or signals to monitor.
measConfig IE may also be included within the RRCResume
message. The measurement configuration can direct the UE to
perform intra- and inter-frequency NR measurements, defined
through the MeasObjectNR IE, as well as inter-Radio Access
Technology (RAT) measurements, including E-UTRA (LTE)
measurements via the MeasObjectEUTRA IE and UTRA-FDD
(UMTS) measurements via the MeasObjectUTRA-FDD IE.
Depending on the configuration, measurements can be based
either on Synchronization Signal/Physical Broadcast Channel
blocks (SSB/PBCH) or on Channel State Information Refer-
ence Signals (CSI-RS). Measurement Reporting can be config-
ured to occur periodically, via the reportInterval IE or based
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Fig. 2. Open Radio Access Network (O-RAN) architecture.

on event-triggered conditions. Additionally, the network may
provide lists of specific cells that the UE should prioritize or
cells that should be ignored. Furthermore, the network specifies
the radio quantities to be included in the reports, such as RSRP,
RSRQ, or SINR measured at both the cell and beam level. In
addition, the network may configure measurement gaps, which
are specific time periods during which the UE is permitted
to suspend active communications and perform measurements
on other frequencies or RATs. Through these configurations,
Measurement Reporting enables the UE to provide the network
with critical information regarding the radio environment,
supporting functions such as mobility management, beam
selection, handover, and connection optimization.

B. O-RAN Architecture

Figure 2 illustrates the O-RAN architecture, highlighting
both the data and control planes. Below, we outline the key
architectural principles governing each plane.

1) O-RAN Data Plane: The O-RAN architecture, illustrated
in Figure 2, follows the 3GPP disaggregation model [35],
splitting the gNB into three main units: the Radio Unit (O-
RU), Distributed Unit (O-DU), and Central Unit (O-CU). O-
RUs, located near the antennas in the fronthaul, handle PHY-
layer operations. O-DUs and O-CUs, deployed at the network
edge, manage Layers 2 and 3. The O-DU oversees Medium
Access Control (MAC) and RLC functions, while the O-CU,
divided into O-CU-CP (control plane) and O-CU-UP (user
plane), handles RRC and forwards control/user traffic to the
core network (AMF/UPF). Standardized interfaces connect

these components, with F1 linking O-DU and O-CU and E1
connecting O-CU-CP to O-CU-UP.

2) O-RAN Control Plane: The O-RAN control plane is
distinct from the data plane and centers on the RICs, which
are split into NearRT-RIC and Non Real-Time RIC (NonRT-
RIC). These programmable components provide centralized
network visibility, enabling closed-loop control and orchestrat-
ing RAN operations. The NearRT-RIC operates on timescales
from 10 milliseconds to 1 second and hosts cloud-native,
microservice-based applications, known as xApps, designed
to enhance RAN functionality at scale through the integration
of AI/ML techniques. Within the NearRT-RIC, xApps commu-
nicate through well-defined interface channels, while interac-
tions with internal components are managed by a messaging
infrastructure responsible for conflict resolution, subscription
handling, application life-cycle management, and security.
Although no specific messaging framework is mandated, dif-
ferent implementations adopt distinct approaches, such as the
O-RAN Software Community (OSC) leveraging the custom
RIC Message Router (RMR) [36], and FlexRIC employing a
lightweight model based on direct function calls, each fulfilling
the required functionalities. NearRT-RIC interfaces directly
with the O-DU and O-CU, also referred to as E2 Nodes, via
the E2 interface which runs on top of the Stream Control
Transmission Protocol (SCTP), allowing real-time telemetry
and control. Interactions are governed by four core E2 proce-
dures: Report, Insert, Control, and Policy. The E2 Application
Protocol (E2AP) serves as the foundational protocol that
coordinates communication and delivers core services between
the NearRT-RIC and E2 nodes. Specific functionalities are
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implemented by xApps through E2 Service Models (E2SMs),
which are encapsulated within E2AP messages.

The NonRT-RIC, a key component of the Service Man-
agement and Orchestration (SMO) framework, plays a central
role in the O-RAN architecture. It enables closed-loop RAN
control on extended timescales (exceeding 1 second), com-
plementing the near-real-time capabilities of the NearRT-RIC.
The NonRT-RIC hosts modular applications known as rApps,
which address higher-level network functions such as RAN
optimization, policy generation, and data analytics. While
rApps can support control functionalities similar to xApps,
they are specifically designed to derive long-term, system-
wide policies that impact broader sets of users and network
elements.

IV. ARGOS OVERVIEW

In this section we outline the threat model targeted by
our system and present an architectural overview of ARGOS,
detailing UE telemetry acquisition and employed ML models.

A. Exploiting LTE Compatibility in COTS UEs

The threat model addressed in this work concerns the
exploitation of plaintext IMSI transmission over the air. As dis-
cussed in Section III, during the initial NAS message exchange
between the UE and the network, the UE transmits either
a permanent or temporary identifier. In the absence of prior
interaction or under malicious intent, the network may issue an
Identity Request, prompting the UE to disclose its permanent
identifier. In LTE networks specifically, the IMSI is transmitted
without encryption or integrity protection, enabling adversaries
to intercept it. Such behavior enables IMSI catching attacks,
in which RBS masquerade as legitimate cells, broadcasting
identical network identifiers with stronger signal or with a
different Tracking Area Code (TAC), deceiving the UE into
believing that it has entered a new tracking area. RBS can

either broadcast a different Physical Cell ID (PCI) than nearby
legitimate cells or carry out a more sophisticated attack by
reusing the same PCI to impersonate a valid cell, as illustrated
in Figure 3. Once camped at RBS, the UE is coerced to
disclose its IMSI, or in some cases even its IMEI [3], enabling
subsequent user tracking and localization [13]. This vulnerabil-
ity stems from specifications in the 3GPP standard rather than
implementation flaws, rendering all LTE-compatible devices
susceptible regardless of vendor. The issue is expected to
persist until UEs fully transition to support only the latest stan-
dards, disabling previous generations. As highlighted in [2],
current deployment limitations of 5G-SA make it infeasible
to release UEs that are exclusively 5G-compatible. Therefore,
coordinated efforts between UE manufacturers and telecom
vendors are essential to promote end-to-end adoption of secure,
modern standards. In the interim, we propose ARGOS as a
practical and deployable solution to detect and mitigate RBS
effectively within existing network environments.

B. ARGOS Architecture

The E2 Setup procedure serves as the starting point of
the architecture and is independent of any specific xApp.
This procedure establishes application-level communication
between E2 Nodes and the NearRT-RIC, replacing any prior
configurations with the latest agreed-upon parameters [37].
The procedure begins with the establishment of an SCTP
connection, after which the E2 nodes transmit an E2 Setup
Request to advertise their supported telemetry and control
capabilities. The Near-RT RIC responds with an E2 Setup
Response, thereby completing the connection establishment.
Following successful setup, xApps can query information
about connected E2 Nodes and initiate telemetry collection via
the E2 Subscription procedure [38], as shown in Figure 3. AR-
GOS leverages only the Report procedure, wherein E2 nodes
transmit telemetry to the NearRT-RIC via E2 RIC Indication



messages. These messages are sent either periodically, based
on a timer configured at the E2 nodes, or in response to
specific trigger events. Nevertheless, the system is designed to
be extensible, allowing integration of additional E2 procedures
described in Section III, thereby enabling a transition from
intrusion detection (IDS) to intrusion prevention (IPS).

To collect telemetry at the xApp level from the E2 nodes,
we adopt the latest Key Performance Measurement (KPM)
Service Model defined by 3GPP [39]. Several KPMs defined
in the latest Service Model encapsulate Measurement Report
messages from UEs, which, based on the measConfig IE,
include metrics such as RSRP, RSRQ, and SINR. This Model
is extended by ARGOS, incorporating both intra- and inter-
frequency measurements (5G and LTE), enabling a compre-
hensive view of all neighboring cells as reported directly by
UEs.

Algorithm 1 ARGOS Telemetry-Based Anomaly Detection
1: Input: Tu = {([fu], [cu], [ru], [qu], [su], [tu])} for each

UE u = 1, . . . , N ; ML model M; Anomaly threshold τ
2: Output: Anomaly score per second αu(t); MSE per u

3: Connect to Near-RT RIC.
4: Subscribe to E2 nodes using KPM Service Model.

5: for u do
6: Circular Buffer Bu ← ∅
7: end for

8: while true do
9: for u do

10: Bu ← Tu

11: if Bu >= 1 second of new telemetry then
12: Xu(t)← encoded(Bu)
13: X̂u(t)←M(Xu(t))
14: αu(t)← MSE(Xu(t), X̂u(t))
15: if αu(t) > τ then
16: Anomaly
17: else
18: Legitimate
19: end if
20: end if
21: end for
22: if

∑N
u=1 |Bu| ≥ 10 seconds then

23: D←
⋃N

u=1 Bu

24: M← Train(D)
25: τ ← GetThreshold(M,D)
26: end if
27: end while

Each E2 Node, particularly the O-CU handling RRC sig-
naling, aggregates Measurement Reports per UE, identified
by SUPI or SUCI, with a dedicated memory buffer assigned
to each UE. Similarly, the implemented xApp maintains its
own per UE memory buffers to enable continuous telemetry
processing. Upon receipt at the O-CU, reports are parsed

to extract per cell RSRP, RSRQ and SINR measurements.
After one second of telemetry is accumulated, the data are
encapsulated in E2 RIC Indication messages, structured ac-
cording to the extended KPM Service Model, and sent to
the xApp via the E2 interface, where anomaly detection is
performed using deep learning techniques, as depicted in
Figure 3. Before being passed to the models for evaluation,
the received telemetry undergoes additional processing to
generate per-second vectors. As shown in Algorithm 1, each
per-second vector Tu encodes the presence or absence of
known legitimate cells, identified by their Absolute Radio
Frequency Channel Number (ARFCN) (fu) and PCI (cu). It
includes corresponding measurements of RSRP (ru), RSRQ
(qu), and SINR (su), each independently normalized. The
vector also records the measurement timestamp associated with
each observation. During inference, the xApp evaluates each
per-second vector, generating a binary anomaly verdict along
with the associated Mean Squared Error (MSE) value. When
an anomaly is detected, the system logs the reason and can
optionally inspect per-feature reconstruction errors to pinpoint
specific signal or cell irregularities. To adapt to evolving
network behavior, the model is retrained every 10 seconds
using newly accumulated legitimate telemetry. As illustrated
in Figure 3, network administrators are actively integrated
into the anomaly detection process through a Human-in-the-
Loop (HITL) approach. They evaluate detection results and
provide feedback to enhance the performance and accuracy of
the ML model, effectively combining human expertise with
AI/ML capabilities. The overall telemetry collection, prepro-
cessing, inference, and retraining workflow is summarized in
Algorithm 1.

C. Deep Learning Based RBS Detection

To ensure safe integration with commercial networks and
adhere to ethical standards, outlined in Sections V and VI,
ARGOS is trained and tested exclusively on legitimate, non-
malicious data collected from commercial MNOs using passive
observation setups. Given the absence of labeled attack data,
our xApp is evaluated using four unsupervised learning mod-
els: Autoencoders, Denoising Autoencoders, Variational Au-
toencoders, and Isolation Forests. These models are inherently
suited for anomaly detection tasks where only benign patterns
are available during training.

1) Autoencoders: Autoencoders (AEs) are artificial neural
networks designed to learn compact representations of unla-
beled data. Their architecture includes an encoding function
that compresses the input vector into a lower-dimensional
space, A : Rn → Rp, and a decoding function that reconstructs
the original vector A : Rp → Rn [40]. Together, these
functions aim to minimize the reconstruction error, computed
using the MSE loss in Equation 1, and optimized via back-
propagation to capture the input data distribution. Vectors
with high MSE values are flagged as anomalous, indicating
potential outliers. In ARGOS, the anomaly threshold is set



Fig. 4. UE Modem Layer 1 (ML1) Cell Measurements captured via QXDM.

after training using the 99.9th percentile of MSE values from
the training dataset. This approach minimizes the likelihood
of legitimate vectors being incorrectly flagged as anomalous
(False Positives), while maintaining sensitivity to suspicious
patterns.

LMSE =
1

n

n∑
i=1

(xi − x̂i)
2 (1)

AEs are well-suited for the discussed problem, based on
their ability to learn the underlying patterns of per-second
measurements, capturing typical combinations of cells and
their associated signal characteristics. By reconstructing these
vectors, the AE effectively models normal telemetry behavior,
enabling the detection of deviations indicative of anomalies.
Given the presence of measurement noise due to reflections
and other propagation effects, we extend the baseline AE to
include a Denoising AE and a Variational AE, which improve
generalization and mitigate overfitting by learning robust latent
representations.

2) Denoising-Autoencoder: Denoising Autoencoders
(DAEs) are more robust variants of AEs, used for error
correction. In ARGOS, the DAE shares the same architecture
as the standard AE, with the key difference being that input
training vectors are corrupted with Gaussian noise. The model
is then trained to reconstruct the original, noise-free vectors.
The noise process is modeled by a function T : X → X ,
where T (x) = x + ϵ and ϵ is sampled from a Gaussian
distribution µT = N (0, σ2). This method assists the network
in avoiding the memorization of the input, forcing it to learn
the core features of the dataset.

3) Variational-Autoencoder: Similar to DAEs, Variational
Autoencoders (VAEs) share the same architecture as standard
AEs but are grounded in the mathematical framework of
Variational Bayesian (VB) methods. In VAEs, the encoder

maps each input vector to a Gaussian distribution in the latent
space, parameterized by a mean vector µ and a standard
deviation vector σ. A latent vector is then sampled from
this distribution, and the decoder attempts to reconstruct the
original input. The loss function combines a reconstruction
loss (MSE) and a Kullback–Leibler (KL) divergence loss, as
shown in Equation 2, which regularizes the latent space by
encouraging it to match a prior distribution. This probabilistic
formulation reduces overfitting and enhances generalization.

DKL(P ∥Q) =

∫ ∞

−∞
P (x) log

(
P (x)

Q(x)

)
dx (2)

4) Isolation Forest: Isolation Forests are a well-established
anomaly detection algorithm based on binary trees. The core
idea is that anomalies, being few and different, can be isolated
with fewer partitions. The algorithm recursively builds Isola-
tion Trees by randomly selecting an attribute and a split value
between its minimum and maximum range. Anomaly scores
are derived from the path length, as anomalies typically require
fewer splits to be isolated. However, Isolation Forests assume
anomalies are few and different in feature space, something
that may limit performance in datasets with subtle or high-
density anomalies.

V. EXPERIMENTAL EVALUATION

This section presents the experimental evaluation of the
proposed framework, detailing the deployed software and
hardware components, along with a performance analysis of
ARGOS from both system and ML model perspectives.

A. ARGOS O-RAN Compliant Testbed

To evaluate the proposed system, a controlled O-RAN-
compliant testbed, including 5G SA, LTE, 5G-CN/EPC and
NearRT-RIC components, is deployed. All software-based
components are deployed within the same x86 64 Ubuntu



22.04.4 LTS host, equipped with 8 11th Gen Intel Core i7-
1195G7 @ 2.90 GHz, 32.0 GiB RAM and 1.0 TB disk
capacity. The testbed leverages version 24.10 of srsRAN,
version 23.11 of srsUE, latest version of Open5GS Release-
17, and latest version of the br-flexric branch of FlexRIC
to emulate real-world gNB (5G-RAN), eNB (LTE RAN),
5G-CN/EPC and NearRT-RIC behavior accordingly. The RU
front end of the deployed networks is hosted within 2 Ettus
Research Universal Software Radio Peripheral (USRP) X310
SDR devices. One Pixel 5 COTS UE is utilized, equipped with
a sysmocom SIM card programmed with PLMN identifiers
matching the 5G SA deployment. The core component of
ARGOS, our ML-based xApp, is integrated into the NearRT-
RIC through FlexRIC, supporting both Python and C imple-
mentations. Communication between CU and NearRT-RIC is
established over the standardized E2 interface, while FlexRIC’s
internal E42 interface facilitates communication between xApp
and the RIC controller.

The testbed, configured using srsRAN-provided files [41],
is used to demonstrate the feasibility of the RBS Downgrade
attack. This setup enables active UE Measurement Report-
ing and supports handover, facilitating inter-cell movement
closely replicating real-world deployments. Once the adver-
sarial eNB becomes active, it impersonates the legitimate
network’s PLMN ID as well as PCI while transmitting at a
higher signal strength. The UE connects to the adversarial eNB
and exposes its IMSI, resulting in the successful compromise
of its identity, demonstrating both the feasibility and simplicity
of the attack.

B. Real-World Data Collection

To ensure realism beyond controlled testbed conditions, the
system is evaluated using real-world data collected directly
from commercial networks operated by different MNOs. This
step enhances the validity of our system, incorporating diverse
measurement patterns, demonstrating that our xApp can be
integrated into O-RAN compatible systems. Over a three-
month period in 2025, 5G and LTE measurements were
collected at various times across 10 urban areas in Boston and
San Francisco. The dataset covers two major U.S. MNOs and
was curated to capture real-world behavior of the Measurement
Reporting mechanisms. Data collection was performed using
rooted COTS UEs, including two Google Pixel 5 devices, an
LG Velvet 5G, and a OnePlus 8 5G, all equipped with measure-
ment tools such as Network Signal Guru (NSG) [42]. Devices
were carried in motion through the areas while connected to
commercial networks. Logged data was later analyzed using
Qualcomm’s QXDM [43] to extract low-level Modem and
Layer 1 metrics. In total, our dataset comprises 22,626 seconds
of telemetry and 232,810 NSG-QXDM data points, with each
point capturing detailed per-cell measurements, including PCI,
RSRP, RSRQ, and SINR of neighboring cells.

In addition to standard Measurement Reports, we also
incorporate Modem Layer 1 (ML1) Cell Measurement Re-

TABLE I
PERFORMANCE METRICS USED FOR ML MODEL EVALUATION.

Metric Equation

Accuracy (TP + TN)/(TP + FP + TN + FN)

Precision TP/(TP + FP )

Recall TP/(TP + FN)

F1-Score 2 · Precision · Recall/(Precision + Recall)

sults, obtained via QXDM, as depicted in Figure 4. Unlike
traditional Measurement Reports, ML1 data provide high-
frequency sampling of neighboring cell signal stability, offer-
ing a much finer temporal resolution. ML1 data are parsed
similarly to standard Measurement Reports, as they share the
same underlying structure. As a result, the telemetry vectors
used by ARGOS maintain a consistent format while being
enriched with additional measurements, thereby enhancing the
dataset’s granularity. However, the main limitation of ML1
data is that they are never transmitted to the gNB over the
air (OTA) and remain accessible only at the UE side. Since
operator-configured Measurement Reports are often sparse or
event-triggered, ML1 data provide valuable observability by
offering a continuous and fine-grained stream of PHY-layer
measurements. ML1 reporting is most beneficial when Mea-
surement Reports are infrequent and higher temporal resolution
is required; otherwise, it may offer limited additional value
while introducing overhead, including increased packet size
and processing load on both the UE and RAN. Practical
adoption is limited by the absence of standardized support for
incorporating ML1 data into Measurement Reports. Without
formal standardization, vendors may be unable to expose ML1
data for use in O-RAN control loops, posing a barrier to
widespread deployment. Based on the operator configurations
analyzed in this study, we advocate for the integration of ML1
data into O-RAN control loops, particularly in settings where
improved detection accuracy and responsiveness are needed.

C. Rogue Cell Inclusion

The performance of ARGOS is evaluated using both benign
and malicious cellular network traffic. Since the dataset con-
tains only legitimate data, two types of RBS strategies, Adver-
sary 1 (A1) and Adversary 2 (A2), are emulated by selecting
a valid cell, excluding it during training, and reintroducing
it during inference. This methodology allows for realistic
evaluation of our system by leveraging authentic cell behavior,
eliminating the need for synthetic data generation. A1 does not
replicate the PCI of an existing cell. As a result, the reintro-
duced cell during inference retains its identity, allowing us to
assess the model’s ability to detect previously unrecognized
cells. A2 carries out a more intricate attack by replicating the
PCI of a legitimate cell, causing the reintroduced cell during
inference to share the same PCI as an existing legitimate one.



TABLE II
SYSTEM PERFORMANCE OF XAPP ML MODELS IN THE NEAR-RT RIC.

Model Train(s) Infer(s) CPU(%) Memory(MB)

AE 109.50 0.28 65.20 527.20
DAE 158.68 0.28 67.16 527.24
VAE 81.99 0.27 67.25 528.72
IF 0.44 11.59 99.16 548.23

In the case of A2, the replicated PCI reappears across multiple
per-second telemetry vectors where it was previously absent,
creating unusual cell combinations. The model is evaluated
both on abnormal co-occurrence patterns in Measurement
Reports and on its ability to detect anomalies based on signal
characteristics, as A2 instances, despite sharing the same PCI,
will exhibit at least slight differences in power, relatively to
learned power-levels in conjunction with neighboring cells.

D. Performance Evaluation

To evaluate our solution, we first compare the performance
of the ML models integrated into ARGOS, followed by an
assessment of their system-level impact on the RIC platform.

To assess the performance of the ML models, we use
four standard classification metrics defined in Table I. In
Table I, the value TP stands for True Positives, TN for
True Negatives, FP for False Positives and FN for False
Negatives. Accuracy provides an overall correctness measure,
while Precision emphasizes the proportion of true anomalies
among all flagged instances. Recall captures the model’s ability
to detect all actual anomalies, and the F1-Score provides
the harmonic mean between Recall and Precision, especially
valuable for imbalanced datasets. It is important to mention
at this stage that, under realistic conditions, if a rogue cell
exists within a particular vicinity, regardless of its PCI or signal
characteristics, the UE ML1 and Measurement Reports would
reflect its presence with high frequency every second, and
consequently, so would the per-second telemetry vectors sent
to the xApp. As a result, we consider as anomalous those per-
second vectors in which the reintroduced rogue cell appears
more than a certain number of times, while the remaining
vectors are considered legitimate. More specifically, as shown
in Figure 5, we evaluate the ML models in terms of anomaly
detection for seconds where the reintroduced cell appears at
least 2, 3, or 4 times, a threshold we define as Per-Second
Rogue Cell Count.

It is evident that across all AE variations, the best perfor-
mance is achieved when the Per-Second Rogue Cell Count
is ≥ 3. As shown in Figure 5, the VAE attains the highest
performance under this condition, reaching 99.5% Accuracy,
97.7% Precision, 99.5% Recall, and a 98.1% F1 Score, with
a False Positive Rate (FPR) as low as 0.6%. Both the AE
and DAE also demonstrate strong performance, achieving

98.6% and 98.3% Accuracy, respectively, while maintaining
FPR values below 1.9%. In contrast, the Isolation Forest
underperforms across all evaluation metrics, with a maximum
Accuracy of 84.6%, indicating that the randomized attribute
selection is suboptimal for capturing the temporal patterns in
Measurement Report behavior.

For a Per-Second Rogue Cell Count threshold of ≥ 2, the
models achieve their highest Precision, reaching 100% for
the VAE. However, the performance of the remaining metrics
declines, indicating that while the models are highly effective
at avoiding false alarms, they struggle to correctly classify
seconds with sparse rogue cell presence. This results in a
drop in Accuracy, as such vectors are often misclassified as
legitimate. Conversely, for a threshold of ≥ 4, Recall reaches
its peak, with all illegitimate seconds correctly identified
as anomalous, but at the cost of a higher FPR. Based on
this analysis, a threshold of ≥ 3 offers the most balanced
performance, maintaining both high Accuracy and low FPR.
For specific operational goals, the system can be configured
with alternative thresholds, depending on the desired trade-off
between Precision and Recall.

Additionally, we evaluate the impact of ARGOS on the
control plane, specifically focusing on the NearRT-RIC. To
this end, we assess the training and inference times, as well
as the CPU and memory overhead, across all implemented
ML models, as presented in Table II. The evaluation is
performed using input datasets of 2000 seconds for training
and 500 seconds for inference, drawn from the same area,
and executed using a single CPU core on the host machine.
As shown in Table II, the VAE achieves the lowest training
(81.99 seconds) and inference (0.27 seconds) times among all
AE variants, rendering it suitable for real-time systems. In
contrast, the Isolation Forest yields the fastest training time
(0.44 seconds) but the highest inference time (11.59 seconds),
shifting its computational burden to inference. Regarding CPU
utilization, all AEs occupy approximately 65–68% of a single
core, whereas the Isolation Forest reaches up to 99.16%,
accounting for its prolonged inference duration. Lastly, in
terms of memory overhead, the Isolation Forest exhibits the
highest usage at 548 MB, only slightly exceeding that of the
AEs, which peak at 528 MB.

VI. ETHICAL CONSIDERATIONS

Due to ethical considerations and applicable legal frame-
works, it is essential to clarify the methodology used in
both our isolated testbed experiments and real-world measure-
ments. All active RBS attack scenarios involving over-the-air
transmissions were conducted exclusively within our isolated
testbed environment, ensuring no interference with operational
commercial networks. Specifically, all RF transmissions from
srsRAN base stations and UEs were confined to a shielded
anechoic chamber. Furthermore, all data collection procedures
during outdoor measurements strictly adhered to ethical guide-
lines. Passive network monitoring and data collection were
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Fig. 5. ML model inference performance across rogue cell appearance
thresholds.

carried out solely using our own devices, each equipped with
a valid SIM card. The process of connecting COTS UEs to live
operator networks and logging RRC and PHY-layer messages
reflects standard UE behavior and does not disrupt normal
network operations. This study complies fully with the terms
of service of the participating wireless carriers and does not
raise any ethical concerns.

VII. CONCLUSIONS & FUTURE WORK

In this work, we present ARGOS, the first comprehensive
O-RAN compliant system for detecting RBS that attempt
downgrade attacks, deployed directly within the Near-RT RIC.
ARGOS integrates an extended KPM Service Model and a cus-
tom xApp featuring ML-based anomaly detection. It enables
real-time identification of RBS threats within a given area by
classifying telemetry data based solely on UE ML1 logs and
Measurement Reports. The proposed extension to the 3GPP
KPM Service Model allows for richer UE and E2 node-derived
telemetry, enhancing detection capabilities. To validate ARGOS
under both controlled and real-world conditions, we built a
dedicated testbed to verify the threat model and supplemented
it with real-world measurements across commercial networks.
Among the models evaluated, the Variational Autoencoder
achieved the best performance, with 99.5% Accuracy and a
False Positive Rate of just 0.6%. Additionally, our system
demonstrates low CPU and memory overhead, making it
practical for deployment in production O-RAN environments.
As future work, we aim to extend the system to cover a wider
range of attacks and further enhance the KPM Service Model
to support richer telemetry. Beyond anomaly detection, we plan
to explore ML-based resource optimization within the RAN
and enable collaborative decision-making through integration
with rApps at the SMO level.
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