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Abstract

Wireless networking technologies have fundamentally
changed the way we compute, allowing ubiquitous, any-
time, any-where access to information. At the same time,
wireless technologies come with the security cost that ad-
versaries may receive signals and engage in unauthorized
communication even when not physically close to a net-
work. Because of the utmost importance of wireless secu-
rity, many standards have been developed that are in wide
use to secure sensitive wireless networks; one such popular
standard is WPA Enterprise.

In this paper, we present a novel, highly practical, and
targeted variant of a wireless evil twin attack against WPA
Enterprise networks. We show significant design deficien-
cies in wireless management user interfaces for commodity
operating systems, and also highlight the practical impor-
tance of the weak binding between wireless network SSIDs
and authentication server certificates. We describe a proto-
type implementation of the attack, and discuss countermea-
sures that should be adopted. Our user experiments with
17 technically-sophisticated users show that the attack is
stealthy and effective in practice. None of the victims were
able to detect the attack.

1 Introduction

Only a decade ago, gaining unauthorized access to a lo-
cal network in an organization typically required physical
access to the wired network. Today, the situation has dra-
matically changed. Wireless networks are ubiquitous, and
allow users to have any-time, any-where access to informa-
tion. At the same time, this convenience comes at a cost
with respect to security: Wireless signals are not physically
confined to the perimeter of an organization, but may be re-
ceived by adversaries from very long distances. Therefore,
although wireless networks have become an indispensable

technology, they serve to increase the attack surface of an
organization, and can potentially allow attackers to gain ac-
cess to sensitive information over the æther.

Since their popularization and wide deployment, wire-
less networks have had a long history of security vulner-
abilities. The initial effort to provide data confidentiality
and client authentication – namely, Wired Equivalent Pri-
vacy (WEP) – suffered a widely publicized series of pro-
gressively more efficient attacks that necessitated WEP’s
replacement by the WPA family of security protocols [6].
Today, WPA Enterprise is widely used to protect large
enterprise wireless networks against unauthorized access.
Trust in the security of WPA Enterprise stems from the
use of proven security protocols for authentication (e.g.,
SSL/TLS), and the centralization of client authentication
and authorization on well-protected authentication servers
(e.g., RADIUS). However, while the individual protocols
that comprise the WPA Enterprise security suite are well-
tested and widely regarded as being secure, the composi-
tion of different features, components, and protocols has re-
ceived less scrutiny.

In this paper, we present a novel, stealthy, and effective
variant of the evil twin attack [4, 22, 15] against WPA En-
terprise networks. The key insight behind our attack is that
the combination of cross-layer capabilities such as stealthy
jamming using software radios, the inadequacy of wireless
user interface mechanisms in popular commodity operat-
ing systems, and the insecure trust model used in wireless
authentication makes real-world end-to-end attacks against
wireless network authentication feasible. Our experiments
with 17 technically-sophisticated users show that the attack
is highly effective in practice and very difficult – if not im-
possible – for victims to detect.

Our targeted attack consists of four main phases. In the
first phase, the attacker uses a software-defined radio to tar-
get the victim’s specific device, without impacting other
users of the network. To accomplish this, the attacker uses
targeted, stealthy reactive jamming techniques to deny ac-
cess to the legitimate wireless network the victim would like



to connect to. While recent work in the wireless community
has made significant progress in developing mitigation tech-
niques against jamming [44, 52, 8, 45, 49, 39, 12, 29], most
of these techniques are still not part of wireless standards
or deployed systems. Through reactive jamming, the victim
is first disassociated from the legitimate network, and her
probe requests are partially jammed to prevent legitimate
access points from receiving them. We then send spoofed
probe responses from a rogue wireless network. The com-
bination of high-gain antennas and software radios makes
such attacks possible from locations hundreds of meters dis-
tant from the targeted network.

In the second phase, the attacker takes advantage of pre-
dominantly unstudied and inadequate security mechanisms
in popular commodity operating systems for disambiguat-
ing similar wireless network SSIDs. For example, the at-
tacker can use character substitutions or invisible characters
to create visually similar SSIDs – e.g., “Enterprise”
vs. “Enterprise ” – to trick users into connecting to a
rogue network that is under the control of the attacker. This
phase is an extension of the evil twin attack, where an at-
tacker deploys a rogue access point that spoofs a legitimate
wireless network.

In the third phase, the attacker presents a legitimate-
appearing public key certificate, which can often be ob-
tained for a cost of less than 200 USD. Since the certificates
used in WPA Enterprise are not strongly bound to the net-
work SSID, the victim’s device that connects to the rogue
network setup by the attacker has no basis for enforcing
strict verification of certificates in popular commodity op-
erating systems.

The fourth phase of the attack leverages the fact that
WPA Enterprise deployments rely on the MSCHAPv2 [53]
protocol for authentication, which has vulnerabilities that
have been well documented [41]. MSCHAPv2 was initially
designed for wired networks, and despite its use of outdated
DES encryption, design flaws, and the availability of multi-
ple automated cracking tools [50, 11, 37], MSCHAPv2 con-
tinues to enjoy wide usage, with nearly every major operat-
ing system and wireless infrastructure device supporting it.
This can be partially explained by the fact that MSCHAPv2
is believed to be sufficiently secure when tunneled within an
SSL/TLS session. However, the lack of a verifiable chain
of trust from a CA to the network SSID allows an attacker
to impersonate a trusted wireless network to capture victim
authentication credential hashes.

In the final part of the attack, the attacker recovers plain-
text authentication credentials by leveraging parallel pass-
word cracking techniques.

In summary, this paper makes the following contribu-
tions:

• We present a practical, end-to-end, stealthy, and tar-
geted evil twin attack against WPA Enterprise net-

works. The attack leverages novel, specific weak-
nesses in the human-computer interfaces of commod-
ity operating systems for managing wireless connec-
tions that have not heretofore been discussed in litera-
ture.

• We are the first to demonstrate a significant weakness
that exists in modern wireless authentication systems
today – namely, that authentication server certificates
are not strongly bound to network SSIDs. Using this
fact, an attacker can use selective jamming techniques
to trick unsuspecting users into connecting to a rogue
access point without receiving an invalid certificate
warning. Note that certificates are widely believed to
be the most effective form of protection against evil
twin attacks by practitioners [47].

• We describe a prototype implementation of the attack,
present experiments with real users that demonstrate
that the attack is feasible and effective in practice, an-
alyze its cost, and discuss countermeasures that should
be adopted.

The paper is structured as follows. First, we present rel-
evant background on WPA Enterprise in Section 2. The de-
scriptions of the basic attack and further optimizations are
given in Section 3. The prototype implementation of our
attack is described in Section 4. Section 5 evaluates the ef-
fectiveness and cost of the attack. Section 6 discusses possi-
ble countermeasures against our attack. Finally, we present
related work in Section 7 and briefly conclude in Section 8.

2 WPA Enterprise Background

In this section, we discuss relevant background informa-
tion on WPA Enterprise. In particular, we focus on the WPA
Enterprise authentication procedure, as well as implemen-
tation behavior when no known networks are available or
when a new wireless network profile is created at the client.
The reader is referred to the WPA Enterprise standard for
further details [26].

2.1 Devices and Authentication

The WPA Enterprise authentication procedure involves
several distinct devices: a client, an access point, and an
authentication server. The client is a device with a 802.11-
compliant network interface that requests access to the net-
work. To connect to a network, the client communicates
with an access point, which serves as a point of entry to
one or more wireless networks. The authentication server is
used to authenticate users of the wireless network, and typ-
ically runs a network authentication protocol such as RA-
DIUS.
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Figure 1. Wireless network list for Microsoft
Windows-based operating systems. Here,
there are two seemingly identical entries for
the SSID neutrino.

WPA Enterprise authentication proceeds in three distinct
phases: Discovery, Key Exchange, and Authentication.
We note that PEAP [33] and MSCHAPv2 [53] are the most
popular methods used to perform the Key Exchange and
Authentication phases. With PEAP, the client initiates a
TLS tunnel with the authentication server. During tunnel
establishment, the authentication server presents its certifi-
cate, which ideally has been signed by a trusted certifica-
tion authority (CA) that the client can verify and serves as
the means of authenticating the network to the client. Once
the TLS session has been established, MSCHAPv2 is then
used to authenticate the client. Even though MSCHAPv2
has known flaws, the authentication procedure is commonly
thought to be secure since it is encapsulated by the TLS ses-
sion.

2.2 GUI Implementations

Network SSID lists on modern operating systems show
only printable characters, with no way for the user to distin-
guish between identifiers that merely look similar. In addi-
tion, WPA Enterprise support differs considerably between
platforms. Every client presents the user a different set of
options when creating a new wireless network profile, some
fields may be set automatically depending on user choice,
and certificate management ranges from restrictive to per-
missive. We describe relevant behavior of common WPA
clients below.

Figure 2. Wireless network list for Mac OS
X. Again, there are two seemingly identical
entries for the SSID free-wifi.

Windows (XP and above) Figure 1 shows the wireless
network selection list for Windows-based operating sys-
tems. Note that Windows displays network names with no
visual aid to distinguish similar SSIDs. Instead, the sys-
tem shows seemingly identical networks as separate entries
in the list of available networks. For instance, in Figure 1,
neutrino is displayed twice.

When a Windows client receives an authentication server
certificate during the authentication phase, a summary of
the certificate’s fields appears for verification. If the user
accepts the certificate, the corresponding CA certificate can
be used to verify the identity of the server for this network
under “Trusted Root Certification Authorities.” The user
may also specify that the network should be authenticated
only when the certificate’s common name field matches a
particular name. By default in Windows 7, the server name
field is set to the value seen in the certificate, if accepted.

Apple Figure 2 shows the wireless network list for Mac
OS X. Like Windows-based systems, Mac OS X also shows
available SSIDs without visual aids. When creating a new
network profile, the system selects most of the network pa-
rameters automatically – e.g., the use of PEAP. Once the
authentication server presents its certificate, the client will
present the user a summary of the certificate’s fields for in-
spection. Mac OS X provides a visual aid in the form of
quotation marks to delimit the SSID of the chosen network.
In contrast to Windows clients, however, it is unclear how
to restrict connections to a specific server name for a new
network profile from the OS X GUI. Like Mac OS X, iOS
uses quotation marks to visually delimit network SSIDs in
the username and password dialog.

GNU/Linux Family GNU/Linux systems offer a variety
of WPA client configuration interfaces, NetworkManager
and wpa gui being the most common. In both cases, the
new network configuration dialogs are similar, and none
offers visual aids to distinguish similarly-named networks.
We note that text-based configuration tools allow checking
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for the correct authentication server name, and to distin-
guish similar SSIDs by displaying them within quotation
marks. However, text-based configuration remains an ad-
vanced task out of reach for the common user.

3 Targeted, Stealthy Evil Twin Attacks

In this section, we sketch an overview of our advanced,
stealthy evil twin attack. The goal is to subvert the WPA
Enterprise authentication described in Section 2, such that
an attacker tricks a victim client into unwittingly authenti-
cating to a rogue network with their credentials for a real,
trusted network. The capture of these credentials allows
the attacker to then authenticate to the trusted network with
the privileges of the victim client. We note that this attack,
when correctly performed, is completely transparent to the
victim – that is, the victim will be entirely unaware that their
network authentication credentials have been leaked.

In the following, we first detail the threat model we as-
sume for the attack. Then, we present an exposition of the
details of the attack, including several variations that in-
crease both its effectiveness and stealthiness.

3.1 Threat Model

The attack we present in this work makes a number of re-
alistic assumptions regarding the configuration of the wire-
less network and victim clients, as well as the capabilities
of the attacker. We enumerate these assumptions here.

1. The wireless network uses WPA Enterprise for authen-
tication, and uses MSCHAPv2 to authenticate clients
over RADIUS. This is a common configuration; for in-
stance, it is the default on recent versions of Windows.

2. The attacker can successfully communicate with a
target wireless network, and transmit with sufficient
power to successfully jam legitimate clients of the net-
work. Section 5 shows the distances satisfying these
requirements.

3. The attacker has sufficient resources to mount the at-
tack. We demonstrate in Section 5 that the attack is
feasible on common, high-end servers.

4. The victim clients run one of several commodity op-
erating systems, including: Windows XP or later; Ap-
ple’s Mac OS X or iOS; or, GNU/Linux with common
GUI-based configuration tools.

3.2 Attack Description

In the following description of the targeted evil twin at-
tack, let C be a legitimate client of the victim network N

Figure 3. In the attack, an attacker leverages
reactive jamming techniques to coerce a vic-
tim client to authenticate to a rogue network
that appears identical to a target wireless net-
work. A hash of the victim’s authentication
credentials is then captured. The hash is
cracked using a high-performance password
cracker (not shown). Once the plaintext pass-
word has been recovered, the attacker uses it
to authenticate to the target network with the
privileges of the victim client.

that uses an access point APN advertising SSID SN . Let
RN be the victim network’s authentication server that has
been set up to perform PEAP with MSCHAPv2 for authen-
tication with a certificate signed by certification authority
CAN , and can access the user database for N . In this sce-
nario, C has a stored profile for N that includes its SSID,
authentication credentials, authentication method, certifica-
tion authority, and certificate fields to verify. The attacker
A sets up an access point APA in range of the client C, us-
ing the same channel as APN . APA uses an authentication
server RA with a certificate similar to RN .

The attack is illustrated in Figure 3, and proceeds as fol-
lows.

1. APA sends Disassociation frames to C, forcing C
to reassociate. These frames can be spoofed easily to
appear being issued by APN using standard tools such
as aircrack-ng [2].

2. C sends Probe Request frames to scan for active ac-
cess points in order to reassociate with a suitable wire-
less network.

3. APA reacts to every Probe Request frame fromC by
jamming it and broadcasting Probe Response to C
with SSID SA. This has the effect of preventing recep-
tion of C’s Probe Request frames at APN , allowing
APA to impersonate APN .

4. C connects to SA advertised byAPA, thereby creating
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Figure 4. An example of reactive jamming,
where an attacker conditionally jams a target
based upon the contents of a wireless frame.
In this example, the attacker detects that a
target is issuing a Probe Request frame. Be-
fore the target finishes transmitting the frame,
the attacker issues a Probe Response frame to
jam the target. Note that because the attacker
can conditionally apply this jamming tech-
nique, the attack can be precisely targeted at
a particular client and type of transmission.

a new network entry in the client’s wireless network
configuration database. In effect, the attacker abuses
the user’s trust in the legitimate SSID SN .

5. RA presents C with a certificate signed by a trusted
CA to avoid arousing suspicion.1

6. Normal authentication proceeds, such that C discloses
a hash of his authentication credentials to RA.

7. A transfers the captured hash to cloud-based password
cracker to recover the plaintext authentication creden-
tials.

In the following sections, we elaborate upon each of the
steps of the attack outlined here. In particular, we describe
the jamming strategy required to coerce C to communicate
withAPA. We then provide a procedure for choosing a suit-
able value for SA and the properties necessary forRA’s TLS
certificate. Finally, we outline a procedure for efficiently re-
covering authentication credential plaintext.

3.3 Reactive Jamming

Jamming a radio signal is often described as a physi-
cal operation where the jammer’s transmitter outputs energy
into the medium to disrupt communication without further
knowledge of the data it is trying to disrupt. In the context
of our attack, however, the jammer needs additional higher-
layer knowledge of the victim’s transmitted data in order
to react properly. For the purposes of our work, a reactive
jammer is a device that is capable of A) examining higher-
level network protocol data contained in wireless frames,

1We discuss issues surrounding obtaining trustworthy certificates later
in the section.

and B) conditionally jamming a target based on intercepted
data prior to that frame’s end of transmission. A depiction
of this technique is shown in Figure 4.

In our attack, the access point APA operates by waiting
for Probe Request frames from a client. Once a frame is
detected, but before transmission ends, APA sends a con-
tinuous train of Probe Response frames that do not obey
SIFS, DIFS, or PIFS timings in the 802.11 standard and
lasts long enough to ensure that C receives it.2 If the orig-
inal frame is jammed before it reaches APN , there will be
no response from it, removing its entry from the SSID list
at the client C.

Successful jamming requires that the attacker is able to
respond quickly to transmissions from C. Let t0 be the
transmission time of C’s Probe Request frames, TC the
time required to transmit one Probe Request frame, TT
the radio turnaround time of APA, Tb the transmission time
of 1 bit, and td the time at which APA detects a Probe
Request frame from C. To successfully jam the Probe
Request frame, TT must satisfy the inequality

td + TT < t0 + TC − Tb. (1)

For instance, with a rate of 1.0 Mbps and frame size of ≈
600 bits, TC < 600µs.

Even though this technique only works for a fixed chan-
nel, Section 3.7 discusses the case where other channels
must be jammed. Elimination of competing access points
in the client’s SSID list serves as the first step of the attack.

3.4 SSID Selection

As alluded to in Section 2.2, wireless network configura-
tion interfaces provided by common operating systems can
render maliciously-named networks indistinguishable from
legitimate networks to the average user. In the simplest
case, all that is needed to exploit this shortcoming is to use
an SSID with a trailing or leading non-printable character
in its name – e.g., “Enterprise” vs. “Enterprise ”.
However, as in the case of browser URL spoofing, substitu-
tion of similar glyphs can produce spoofed network names.
The standard defines SSIDs as an arbitrary string of up to 32
characters, and leaves the interpretation open to the imple-
mentation [26]. Given the abundance of glyphs available,
especially in extended character sets, this implies that the
set of possible spoofed SSIDs available for use by an at-
tacker is potentially large.

When the victim client receives a Probe Response
frame with a spoofed SSID, a new network profile will be

2SIFS, DIFS, and PIFS are inter-frame spaces of different magnitudes.
Shorter inter-frame spacing gives a transmitter greater transmission pri-
ority on a wireless channel. By necessity, reactive jammers ignore such
inter-frame spacing standards.
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created. None of the security settings for the legitimate net-
work will apply to the new profile. Creation of a new net-
work profile is a critical step of the attack, and it illustrates
how subtleties in user interface designs can enable serious
attacks despite the use of theoretically strong authentication
protocols.

3.5 Authentication Server Certificates

Once a new profile exists in the client for the spoofed
network, the attacker’s authentication server must present
a valid certificate to the client. To accomplish this task,
the attacker can register a domain that appears similar to
a trusted domain, or one that is related to wireless net-
working in some way (e.g., in our experiments, we regis-
tered the domain openinfrastructures.net). Since
many wireless security products ship with self-signed cer-
tificates, users may be conditioned to accept any certificate
that has a semblance of validity. We test this conjecture in
Section 5 with user experiments, and show that it holds in
practice.

The attacker uses the same CA used by RN to sign her
own certificate and bind it to a name in the registered do-
main. For instance, a deployment that uses VeriSign to sign
its certificates can be targeted by an attacker registering a
domain, and signing her own certificate with VeriSign as
well.

Choosing a certificate may even be made simpler if a
deployment chooses to use its own internal CA to sign cer-
tificates. If this is the case, then any CA in the client’s trust
store that is willing to sign certificates – e.g. VeriSign – is
enough to prevent the operating system from reporting an
error to the user.

Once the user accepts the attacker’s certificate for the
new network profile, the TLS tunnel between the vic-
tim client and the attacker’s authentication server is estab-
lished, and authentication commences. Crafting a reason-
able certificate constitutes the final step in giving the at-
tacker access to the less secure authentication protocol –
e.g., MSCHAPv2 – that is encapsulated by TLS.

3.6 Recovering Authentication Credentials

Once the client starts MSCHAPv2 authentication, the at-
tacker can record every frame exchanged, or even act as
a full man-in-the-middle, forwarding frames between the
client and the victim network. In both cases, the attacker
can intercept the victim client’s authentication credentials.

Breaking MSCHAPv2 is well documented [41], and
tools such as asleap [50], mschapv2acc [11], and John
the Ripper [37] can recover the plaintext secret given
the conversation handshake. The speedup over brute-force
search claimed by exploiting MSCHAPv2 weaknesses is

216, and this can be improved in practice by distributing the
search over a pool of high-speed computation nodes. For
instance, GPU computing platforms such as CUDA [35] al-
low the attacker to massively parallelize the key search.

To summarize the classic attack against NTLM, given a
key K = K1||K2||K3, the attacker must first obtain the
values for eitherK1 orK2; obtainingK3 is trivial, and only
provides 2 bytes. Cracking DES once yields one of K1 or
K2, giving a total of 9 out of the 16 bytes of the NTLM
hash. The last 7 bytes of the hash can be obtained by run-
ning a dictionary attack against NTLM. In Section 5, we
show how we were able to crack real-world passwords in a
short period of time, and also empirically evaluate the com-
putational effort required to completely execute this step of
our attack.

3.7 Optimizations

While the basic procedure outlined above contains the
essential details of the attack against WPA Enterprise,
a number of optimizations are useful to consider when
mounting this attack in the real-world. We consider pos-
sible improvements in the following.

The basic version of the attack might require the attacker
to be in close proximity to the victim. Depending on the
target, this may not be possible without arousing suspicion
in the victim’s activities. However, inexpensive directional
antennas can make a remote attack possible from great dis-
tances. We examine the performance of one such antenna
in Section 5.

The version of the attack presented above can only target
a single wireless channel, and is limited in practice as wire-
less deployments move towards higher access point den-
sity; this has the effect of making more channels available
to clients. For these scenarios, the attacker could use an
additional jamming device for each of the available chan-
nels, using the same principle of operation as the basic at-
tack. Another strategy would involve jamming the non-
overlapping channels not targeted by the reactive jammer,
essentially forcing the victim client to use the desired chan-
nel covered by the reactive jammer.

In order to convince more security-minded users to ac-
cept the rogue certificate, other social engineering tech-
niques are possible. Consider an attacker AP that contains
its own certificate and the one the legitimate authentication
server presents. In the first iteration, APA uses the legiti-
mate certificate and advertises S′

N , where S′
N is a visually

equivalent variation of SN . The user can inspect this cer-
tificate and since it will be the one expected, he will accept
it. TLS session establishment will fail, and APA switches
SSID to S′′

N , another visually similar variation of SN , cre-
ating yet another network. At this point the user may be
more likely to accept the rogue certificate, as he has already
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inspected and approved one.
Using arrays of GPUs to parallelize the computation can

shorten the time needed to crack DES. Buying and manag-
ing such an array can be costly, but our evaluation in Sec-
tion 5 demonstrates that current offerings such as Amazon
EC2 [3] can greatly reduce these costs.

4 Attack Prototype Design and Implementa-
tion

In the current section, we describe our implementation
of the advanced, targeted evil twin attack. Our proto-
type, shown in Figure 5, uses a desktop computer run-
ning Gentoo Linux for coordination. The machine con-
tains an Intel Core 2 Quad Q9650 3GHz processor, 4GB of
RAM, and an NVIDIA GeForce 9800GT graphics card with
GTX280 GPUs. The reactive jammer is implemented using
two USRP2 software-defined radio boards from Ettus Re-
search [17], each with one RFX2400 daughterboard. A Buf-
falo WZR-HP-300NH wireless router provides the rogue
wireless network, and two HyperGain HG2419G 2.5GHz
19dBi parabolic grid antennas are used to increase the range
of the attack.

The reactive jamming component is a GNURadio-based
software-defined radio (SDR) [20], running an 802.11b
module developed by BBN [5] on our desktop host. The
two USRP2 boards and daughterboards, one for reception
and one for transmission, connect to the host through Gi-
gabit Ethernet adapters. The USRP2s are connected to the
directional antennas.

The reactive jammer is provided with the target client
and access point MAC addresses, and the desired spoofed
SSID. With these parameters, the jammer builds a Probe
Response frame that is then passed to the modulation
blocks for 802.11. The returning data is the train of signals
to repeat on the sender, which is stored in memory. Once
the receiver thread starts, the frame decoding function fills
the received data buffer from the incoming signals, check-
ing for the target client MAC address. When the desired
Probe Request frame is encountered, the jammer trans-
mits the stored Probe Response train.

For our rogue authentication server, we use the “Wire-
less Pwnage Edition” [51] of FreeRADIUS [18], a patch
that maintains a challenge and response authentication log.
Also connected to the host is the Buffalo router running the
OpenWrt 10.03 firmware [38]. The router connects to the
desktop computer, and is configured for WPA Enterprise
using our desktop as a RADIUS server. We registered the
domain openinfrastructures.net, and generated a
certificate for radius.openinfrastructures.net
signed with a well-known certification authority trusted by
all common operating systems.

We explored four separate approaches for recovering
plaintext from captured authentication hashes. We evalu-
ated the use of a 9800GT card, a GTX280 card, a Tesla
S870 cluster with 8 GPU boards, and an Amazon EC2 Clus-
ter GPU Quadruple Extra Large Instance with two M2060
Fermi CPUs. We evaluate the relative impact of each ap-
proach on the efficiency of our attack in Section 5.

5 Evaluation

In this section, we report on an evaluation of our attack
prototype. First, we establish bounds on the reaction time
of our jammer, and the computational overhead required
to recover authentication credential plaintexts. We evalu-
ate the overall effectiveness of our prototype against a pro-
duction WPA Enterprise-protected wireless network of our
own. We quantify the range of our prototype in a sepa-
rate experiment conducted using high-gain antennas in an
urban environment. We report on the real-world effective-
ness of the attack with user experiments with 17 technically-
sophisticated participants. Finally, we present an economic,
worst-case analysis of the attack in terms of the cost of the
hardware and the software required to guarantee the success
of the attack in practice against a particular victim.

5.1 Ethical Considerations

All of the experiments described in this section only tar-
get devices under our control, or ones for which we have ob-
tained prior consent for testing. The experiments were per-
formed in a wired environment whenever possible. How-
ever, to demonstrate the effectiveness of the attack, it was
also necessary to perform it over the air. Note that fine-
grained control of the attack is possible due to the nature
of our jammer implementation that reacts only to specific
MAC addresses. For test devices that we did not control,
we obtained prior consent from the targeted users, and de-
briefed them after the experiments.

5.2 Jamming Speed

Recall from Section 3.3 that for the reactive jammer to
successfully block transmission of the victim client’s Probe
Request frames, the radio turnaround time of the jammer
must satisfy Eq. (1). This turnaround time effectively de-
termines the maximum reaction speed to detected signals.
Therefore, we performed the following experiment to mea-
sure the reaction time of our jammer.

In this experiment, we RF-wired a USB wireless don-
gle with an external antenna adapter to our jammer through
a pair of 30dB attenuators. The output of the dongle and
jammer transmitter is displayed on our signal analyzer.
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Figure 5. Overview of hardware used in the prototype implementation of the attack. From left:
desktop, antenna, router, USRP2 software-defined radio, victim client, signal analyzer (for evaluation),
and attenuators.

Figure 6. A demonstration of the reaction time
of our jammer. On the left, the signal analyzer
shows an uninterrupted 800µs frame transmit-
ted by a wireless client. On the right, the sig-
nal analyzer shows a Probe Response frame
jammed at 300µs. The horizontal grid width
denotes 200µs divisions.

Figure 6 illustrates the reaction time of our jammer. On
the left panel, a single Probe Request frame lasting 800µs
is shown while no jammer is active. On the right panel, the
same Probe Request frame is interrupted by the jammer
300µs after transmission starts, establishing an upper bound
on the reactive jamming capability of our prototype.

Because 802.11g network management packets are sent
at the lowest rate (1 Mbps) to ensure delivery [26], our pro-
totype’s minimum response time of 300µs means that our
reactive jammer is able to jam 802.11g management packets
at around byte 38 using our software-radio implementation.
Additionally, we note that while this reaction time is too

long to allow for reliable jamming of 802.11n-based wire-
less networks, hardware is available that would render the
attack possible in that context as well.

5.3 Plaintext Recovery

As we mention in Section 4, we explored several options
for recovering authentication credential plaintexts. In par-
ticular, we deployed GPU-optimized password crackers on
a low-end NVIDIA 9800GT card, a medium-end GTX280
card, a Tesla S870 cluster with 8 GPU boards, a Tesla
C1060 cluster with 8 nodes, and an Amazon EC2 Clus-
ter GPU Quadruple Extra Large Instance with two M2060
Fermi GPUs. To empirically demonstrate the required
computational overhead to recover authentication credential
plaintexts, we measured MD4 hashing speed by performing
a full dictionary search on each device.

Figure 7 presents a hashing performance comparison be-
tween different hardware and thread configurations. To gen-
erate this plot, we ran an exhaustive dictionary search over a
space of 8 alphanumeric characters with increasing threads
per CUDA block to a maximum of 512 blocks. The dictio-
nary build times range from a little over a week to approxi-
mately 13 hours.

As expected, the number of hashes computed per second
initially increases with increasing parallelism, but eventu-
ally levels out or decreases due to thread contention. We
note that for the 9800GT, the drop in performance at 512
threads is due to the configuration being too large for the
card memory. We also note that a more careful implemen-
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Figure 7. GPU hashing speed as a function of
threads per CUDA block for dictionary gen-
eration. In particular, we compare the rela-
tive efficiency of four different hardware im-
plementations.

tation of the distributed cracker might improve performance
at scale.

Once a full dictionary is generated, plaintext recovery
requires at least one DES encryption per entry in the dictio-
nary. An efficient GPU implementation [1] would allow the
recovery to be fully-parallelized. However, the speed gain
factor of the above implementation against a single CPU is
around 10, meaning that a host with multiple cores is a rea-
sonable substitute for the GPU implementation.

5.4 Attack Range

To quantify the maximum distance from which our at-
tack could be mounted by our prototype, we deployed our
high-gain directional parabolic antenna on the 16th floor of
a building in a large U.S. city. The antenna was connected
to a computer running Kismet through a TL-WN722N USB
wireless dongle. We recorded the MAC addresses of a num-
ber of access points, and queried these addresses using the
Skyhook Wireless Positioning Service [43] to give an ap-
proximate distance from the placement of the antenna. The
results show that our 19dBi antenna is able to communicate
with networks 800m in distance.

To further quantify the performance of our prototype, we
measured the jamming and association success probability
of our system. We placed our prototype on the 4th floor of
the same building as in the previous experiment to limit its
range, and co-located an access point for a target wireless
network. Then, we varied the position of a test client at
locations 50 meters apart in line-of-sight of the transmitter.
As a test client, we used a GNU/Linux laptop containing an

Figure 8. Jamming and association probabil-
ity over 1,000 trials as a function of distance.
Note that attackers are not limited to a maxi-
mum of 1,000 trials, and that each trial takes
approximately one second to execute.

Atheros-based wireless interface and the factory antenna.
For each position, we ran 1,000 network scans. Figure 9
sketches the relative position of all the components for the
experiment.

For the chosen channel, we consider a single jamming
attempt to be successful if the scan reveals only our sys-
tem’s MAC address. Failure to see our system in the scan,
or seeing other transmitters in the channel, indicates a failed
jamming attempt. Similarly, we consider an association to
be successful if the test client associates with our rogue ac-
cess point. If, on the other hand, the client connects to the
legitimate wireless network, then we consider the associa-
tion attempt to be a failure. The results for both tests are
shown in Figure 8.

The results indicate that our prototype is able to jam and
force client associations with close to 100% probability at
ranges under 100m. As expected, success probabilities de-
crease with increased range; however, they do remain non-
negligible up to 400m. We note that although these proba-
bilities might indicate that the attack becomes ineffective at
larger distances, the attackers are not constrained to 1,000
trials. Indeed, an attacker could quite feasibly perform hun-
dreds of thousands or millions of trials in relatively short
periods of time. Though this strategy comes with a corre-
sponding increase in the risk of detection, it is not necessar-
ily the case that the true risk is greater since one would have
to be looking for signs of the attack in the first place.
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Figure 9. Experimental setup for jamming
tests. The access point and jammer are co-
located in this experiment, while the client
distance from the AP and jammer is varied at
50m increments. The jamming and associa-
tion success probabilities against the client
are recorded over 1,000 trials at each dis-
tance.

5.5 User Experiments

Similar to work conducted by Jakobsson et al. [27, 28],
we believe that realistic experiments are the only way to
reliably estimate success rates of attacks in the real world.

In order to assess the feasibility of the attack we de-
scribe in this paper, we performed user experiments with
17 volunteer computer science graduate students that we re-
cruited in our department. All participants were technically-
sophisticated – that is, the participants were expert Internet
and knowledgeable wireless network users. We set up the
attack prototype in the lab with small Antenova B4844-01
antennas to limit range. The system was modified to stop
jamming and answering requests for clients already seen
and captured.

Before the experiments, we informed all participants that
we would be capturing traffic, but without revealing the con-
crete attack that we were launching. The participants did
not know that we were performing a security experiment.
Furthermore, we reassured our participants that we would
not be accessing any personal information (e.g., email con-
tents, Facebook messages, etc.). Also, we anonymized cap-
tures when cracking such that no user could be mapped to
a password , and only processed information automatically
(i.e., we did not manually look at it).

Password Time to find (s)

1 27
2 7,510

Table 1. Password search time, ordered by
elapsed time.

For each participant, we assigned a series of common,
innocuous tasks such as browsing the web, sending email
through a web interface, and solving CAPTCHAs after au-
thenticating with the university wireless network that we
were targeting. Establishing a connection to the wireless
network we were targeting was, therefore, not an end in it-
self, but was instead the means of accomplishing another
unrelated goal. This was to ensure that the users were
not aware of the attack that we were launching so that we
could determine how effective the attack would be in a
realistic, real-world setting. When available, the partici-
pants performed the tasks using their personal computers.
Otherwise, we provided an Asus 1005PE netbook running
Ubuntu 11.10.

After the completion of each user experiment, we de-
briefed the participant on the real purpose of the tests, asked
if they had noticed any suspicious behavior during the ex-
periment, and asked them to complete a self-assessment of
their technical abilities. Figure 10 shows the distribution
of scores reported by the users. Note that most participants
were technically-sophisticated. Hence, the results we report
in this section demonstrate that the attack works effectively
even against very knowledgeable users.

Our prototype was able to successfully perform a man-
in-the-middle attack against all of the 17 users who par-
ticipated in our user experiments, including capturing the
MSCHAPv2 conversation. All users authenticated with the
wireless network that we were targeting, and only one re-
ported seeing suspicious activity (even so, she still provided
her password to the system).

To determine how long it would take for us to crack
a password to gain illegal access to the network, we per-
formed a brute-force search of 8 character alphanumeric
passwords over the anonymized captures using John the
Ripper on a 24 Xeon-CPU server at 2.4GHz in our lab. We
parallelized the search to use one candidate password on
each CPU. Table 1 shows that we were able to successfully
crack a password after about 30 seconds, and then another
one after about two hours. Hence, our attack is feasible
in practice and can be used to gain unauthorized access to
WPA Enterprise networks.
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Figure 10. Results of a self-assessment of
familiarity with computers and wireless net-
working performed by participants in our user
study. Users tended to view themselves
as technically sophisticated with respect to
computing in general, while familiarity with
wireless networking exhibits a bimodal dis-
tribution. In the latter case, most viewed
themselves as sophisticated, while a smaller
group classified themselves as less compe-
tent.

Component Cost (USD)
1 Desktop Core 2 Quad 4GB RAM 580.00
2 USRP2 boards @ $1500 ea. 3,000.00
2 RFX2400 boards @ $275 ea. 550.00
1 Buffalo WZR-HP-300NH AP 66.00
2 Parabolic grid ant. @ $47.99 ea. 95.98
1 Standard TLS certificate 178.47
8 Tesla C10 computing devices @1,050 ea. 8,400

Total $12,870.45

Table 2. A breakdown of the cost for each
component of our attack prototype.

5.6 Economic Analysis

We split the estimated cost of building a system capa-
ble of launching our attack into two parts. First, we quan-
tify the cost of the hardware we used, shown in Table 2.
The total cost is dominated by the USRP2 SDR boards, at
$3,000 USD, which is unsurprising given the relatively spe-
cialized nature of the hardware. Nevertheless, the final cost
of $4,470.45 USD is well within the reach of many moti-
vated attackers.

Next, we analyze the cost of the plaintext recovery com-
ponents, including the MD4 dictionary generator to map
strings to hashes, and the DES-cracking implementation if

the attacker would like to have guaranteed success in crack-
ing a specific victim’s password. Agosta et al. [1] and
Guneysu et al. [24] examine the use of equivalent GPU and
FPGA clusters respectively for performing key searches in
the $10,000 USD range. A cluster of 48 NVIDIA GTX260-
216 boards completes a single DES in 18 days, while CO-
PACOBANA does so in 12. Taking the former as an up-
per bound for the time required to completely explore the
possible space of keys, the budget for such a plaintext re-
covery component in under 20 days comes to less than
$15,000 USD when using the Amazon EC2 GPU extra-
large instance for dictionary generation.

From the above cost analysis, our attack can be per-
formed for under $20,000 USD if a specific user is targeted
rather than when the attacker is interested in gaining general
access to a WPA Enterprise network as we demonstrated in
our user experiments. We believe that this renders the at-
tack feasible for a wide range of attackers who are inter-
ested in launching targeted attacks – e.g., criminal gangs,
well-funded corporations, and nation-states. Note that for
those entities with significant resources – e.g., the security
agency of a country – the attack could be performed in a far
more efficiently than above by investing in faster resources.

6 Countermeasures

Preventing our attack requires coordination by defenders
on multiple layers. Several countermeasures are required to
mitigate such attacks. In this section, we present and discuss
some possible mitigation strategies.

A central component of our attack concerns the spoofing
of network SSIDs in wireless network user interfaces. Im-
plementations that can provide visual cues to the user that
a rogue SSID is distinct from a similar-appearing trusted
SSID could potentially neutralize or warn against the attack.
For example, SSIDs might be displayed between visible de-
limiters, or visible placeholders might be displayed for non-
printable characters. More sophisticated approaches might
check for SSID similarity, similar to phishing heuristics in-
tegrated into modern browsers, and alert the user in such
cases. Note, however, that educating users to take notice
of security-relevant information is a notoriously difficult
problem, especially in a wireless setting where most users
are not aware of the risks. For example, simple session-
hijacking tools such as Firesheep have received much atten-
tion because of their simplicity and effectiveness in wireless
environments.

Unfortunately, flaws in MSCHAPv2 and the wide avail-
ability of distributed computational resources make it feasi-
ble to recover plaintext user credentials. Attacks against
it are well-known [41] and implemented in a variety of
tools. Perhaps worst of all, these attacks have negligible
parallelization overhead. Our work supports the fact that
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more secure alternatives to MSCHAPv2 need to be de-
ployed in WPA Enterprise networks. Even small changes
to MSCHAP, such as using a single AES encryption for the
client response, could make the attack we describe infeasi-
ble. Also, using client certificates for authentication would
avoid relying on password-based authentication protocols
all-together.

In this work, we show that the lack of a strong binding
between the SSID and the authentication server certificate
is a significant security problem. Tying the wireless net-
work SSID to the authentication server certificate gives the
victim a chance to detect the attack and determine that she
is actually contacting a rogue access point. WPA clients
should also require certificate authority selection and com-
mon name verification to protect from SSID spoofing at-
tacks.

Allowing users to configure their own network profiles
to be able to connect to an organization’s wireless network
may be convenient from a management and organizational
point of view. However, this flexibility creates the poten-
tial for attacks such as ours. For deployments using WPA
Enterprise, we believe that it might be better for a central
authority to distribute wireless profiles to clients, and disal-
low dynamic profile creation.

While our attack makes use of directional antennas to in-
crease the range of the attack, physical security techniques
(e.g., secure pairing) have recently been proposed to mit-
igate rogue device attacks [9, 32]. Work in this vein, al-
though mainly focused on short range handsets, could po-
tentially be adapted to newer 802.11n multi-antenna wire-
less clients and WPA Enterprise networks. This could
severely limit the range of the attack, and force the jam-
mer to be co-located with the victim clients, reducing the
problem to one of physical security.

7 Related Work

Our attack against WPA Enterprise incorporates a com-
bination of cross-layer vulnerabilities, from the physical
communication medium to the human-computer interface.
In this section, we place the attack in the context of related
work.

General wireless attacks Protection against imperson-
ation and man-in-the-middle attacks in wireless networks
has garnered interest in the networking community in recent
years. Techniques include providing visual feedback to the
user such as light or sound for secure pairing [40, 23], using
correlated motion [10], using ambient signals around the
transmitter to authenticate it [32, 4, 22], and special packet
coding techniques to detect jamming [21]. Anti-jamming
systems have also been studied for decades, since the intro-
duction of spread spectrum communication [42] to newer

forms that allow key establishment for spread spectrum
techniques in hostile environments [45]. While such tech-
niques provide useful building blocks for securing wireless
networks, they are limited in applicability for the existing
WPA Enterprise standard and its deployment constraints.

Evil twin protection Most evil twin attacks in the lit-
erature contemplate the impersonation of unsecured net-
works and do not include jammers, while our attack re-
lies on a composition of cross-layer techniques to exploit
weaknesses in UI design, authentication protocols, and the
physical layer, achieving stealthy and targeted attacks. Pro-
posals in the literature against evil twins fall into several
categories, none of which is enough to prevent our attack.
Secure device pairing [40, 32, 23] seeks to use properties in
or around the devices that will be communicating to estab-
lish their identity. These approaches require line-of-sight
access to the access point, or assume the attacker can’t co-
locate with the device. Although our attack is capable of
attacking long-range targets, it can also be placed close to
an AP or client. Dedicated hardware could render the at-
tack less conspicuous, and could allow for deployment with
plug devices or smaller, making its physical presence hard
to detect.

Protocols relying on trust-on-first-use assume that the
first time a network is configured, the environment is secure.
Our attack, however, exploits this assumption by creating a
new network to trust as needed and, as such, trust-on-first-
use approaches and similar are vulnerable [4, 22].

Wireless intrusion prevention systems (WIPS) capture
packets and search for attack patterns [13]. When one is
found, the WIPS alerts a supervisor and may terminate the
overheard exchanges. However, our attack involves pos-
ing as a legitimate access point to the client and can even
involve spoofing a jammed access point hardware address.
Therefore, from the perspective of a WIPS, our attack looks
no different from a normal association.

Device fingerprinting assumes the evil twin hardware
differs from the victim deployment and sends malformed
probe packets to elicit responses from the twin, which will
be compared against a device table [7]. This approach re-
quires the evil twin to respond to packets from the probe.
Our targeted jamming and response approach requires the
probe to know the attack target beforehand, while our use
of directional antennas forces the probe to co-locate with
the victim, limiting its usefulness. In addition, an attacker
using the same hardware as the victim is undetectable under
this approach.

Password-based authentication A substantial body of
work in the security literature has studied attacks against
password-based authentication, from the popular John the
Ripper [37] that relies of lists of common words, to time-
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space trade-offs approaches culminating in the well-known
rainbow table [25, 36] to probabilistic approaches such
as Markov models [34] and context-free grammars [48]
derived from public password lists. In the WPA world,
wpacracker is a recent commercial effort focused on bring-
ing cloud resources to bear on the problem of cracking
WPA2-PSK passwords [31]. We note, however, that in
wpacracker’s target challenges are exchanged between two
nodes with a shared secret. Our work, however, is an end-
to-end attack against WPA Enterprise networks. The most
significant similarity between the two efforts is their use of
cloud computing to parallelize the plaintext recovery pro-
cess.

While our attack relies upon a robust password cracking
component to successfully recover WPA Enterprise pass-
phrases, it is agnostic and, therefore, orthogonal to the un-
derlying technique used. In our current prototype, we make
use of parallel DES cracking techniques on GPUs and can
use cloud computing nodes.

User interface attacks The attack we describe leverages
vulnerabilities in user interfaces that fail to convey impor-
tant security-relevant information to the user. Attacks in
this vein have been known since the early days of multi-user
computing, where mechanisms such as secure attention se-
quences – e.g., the now-infamous CTRL-ALT-DELETE –
were introduced to establish a trusted path between the user
and the operating system.

The particular vulnerabilities exposed by our work bear
resemblance to a number of attacks that have been launched
against the web browser, where the URL plays a similar role
to a wireless network SSID in that users make trust deci-
sions based upon the reputation of a particular domain or
network name. In particular, homograph attacks [19] have
been used to mount phishing attacks against users that ex-
pect to visit a trusted domain by tricking them into vis-
iting a site with a similar-appearing domain name by ex-
ploiting similarities between glyphs in a character set –
e.g., paypa1.com vs. paypal.com – or across character
sets [46]. Our attack uses similar techniques, although an
important difference in the context of wireless SSIDs is the
general lack of delimiters, allowing for the use of invisible
and non-printable characters.

Subverting the SSL/TLS PKI infrastructure that is relied
upon by HTTPS to verify the authenticity of web servers
is an important class of web security attacks that mirrors –
to some extent – our user interface attacks in the context of
WPA Enterprise. SSL/TLS has recently suffered a number
of issues, such as the questionable trustworthiness of some
certificate authorities [14, 16] that has led to the issuance
of malicious, but correctly signed, certificates. Another in-
teresting class of attack involves browser URL spoofing by,
for example, creating SSL certificates that spoof trusted do-

mains in vulnerable browsers by injecting null bytes in the
certificate common name field [30].

8 Conclusions

This paper presents a novel wireless attack against WPA
Enterprise networks. The key insight behind our attack
is that the combination of cross-layer capabilities such as
stealthy jamming using software radios, the inadequacy of
wireless user interface mechanisms in popular commod-
ity operating systems, and the insecure trust model used
in wireless authentication makes end-to-end attacks against
wireless network authentication feasible in practice. Our
user experiments demonstrate that the attack is highly ef-
fective in practice and very difficult for victims to detect.
We are the first to show significant deficiencies in wire-
less management user interfaces for commodity operating
systems, and also the first to highlight the weak binding
between wireless network SSIDs and authentication server
certificates. We described a prototype implementation of
the attack, analyzed its effectiveness and cost, and discussed
countermeasures that should be adopted.
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