
Even Black Cats Cannot Stay Hidden in the Dark:
Full-band De-anonymization of Bluetooth Classic Devices

Marco Cominelli, Francesco Gringoli
CNIT/University of Brescia, Italy

Margus Lind
Context Information Security, Scotland

Paul Patras
The University of Edinburgh, Scotland

Guevara Noubir
Northeastern University, Boston, USA

Abstract—Bluetooth Classic (BT) remains the de facto

connectivity technology in car stereo systems, wireless

headsets, laptops, and a plethora of wearables, especially

for applications that require high data rates, such as

audio streaming, voice calling, tethering, etc. Unlike in

Bluetooth Low Energy (BLE), where address randomiza-

tion is a feature available to manufactures, BT addresses

are not randomized because they are largely believed to

be immune to tracking attacks. We analyze the design

of BT and devise a robust de-anonymization technique

that hinges on the apparently benign information leaking

from frame encoding, to infer a piconet’s clock, hopping

sequence, and ultimately the Upper Address Part (UAP)

of the master device’s physical address, which are never

exchanged in clear. Used together with the Lower Address

Part (LAP), which is present in all frames transmitted, this

enables tracking of the piconet master, thereby debunking

the privacy guarantees of BT. We validate this attack by

developing the first Software-defined Radio (SDR) based

sniffer that allows full BT spectrum analysis (79 MHz)

and implements the proposed de-anonymization technique.

We study the feasibility of privacy attacks with multiple

testbeds, considering different numbers of devices, traffic

regimes, and communication ranges. We demonstrate that

it is possible to track BT devices up to 85 meters from the

sniffer, and achieve more than 80% device identification

accuracy within less than 1 second of sniffing and 100%

detection within less than 4 seconds. Lastly, we study the

identified privacy attack in the wild, capturing BT traffic

at a road junction over 5 days, demonstrating that our

system can re-identify hundreds of users and infer their

commuting patterns.

I. INTRODUCTION

Wireless communications have profoundly changed
how people share information and access services. Un-
fortunately, due to the intrinsic broadcast nature of
wireless channels, the immense benefits unlocked often
come at the cost of exposing users to a variety of

privacy-invasion attacks. Location information leakage
is a particular concern, as this underpins more sophisti-
cated threats, such as user tracking, identity discovery,
and pinpointing of home/work premises. Furthermore,
discovery of behaviors, preferences, and individuals’
social networks are at risk, which can potentially lead
to effective social engineering.

Location privacy has been investigated extensively
since the early days of cellular communication systems,
when Temporary Mobile Subscriber Identity (TMSI)
was introduced with GSM to increase the difficulty
of user tracking. This later evolved into a completely
anonymized 5G registration procedure, whereby the Sub-
scription Permanent Identifier (SUPI) is never sent in
the clear, but instead is encrypted using an asymmetric
Elliptic Curve Integrated Encryption Scheme (ECIES) to
generate Subscription Concealed Identifiers (SUCI) [1].
In recent years, however, the privacy attack surface has
expanded significantly with the pervasiveness of mobile
and sensing devices, open mobile platforms (running un-
trusted code), diverse wireless connectivity options, and
the availability of SDR platforms. For instance, faulty
implementations of paging messages in LTE networks
allow attackers to collect IMSIs through passive sniff-
ing [2]. This questions the effectiveness of SUCI, given
that it is possible to downgrade a terminal’s connectivity
from 5G to 3G via jamming, and subsequently use one
of the many SDR-based IMSI catching tools [3] to reveal
a target’s identity. Tracking threats were also identified
in Wi-Fi, where the unique Medium Access Control
(MAC) address of devices, which is present in periodic
probe packets, has been exploited by marketing and
location analytics companies [4], or to covertly identify
individuals’ routes in cities [5]. Such privacy threats led
to MAC address randomization features released with
popular mobile operating systems [6], making tracking

harder and receiving praise from privacy advocates.
Naturally, consumers are increasingly concerned about
the implications of location information disclosure, as
confirmed by user surveys [7] and location privacy
protection legislation [8], [9].

Four billion Bluetooth-powered devices are projected
to be shipped by the end of 2019, making this technology
embedded in virtually every phone, car, laptop, mouse,
keyboard, game console, and wearable device [10].
Bluetooth comprises two main specifications [11]: Blue-
tooth Classic (BT) and Bluetooth Low Energy (BLE).
BT remains the dominant standard, as it is the only
one supporting the Advanced Audio Distribution Profile
(A2DP) required for audio streaming applications, e.g.,
in cars (Apple CarPlay, Android Auto, etc.) and headsets.
Despite its weak cryptographic foundations for protect-
ing the devices address, there is a common belief that
BT is immune to tracking attacks demonstrated against
BLE [12]. This is in part due to the perceived difficulty
of capturing and analyzing 79 channels over 79 MHz of
spectrum, the fact that communicating devices hop at a
rate of 1,600 hops/second (transmitting on each channel
for less than a millisecond), and that a BT Device Ad-
dress (BDADDR) is not sent in the clear but obfuscated
through whitening mechanisms that depend on the clock
of the master. Address randomization was incorporated
in BLE, likely due to its simpler communications design
and hence increased susceptibility to tracking. Instead,
BT obfuscation measures were still believed to be secure
against tracking, therefore addresses continue to be fixed,
as per the initial design.

In this work, we demonstrate through a combination of
signal processing and iterative inference that it is possible
to overcome BT obfuscation and uncover the entire,
meaningful part of a device’s address, thereby enabling
reliable user tracking. We show that implementing our
approach on inexpensive hardware is practical and we
can achieve high de-anonymization accuracy in real-

time, even at a distance from targets. While this opens
new avenues for constructive use, such as profiling
vehicular traffic for planning purposes, or studying Blue-
tooth’s co-existence with other wireless technologies, the
privacy implications are significant. Importantly, while
countermeasures such as address randomizations in BLE
and Wi-Fi, correct usage of LTE paging messages, and
replacement of IMSI with SUCI, may hinder the tracking
of users connected to such networks, billions of BT-
powered devices are already deployed, which may be
impossible to patch with an evolved privacy-preserving
BT version. In fact, no plans to address the privacy

problems of BT are on the horizon and it is even unclear
whether such evolution would be technically feasible.
In addition, while IMSI-catching attacks are active and
can be easily detected [13], [14], BT de-anonymization
is purely passive, which renders the identification of
attackers impossible. Fortunately, affordable and fully
functional technical solutions that could break BT pri-
vacy within short observation windows have yet to be
developed. Our work changes that.

Existing solutions: Due to the ever-growing popular-
ity of BT technology, a number of solutions have been
developed for analysis and debugging purposes. Pro-
fessional high-end products enable full-band BT traffic
analysis [15], [16], yet are very expensive and built on
proprietary software that cannot be modified by users,
and their tracking ability is unspecified.

Few open-source alternatives, such as Ubertooth
One [17], exist. Albeit cheap, these are limited to cap-
turing traffic on a single channel at a time, therefore
cannot follow multiple connections concurrently. Still,
as Ubertooth is advertised as capable of infringing BT
privacy, we perform a thorough performance comparison
between this solution and our approach in Sec. VIII. SDR
solutions that employ inexpensive radio front-ends, such
as HackRF or LimeSDR, have wider bandwidth and are
more flexible, yet are either limited to capturing simple
BLE control traffic [18] or not fully functional [19]. At
best, all these can extract the LAP of a connection’s mas-
ter, which is insufficient for mounting privacy breaching
attacks. We review relevant research that makes use of
such platforms in Sec. X.

Challenges: Multiple BT sessions happen on different
channels at the same time, following hopping sequences
that are unknown to an adversary and derived from the
unknown master clock. Even if sniffing with multiple re-
ceivers tuned simultaneously on all the 79 channels used
by BT, synchronizing the traces must be precise, other-
wise ambiguities arise in the explanation of a sequence of
packets exchanged. Further, figuring out a connection’s
hopping sequence is hardly enough for an attacker to
guess the master’s clock and UAP, from which this
sequence and data scrambling (whitening) are derived,
which offer in some sense a level of confidentiality.

Contributions: To the best of our knowledge, we
present the first full-band BT sniffer in which all the
relevant computations related to synchronization, demod-
ulation, dewhitening, and decoding are combined with a
multi-frame iterative inference algorithm that we propose
to overcome BDADDR obfuscation and de-anonymize
all the meaningful parts of addresses. Our techniques

and system are flexible, as they can be instantiated with
a range of SDR platforms with different bandwidths, can
intercept traffic on all 79 BT channels simultaneously,
while several of the system’s components are amenable
to parallelization on general-purpose workstations. With
these, (i) we demonstrate that, contrary to widespread be-
lief, layer 2 communication in BT is completely exposed
to re-identification and tracking, as device addresses can
be inferred and the obfuscation can be circumvented by
attackers in real-time; (ii) we extensively evaluate the
potential of privacy attacks enabled by our system with
various distances, device densities, and traffic regimes,
using controlled testbeds with 26 embedded devices, a
connected car and a wireless headset. We show that it
is feasible to track BT devices within a 85 m range,
achieving 80% identification within less than 1 s and
100% within less than 4 s; and (iii) we study in the
wild the effectiveness of the privacy attack uncovered,
targeting moving vehicles, without storing sensitive in-
formation, and showing that an adversary may be able to
infer users’ daily commuting patterns. Lastly, we discuss
the large-scale surveillance risks the privacy-infringing
attack identified enables, as well as how to mitigate the
vulnerability revealed. We release open-source all the
code we used in this paper on GitHub1.

II. BLUETOOTH CLASSIC OVERVIEW

BT is a wireless technology operating in the 2.4 GHz
Industrial, Scientific, and Medical (ISM) band, whose
specification version 5.2 has been recently released [11].
The standard amounts to over 3,000 pages and navigating
this is rather involved. Thus, we begin by describing the
BT frame format and the procedure adopted by devices
to whiten (and hence obfuscate) frames and identity
prior to transmission. For completeness, we include an
overview of the BT protocol operation in Appendix A.

Frame Format and Identity Obfuscation

The structure of a BT frame is shown in Fig. 1.
Similar to other wireless technologies, BT frames are
preceded by a Preamble (4 bits). This is followed by a
Sync Word (64 bits) and an 18-bit header. Payloads are
optional in BT frames, as some of these are used for
discovery/control functions. The Sync Word is obtained
from the 24-bit LAP to which 6 bits of a Barker
sequence [20] are appended to improve auto-correlation
properties. Based on this, an expurgated (64,30) block
code with bit-wise XOR of a 64-bit pseudo-random

1Interested readers can download and test the code from
https://github/bsnet/btsniffer

Fig. 1: BT frame format. Only the optional payload field
can be eventually encrypted.

Data in
(LSB first)

0 1 2 3 4 5 6 7

Fig. 2: LFSR used for computing the HEC based on
header data; initialized with UAP and LSB set to 0; final
content is the HEC, transmitted from bit 7 to bit 0.

noise (PN) sequence is derived [21]. This preserves
the LAP while preceding it with 34 coded bits that
guarantee a large Hamming distance between sync words
of different addresses. In some cases, a fixed 4-bit Trailer
encompassing a zero-one pattern follows, to be used for
extended DC compensation. The preamble together with
the Sync Word (and Trailer) form the Access Code. The
Access Code is not subject to any further encoding and
as such the LAP will appear in clear.

The frame header consists of two parts: the header
data (10 bits) that encompasses a 3-bit Active Member
Address (AMA) of a slave, a 4-bit type field, and three
1-bit flags; and the Header Error Check (HEC) (8 bits).
The HEC is generated using the Linear Feedback Shift
Register (LFSR) shown in Fig. 2, whose internal 8-bit
state is initialized with the master’s UAP. The whole
header is then whitened using another LFSR (shown
in Fig. 3) whose 7-bit state is initialized with bits
c6, . . . , c1 of the master’s clock (clk) and by setting the
bit in position 6 to 1. We summarize this procedure in
Fig. 4. The whitened header is then passed through a 1/3
Forward Error Correction (FEC) block.

Note that different UAPs generate different HEC val-
ues, while different master clock values produce different
whitened sequences. Reversing the UAP and clk for
every frame is arguably computationally expensive, since

Data in
(LSB first)

Data out
0 1 2 3 4 5 6

Fig. 3: LFSR used for frame (de-)whitening. Bits 0 to 5
are initialized with bits clk1�6 of the master’s clock; bit
6 is always initialized with 1.

Fig. 4: BT HEC generation and header whitening.

brute-forcing these from intercepted frames would re-
quire 214 iterations per frame. Thus the HEC and header
whitening procedure is expected to ensure enough iden-
tity privacy. In what follows, we debunk this assumption.

III. THREAT MODEL

Next we discuss the attacker capabilities envisioned
and overview a set of plausible adversarial scenarios that
would be enabled by de-anonymizing BT devices.

A. Attacker Capabilities

We assume attackers control portable computers, to
which SDR front-ends that can be tuned on the 2.4 GHz
band are attached (e.g. HackRF, LimeSDR, USRP, etc.).
These could be battery powered or attached to fixed
or mobile power supplies in covert locations (rooftops,
balconies, tunnels, power buses, or cars). The attackers
should be within wireless reception range of the victim
devices, while this range could be potentially extended
by employing directional antennas. We expect attackers
to have some knowledge of signal processing, familiarity
with the BT wireless communications standard, and
reasonable command of computer programming.

B. Adversarial Scenarios

We distinguish three main types of attacks that are en-
abled through exploitation of BT device re-identification:
(1) user tracking and surveillance; (2) stalking and
espionage; and (3) compromising physical assets.

1) User tracking and surveillance: It is conceivable
that policing agencies and state-sponsored entities would
deploy BT sniffing and de-anonymization tools on pub-
lic transport and in key transport hubs (airports, train
stations, bridge crossings, tunnels, etc.) to (i) gauge
footfall or traffic flow; (ii) identify movement patterns
of groups of individuals; or (iii) track the precise where-
abouts of a sensitive asset. BT device identity could
be linked to individuals via sales databases, car plate
recognition software, or CCTV and face recognition al-
gorithms. Likewise, commercial actors would use similar
infrastructure in theaters, cafés, shopping malls, etc. to

monitor customers and orchestrate targeted marketing
campaigns. On the other hand, city councils could hinge
on knowledge of citizen flows to improve the provi-
sioning of public services (including waste management,
transportation, lighting), admittedly at a privacy cost.

2) Stalking and espionage: As SDR hardware is
increasingly more affordable and open-source tools
abound, a crowd-sourced stalking systems would be
straightforward to design if the identity of a BT de-
vice could be reversed from overheard frames. For
instance, a malicious user would post the BT identifier
of an ex-partner or celebrity to a community controlled
sniffing network, in order to know their whereabouts
and cause emotional distress. Similarly, competing busi-
nesses or rival states could send victims allegedly free-
replacements of BT-powered gadgets (earpods, smart-
watches, etc.) with known identifiers, which would be
subsequently tracked via crowdsourced location-sensing,
to infer undisclosed locations of the victims.

3) Compromising physical assets: De-anonymization
of BT devices can also underpin Man-in-the-Middle
(MITM) attacks that can have severe consequences on
victims, without necessarily being immediately obvious.
For example, a team of attackers could coordinate to
fake the presence of a victim near personal assets located
remotely. This would enable unlocking smart-locks, ve-
hicles, or access to computing infrastructure.

IV. FULL-BAND BLUETOOTH SNIFFING

We develop an SDR-based sniffing system that enables
fast interception of BT traffic, in view of breaking
the communication secrecy and re-identifying devices.
We describe the system architecture, data acquisition
process, and data processing pipeline implemented.

A. System Architecture

Fig. 5 gives an overview of the full-band BT sniffing
system developed. This relies on an SDR front-end for
raw wireless signal acquisition in the 2.4 GHz band. The
front-end is connected via USB 3.0 to and driven by
signal processing software running on the host computer.
Our design is sufficiently flexible to allow for SDR
platforms operating with different spectral widths, e.g., a
single board such as the Ettus N310 capable of capturing
the entire 79 MHz bandwidth used by BT, two Ettus
B210 boards, each covering 40 MHz of spectrum and
their output being synchronized, or any of these tuned
to capture an arbitrary spectral width.

The acquired signal samples are then processed. First,
they are passed to a channelizer, which can be configured

Fig. 5: Proposed full-band BT sniffing system. Raw
signal is captured using SDR front-end while channel-
ization, demodulation and frame decoding are performed
on host computer. BT master re-identification is achieved
by reversing HEC computation and whitening.

to output the Radio Frequency (RF) signals observable
on a precise set of individual BT channels, depending on
the computational capabilities of the host and whether
these allow for real-time or off-line sample processing
and analysis. The signals on each acquired channel are
transferred to Gaussian Frequency-shift Keying (GFSK)
demodulation blocks, which output the corresponding bit
sequences. A separate module identifies for each channel
the beginning of BT frames, based on the bit streams
resulting from demodulation. The structure of the system
makes it easy to implement in parallel the demodulation
and frame decoding pipeline.

Depending on the number of channels selected for
capture and the computing power, the BT frames ac-
quired are stored in RAM or on PCI Express Solid State
Drive (SSD), together with a timestamp, to aid frame
sequence reconstruction. Data acquisition and processing
can either work sequentially (“off-line” functionality), or
concurrently, if the time required to process fixed-length
traces is less than the time needed to acquire the same
trace (“on-line” operation). The latter is dependent on
platform computational power and achievable, e.g., with
a double-buffer approach (where a buffer is filled with
new data while data in the other one is processed).

A separate module that we describe in Sec. V fetches
from memory the sniffed frames and exploits weaknesses
in the HEC computation and header whitening to re-
identify the BT master devices of target connections.

B. Data Acquisition

The first task performed by our system is sampling
from the full 79 MHz band used by BT. Different
SDR platforms are suitable for this operation. For our
experiments we adopt two Ettus B210 boards. Each of
these supports full-duplex operation with up to 56 MHz
of real-time bandwidth, which is not sufficiently wide to
capture all BT channels. Hence, the need for deploying

two such boards. We tune the central frequency of the
two boards on 2,421.5 MHz and 2,460.5 MHz respec-
tively, and configure them with 44 MHz of receiving
bandwidth each. We allow a small overlap (5 MHz)
between the bandwidths of the two receivers, to facilitate
output trace synchronization without the need for an
expensive external clock.

Synchronization across channels is of paramount im-
portance to our system, as de-anonymizing BT addresses
requires to analyze frames captured by different SDRs
with a common time reference. This is further needed
for debugging purposes, to be able to explain a sequence
of messages transmitted over different channels at dif-
ferent time instants. Hence, we devise a µs granularity
synchronization method that doesn’t require coherent
capture. In essence, we use an external BT dongle to
transmit periodically (every 1 s), on a channel that is
captured by both interfaces, a reference frame with a
known address and whitening parameters, in which we
embed a Sequence Number. Should such a dongle not
be available, we allow for transmitting the sync frame
with one of the SDRs used for capture, given their
common full-duplex capabilities. The sync frame shall
be received by both SDR boards and therefore be present
in both traces. Reception should be simultaneous, hence
the timing offset between captures is easily compensated.

SDRs usually employ a complex sampling technique;
this means that with a 44 MHz sampling frequency
we can effectively acquire 44 MHz of spectrum. Two
values are recorded with each sampling interval, each
corresponding to a component of a complex sample and
generally referred to as in-phase (I) and quadrature (Q)
components. The complex samples are also called I/Q
samples. We quantize with 1 byte the I/Q sample com-
ponents, which results in an 88 Msamples/s sampling
rate. In turn, this translates into a 176 MB/s data rate
that the host system must handle. This can be managed
if writing to ramdisk or to an m.2 SSD (which supports
at least twice the required rate).

C. Data Processing

Channelizer: To be able to separate the spectral
components of the wideband signal acquired previously
and distinguish the frames transmitted on the different 79
BT channels, the first component of the data processing
chain we implement is a channelizer. This comprises a
digital down-converter scheme, by which the complex
input signal is first shifted to baseband, then passed
through a Finite Impulse Response (FIR) filter [22] with
1 MHz bandwidth. Since high-frequency components are

removed by the filter, the output signal is decimated
to reduce the data rate. By tuning the local oscillator
onto the central frequency of each target BT channel,
we extract the corresponding narrowband I/Q symbols.
Channelizer speed can be greatly increased by using
polyphase filters to directly separate all the narrowband
BT channels from the wideband signal [23].

All channels are subsequently processed by 79 de-
modulation and frame decoding blocks, fed with the
corresponding baseband signals.

Demodulation: The I/Q samples for a single channel
are fed into a GFSK demodulation block that outputs the
corresponding binary data. GFSK is a digital frequency
modulation technique whereby symbols are first filtered
by a Gaussian filter and then used to modulate the carrier
signal. BT employs a binary modulation scheme with
bandwidth-bit period product of 0.5.

A well-known technique for demodulating FSK sig-
nals is based on measuring the phase difference ��
between two consecutive samples of the corresponding
baseband signal. Assuming that the high frequency com-
ponents are filtered out by the channelizer, �� will have
the same sign as the frequency deviation of the signal
from the carrier and will satisfy the relation �⇡ <
�� < ⇡. Given two successive I/Q samples (I1, Q1)
and (I2, Q2), the phase difference between them can be
measured using some simple trigonometric computation.
However, since what is relevant to our task is only the
sign of ��, we can avoid trigonometry by verifying that
for �⇡ < �� < ⇡ the following holds:

sign (��) = sign [sin(��)] = sign (I1Q2 � I2Q1) .

Frame decoding: Once the demodulation step is
completed, we can detect and decode BT frames on
each channel. Recall that every bit stream output by
demodulators contains two samples per bit period; this
oversampling proves necessary to counteract phase noise
effects at the receiver. Instead of recovering one bit
value from the samples within the same bit period, the
decoder will treat each binary sample as a bit. All the
processing performed here is intended to be repeated
for each sample. The following and preceding bits are
evaluated, advancing in a two by two fashion in the
stream of binary samples.

By examining possible preambles with candidate sync
words that follow, we can detect with high confidence
the boundaries of BT frames, which we subsequently
examine for re-identifying masters of target connections.

Fig. 6: Processing logic for inferring the UAP of a BT
master from the whitened header.

V. RE-IDENTIFYING BLUETOOTH DEVICES

BT has been long considered to provide good user
privacy, because (i) devices stop responding to Inquiry
frames after establishing a connection, (ii) they change
channels every 625 µs following a “secret” pattern that
is only known to communicating peers (hopping), and
(iii) their identity remains ambiguous, as the frames
exchanged only contain half of the BDADDR (the LAP)
of the master and the contents are obfuscated using a
per-frame “pseudo-key” that depends on the master’s
UAP and part of its clock (whitening). Our full-band
sniffing system presented in the previous section breaks
the first two identity protection features, as it enables
adversaries, which supposedly neither know the channel
nor the pseudo-key, to capture frames in a target session.
In what follows, we show that it is possible to re-identify
devices by exploiting weaknesses in the design of the
header error check and header whitening mechanisms.
These enable us to derive the master’s UAP.2

To find the UAP of a device, we need to (i) first
identify which 6-bits of the master clock were used to
whiten a frame header and de-whiten it, and (ii) infer
what UAP value produces a HEC value that matches
the HEC in the de-whitened header. We illustrate this
logic in Fig. 6. Note that the HEC is produced using
a polynomial that is initialized with the UAP. For any
given 6 bits of the master clock (clk), only one UAP will
recover a valid HEC. With this in mind, we first employ
Algorithm 1 to identify the (UAP, clk) pairs that could
be valid. In general, for each sniffed WhitenedHeader
wh, we look for (ui, clki) pairs and the corresponding
DeWhitened HeaderData hdi, with 0 i < 64 such that
the following holds:

wh = [hdi | HEC(hdi, ui)]� w(clki),

2Recall that the 2-byte Non-significant Address Part (NAP) is
never used, but merely present for compliance with EUI-48 standards.
Knowing the LAP and UAP, the NAP can be inferred using L2CAP
echo requests.

where | is the concatenation operator, HEC(hdi, ui) is
the bilinear map that generates the 8-bit HEC sequence
and w(clki) is the map that generates the whitening
sequence. In the following we will express the latter as
w(clki) = w’(clki � 26), where w’ is the linear map
implemented by a LFSR that is identical to the one that
generates the whitening sequence but without the static
initialization of the internal state’s Most Significant Bit
(MSB), and 26 makes such initialization explicit. We also
introduce notation for this mapping’s upper and lower
parts, i.e., w0 = w0

hd|w0
hec, which whiten respectively

the HeaderData and the HEC that are concatenated in
the above equation. Let (u, clk) be the actual UAP
and clock value, and hd the actual HeaderData. We
can use the following equation to compute the other
valid (albeit incorrect) UAP values from the (also incor-
rect) corresponding clocks and the associated (incorrect)
HeaderData values:

HEC(hdi, ui) = HEC(hd, u)� w0
hec(clki � clk)

hdi = hd� w0
hd(clki � clk).

After introducing clki = clki � clk and reworking the
equations, we obtain

HEC(0, ui) = HEC(w0
hd(clki), u)� w0

hec(clki).

The above shows that values ui of the UAP that our
search algorithm computes can be obtained by taking
all possible values of the clock 0 clki < 64, they
depend only on the correct value of the UAP, and they
do not change over consecutive (and likely different)
transmitted HeaderData. We also note that the UAP
values for clocks that are each the 1’s complement of
the other are the same. After observing that the 1’s
complement of clock clki can be written as clki�(26�1)
(remember that these are 6-bit values), the above follows
from the following equality:

HEC(w0
hd(2

6 � 1), 0) = w0
hec(2

6 � 1).

Finally, let u be the correct UAP and clk(n) the
sequence of actual clock values. The search algorithm
cannot distinguish them from incorrect candidates u0 and
clk0(n) that verify the following equalities:

clk0(n) = clk(n) + 32,

HEC(0, u0) = HEC(w0
hd(32), u)� w0

hec(32).

The dewhitened HeaderData corresponding to the can-
didate can be easily determined from the “correct” one,
as hd0 = hd � w0

hd(32) = hd�0xC0. This means that
after dewhitening, the incorrect candidate would have

Algorithm 1 Identifying plausible (UAP,clk) pairs.
1: set good list = []
2: for clk = 0:63 do

3: Header = DeWhiten (WhitenedHeader, clk)
4: for UAP = 0:255 do

5: HEC’ = ComputeHEC(HeaderData, UAP)
6: if HEC’ == HEC then

7: push (UAP, clk) into good list
8: end if

9: end for

10: end for

a different MSB in the packet type and different flow
control bit. This could be later used for discriminating
such incorrect candidate from the real UAP.

One key observation is then that in this list of 64 pairs
there are only 32 different UAPs. From this list, we can
remove wrong candidates by executing Algorithm 2 on
successive frames with the same LAP, until the list is
reduced to u, u0. This algorithm verifies the consistency
between the timestamps of the frames and the clock
values that are associated to a candidate UAP. It is also
worth noting that the execution of Algorithm 2 on the
first two frames received allows us to discard at least
the 1’s complement of the clock for any candidate UAP,
unless the time difference between the received packets
is exactly 64 · 625 µs. Thus, with only two frames we
can effectively reduce our search space from 256 to 32
unique pairs (UAP,clk) or less. When only two possible
clock values (with the 32 tick delay as demonstrated
above) remain (and hence two possible UAPs), further
ambiguity can be resolved only by examining the Header
data de-whitened with the two possible clocks and keep-
ing the UAP for which the inferred Header makes sense.

VI. TESTBEDS

We implement the designed full-band BT sniffing
system using two Ettus USRP B210 SDR boards, con-
nected to the same antenna using a splitter and to the
host via separate USB 3.0 controllers. The host runs
a GNU/Linux operating system and is equipped with a
quad-core Intel Xeon W-2123 CPU, 32 GB of memory,
and a Samsung NVMe SSD with 480 GB of storage.

To evaluate the potential of the devised system to
intercept BT traffic, its ability to compromise user pri-
vacy through re-identification and sustain tracking, we
employ the following three set-ups: a controlled indoor
multi-device testbed, a controlled single-connection set-

Algorithm 2 Removing implausible UAPs from candi-
date list.

1: set t1, t2 the times in µs when consecutive frames
with same LAP were received

2: �T = round((t2 � t1)/625)
3: for (UAP, clk) 2 good list do

4: clk’ = (clk + �T) mod 64
5: Header = DeWhiten(WhitenedHeader, clk’)
6: HEC’ = ComputeHEC(HeaderData, UAP)
7: if HEC’ == HeaderHEC then

8: update (UAP, clk) = (UAP, clk’)
9: else

10: remove (UAP, clk) from good list
11: end if

12: end for

up, and an “in the wild” environment. We detail the
particularities of each of these testbeds next.

A. Controlled Multi-device Testbed

We conduct the first set of experiments using 26
Raspberry Pi 3 (RP) embedded boards, which have
an integrated Broadcom Bluetooth chipset. We further
attach a YBLNTEK Bluetooth USB dongle with CSR
chipset to 24 of them. We establish two BT sessions
between each pair of devices with two BT interfaces
(internal plus dongle), and a single session between
the remaining two RPs. This allows us to establish 25
simultaneous BT connections, which we seek to monitor.
We develop scripts to enable dynamic control of the con-
nections and traffic exchanged between peers. With this
testbed, we are able to evaluate the performance of our
system against known ground truth, thereby establishing
a system performance baseline.

B. Controlled Single-connection Testbed

The second testbed serves to investigate the success of
sniffing a single connection while varying the distance
between the ‘attacker’ and ‘target’. For this, we consider
two representative use cases, namely (1) a Ford S-
Max car (equipped with CarPlay streaming functionality)
that connects to a mobile phone (Apple iPhone SE)
and (2) a phone (Huawei P20) streaming to a headset
(Sony WH1000-XM3). Also in these scenarios, a full-
band trace is first recorded using two B210 SDRs and
processed on the same workstation as before.

C. In-the-wild Environment

Lastly, we measure the performance of our system
in the wild, using two distinct set-ups: (1) a smaller

version of our system with a single SDR and capable
of processing up to 16 channels in real-time, which is
deployed on the 4th floor of a building (14.5 m elevation)
and connected to a Yagi-Uda antenna with 13 dB gain,
pointed at a traffic junction for a total of 5 days, and
(2) a vehicular testbed, whereby the sniffing system is
deployed within a car that travels on the highway for
⇠2.5 hours and processes 4 channels over 8 MHz of
spectrum. With both set-ups we aim to estimate how
many distinct cars equipped with BT can be observed
and infer user commuting patterns.

Privacy preservation in data collection: In our in-
the-wild experiments, we do not persistently store any
information that could identify individual users (e.g., the
actual discovered BT address). Instead, we compute on
the fly a hash of this information, which is kept in RAM
for as little as necessary and only to generate the statistics
presented here. We also dispose of RF recordings to
prevent future privacy breaches that could arise, e.g., via
physical interface fingerprinting.

VII. EVALUATION

In this section we provide a comprehensive evaluation
of the designed BT sniffing and re-identification system.
We begin by assessing in our controlled environment
the time required to re-identify devices, in the pres-
ence/absence of traffic and with varying number of
devices. We compare the performance of our system
in terms of detection time and accuracy against that of
Ubertooth [17], which is the only existing open-source
commodity platform for BT sniffing. We then study the
impact of the distance to target on device detection time,
via experiments with CarPlay and wireless headset sys-
tems. We use this set-up to also investigate how choosing
different (sub)sets of channels for sniffing affects the
re-identification performance. Finally, we investigate the
potential of attacks on user privacy in the wild, assessing
how many connected cars we can identify and inferring
user commuting patterns. The following section gives
a detailed comparison with Ubertooth, the only open
platform with functionality similar to that of our system,
while in Appendix B we take the sniffer on the highway
and offer further perspectives on the seriousness of the
privacy threats our platform enables. Our systematic
study will demonstrate that concerns for BT user privacy
are well justified.

A. Re-identification Time

In the controlled multi-device environment where we
establish 25 BT sessions (see Sec. VI-A), each session

0 1 2 3 4 5 6 7 8

Detection time [s]

0

0.2

0.4

0.6

0.8

1
P

ro
b

a
b

ili
ty

ECDF of detection time

Traffic off
Traffic on

Fig. 7: ECDF of the detection time (i.e., active sniffing
until UAP detection), with and without traffic. Experi-
ments with the multi-device setup (25 connections).

can be configured to generate IP packets using iperf.
We consider two scenarios: (1) with no IP traffic, so
that only BT keep-alive frames are transmitted, and
(2) with IP traffic between peers (similar to streaming
applications). We position the sniffer’s antenna at ap-
proximately 2 meters from the targets (all RP devices
are placed next to each other on a 1 meter wide board).
We perform full-band sniffing for 30 seconds and process
each captured trace starting from three different points
in time, separated by 2 seconds. We then measure the
time required to detect all sessions. The obtained results
are shown in Fig. 7, where we report the Empirical
Cumulative Distribution Function (ECDF) of the time
required to retrieve LAPs and identifying the UAPs for
each connection. Once found, we discard a UAP and
restart re-identification from scratch. In this way, we
can obtain statistical significance of detection times by
running our technique on a single trace.

Observe that when IP traffic is present, our system
can detect and de-anonymize 80% of the BT sessions
within less than 1 s of sniffing. In the absence of data
traffic, we still require only 2 s of traffic to detect 80%
of sessions. All connections are identified in just over 3
seconds when connections exchange traffic and in less
than 7 seconds if only keep-alive frames are present.

Turning attention to the time required to compute
the UAP of the master for each connection, in Fig. 8
we plot the histograms of the trace time required when
IP traffic is absent/present. We remark that the average
time between the first observation of a BT session and
the successful resolution of the associated UAP is only
516 ms when IP traffic exists on the connection, while
1.119 s are required when the connection is up but not
actively used to transmit data.

0.00 0.44 0.89 1.33 1.78 2.22 2.67 3.11 3.56 > 4.00

Detection time [s]

0

20

40

60

C
o
u
n
t

Traffic off

0.00 0.22 0.44 0.67 0.89 1.11 1.33 1.56 1.78 > 2.00

Detection time [s]

0

20

40

60

C
o
u
n
t

Traffic on

Fig. 8: Histogram of the time required to determine the
master’s UAP in a BT session, with and without traffic.

B. Impact of Distance to Target

Next, we focus on assessing the impact of the distance
to a target connection on re-identification performance.
For this purpose, we work with the controlled single
device testbed (see Sec. VI-B), considering both outdoor
(CarPlay) and indoor (headset) scenarios.

We report in Fig. 9a the performance of our sys-
tem when we seek to intercept and de-anonymize a
connection between the vehicle and the phone, as we
increase the distance from the sniffer, while measuring
the average number of UAPs solved per second (top sub-
plot) and the time require to compute the target UAP
(bottom sub-plot). Frames are assumed to be correctly
received if the Access Code is valid and the 1/3 FEC
decoding of the Header does not need error correction
(i.e., all bits within 3-bit groups have the same value).
We compute statistics when the target connection is 40 m
away from the sniffer and does not perform any audio
streaming and respectively when at a 85 m distance, with
streaming on. To put things into perspective, we also
consider a “garage” scenario where the car is very close
to the sniffer and the phone streams music to it.

The first thing to observe is the notable difference
between the “garage” scenario and the “outdoor” ones
in terms of time required to successfully solve a target
UAP (bottom). This can be attributed to the fact that
RF signals attenuate with the distance and the medium
becomes more prone to noise and external interference.
The median time to solve UAPs outdoors is in the
300 ms range. We also note that the number of frames
processed before a successful UAP resolution, when the
BT connection is idle and respectively used to stream
music, is comparable. On average, fewer than 7 frames
need to be sniffed when the CarPlay connection is

garage, stream 40m, no stream 85m, stream
0

10

20

30

E
[p

kt
s/

in
fe

re
n

ce
]

garage, stream 40m, no stream 85m, stream
0

200

400

600

S
o

lv
e

 t
im

e
 [

m
s]

(a) CarPlay experiment
walk 1-10m 10.0m 17.3m 27.5m 38.4m

0

5

10

15

E
[p

kt
s/

in
fe

re
n
ce

]

walk 1-10m 10.0m 17.3m 27.5m 38.4m
0

50

100

150

200

S
o
lv

e
 t
im

e
 [
m

s]

(b) Headset experiment

Fig. 9: Success of privacy attacks as a distance to target increases in the two single-connection setups. Boxplots of
the time required to solve the UAPs (top) and the number of packets needed (bottom).

actively used, while approximately 11 frames are needed
if the connection is up but not used to stream music.

In Fig. 9b, we show the results of similar experi-
ments conducted in the headset scenario, i.e., where a
connection between a mobile phone that streams music
to a wireless headset is targeted at different distances.
In the “walk” experiments, the target is moving within
a 10 m range from the sniffer, while the rest of the
measurements correspond to cases where the user is in
a fixed location at the indicated distances. It is clear that
the performance of our system depends on the distance to
the target connection, i.e., we can solve the target UAP
much faster if the BT devices are closer. However, in
all cases less than 6 frames are needed to re-identify
the master UAP. This is consistent with the CarPlay
experiments in which the phone was streaming music.

C. Impact of Number of Channels Sniffed

Undoubtedly, the number of channels employed for
sniffing impacts on the accuracy of the sniffing and re-
identification system, but also on applicability. Sniffing
fewer channels at a time would make real-time surveil-
lance possible, but can also miss some potential targets.
To understand how monitoring different parts of the
spectrum used by BT affects the success of attacks, we
conduct new experiments in the CarPlay scenario where
the phone streams music, whilst we sniff frames on all
channels, half of them, then 20, 10, 2, and respectively
1 channel(s). Results are summarized in Fig. 10.

It comes at no surprise that we are able to infer
the UAP of the target connection within milliseconds,
if all channels are observed. The performance degrades
only marginally if we listen on either the lower or the
upper part of the spectrum. The target UAP can still

All chans Low chans High chans 19-38 29-38 34-38 37-38 38

Observed BT channels

0

200

400

600

800

1000

1200

In
fe

re
n

ce
 t

im
e

 [
m

s]

Fig. 10: Time required to solve the target UAP in the
CarPlay scenario, as number of channels sniffed varies.

9 10 11 12 13 14 15 16 17 18 19

Time of day [hour]

10

20

30

40

50

60

70

80

D
e
vi

ce
 c

o
u
n
t

Day 1
Day 2
Day 3
Day 4
Day 5

Fig. 11: Number of unique car UAPs solved by our
system, averaged every 15 mins, over 5 days of activity.

be determined within tens of milliseconds if 20 or 10
channels are observed. Performance degrades rapidly
though, as with 2 channels the median solving time is
approximately 400 ms, while a single channel yields 1 s
median solving times. We further investigate the impact
of sniffed spectral width in the wild, in Sec. VII-D.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Device #

8

10

12

14

16

18

20

22
T

im
e
 o

f
d
a

y
[h

o
u

r]

Fig. 12: Commuting patterns for 30 of the recurring users detected over 5 days of capture. Symbols are shown in
alternate blue/red color to better discriminate different days of capture.

1 2 3 4 5 6 7 8 9 10

UAP count ratio

0

0.2

0.4

0.6

0.8

1

P
ro

b
a
b
ili

ty

ECDF of 16 vs 4 channels detection gain

Fig. 13: Performance comparison between the 16-
channel and 4-channel sniffer in terms of number of
unique UAPs resolved in the wild. 60% of the time, at
least 3⇥ more UAPs solved with 16-channel sniffer.

D. Surveillance Attacks

Up to this point, all experiments have been conducted
in controlled environments. In what follows we present
results in the wild (see Sec. VI-C), whereby we use our
system to demonstrate its surveillance capabilities.

With our sniffing and re-identification system pointing
at a one-way road segment ahead of a traffic junction,
we first count the number of vehicles that have BT tech-
nology on board and which we can be de-anonymized by
an attacker during typical working hours (9 AM to 7:30
PM). We are able to detect cars up to a distance of 114.38
m, as confirmed by measurements with a car we control.
We illustrate the statistics gathered in Fig.11, where we
plot the number average number of cars observed every
15 mins. On average we detect ⇠200 devices every hour.
As expected, we note more intense traffic around 9 AM,
12:30 PM and 6 PM – typical start/end of work shift and
lunch times.

We further examine the commuting patterns of the BT-
powered cars discovered. In particular, we record when
a de-anonymized device has been seen by our sniffing

system during each of the days when we collected mea-
surements. We report these results in Fig. 12, revealing
the serious privacy issues to which BT users are exposed.
Arguably, one may infer information about a user’s
personality, routine, and behavior from the observed
commuting patterns. For instance, we note the precise
commuting times of cars 1, 3, 16, 20, 26, and 27.

We further examine the implications of the number of
channels observed in the wild on the number of connec-
tions that can be detected. Specifically, we investigate
how many more BT connections could be detected and
de-anonymized when sniffing on 16 channels versus 4.
The obtained results are shown in Fig. 13. Observe that
on average we are able to detect and re-identify 3.31
times more connections when using 16 channels during
the same amount of time, which is largely consistent
with the controlled experiments reported in Fig. 10.

We also experiment with our system when this is
placed inside a car and assess its sniffing performance
while driving on the highway. We include the obtained
results in Appendix B

VIII. COMPARISON AGAINST EXISTING SOLUTIONS

Ubertooth One is an “open source wireless develop-
ment platform suitable for Bluetooth experimentation”.
It connects to hosts via USB and handles the MAC and
PHY layers through custom firmware that controls a
CC2400 transceiver. Its main advantage is the low price
tag, which comes with the drawback of only being able
to capture a single channel at a time. To discover on-
going sessions, the platform either stay on a set channel
(which can be useful when trying to detect multiple
active sessions) or hops “randomly” (to increase the
chances of meeting a session). Being hardware based,
the platform cannot be updated and the CC2400 radio

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

time [s]

0

0.2

0.4

0.6

0.8

1
P

ro
b

a
b

ili
ty

ECDF of Car Testbed

8-channel sniffer
Ubertooth

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60

time [s]

0

0.2

0.4

0.6

0.8

1

P
ro

b
a

b
ili

ty

ECDF of Speaker Testbed

8-channel sniffer
Ubertooth

Fig. 14: ECDF of the time needed to resolve UAPs in
two different testbeds. Continuous lines: data traffic on.
Dashed lines: no traffic.

Ubertooth 1 channel 4 channels 16 channels
0

5

10

15

20

25

#
 U

A
P

s
 s

o
lv

e
d

Traffic off

Ubertooth 1 channel 4 channels 16 channels
0

5

10

15

20

25

#
 U

A
P

s
 s

o
lv

e
d

Traffic on

Fig. 15: Comparison in terms of UAPs resolved in 10 s
of sniffing between Ubertooth and our system limited to
different numbers of channels.

can only work with BT frames encoded at the Basic
Rate (i.e., 1 Mb/s).

Next, we give a detailed performance comparison
between Ubertooth and our system, considering different
scenarios; namely, we examine the time required by each
platform to discover the UAP of an Android Auto session
and of a connection between a BT loudspeaker and a
smartphone, with and without active traffic on the BT
link. Fig. 14 shows the ECDF of these measurements. In
both cases, while our approach takes less than a second
to discover the UAP in over 95% of the experiments,
irrespective of whether traffic is present or not, Ubertooth
struggles to solve the UAPs. When no data is exchanged,
it requires more than a minute in 20% of the experiments
conducted. This makes it incompatible with high mobil-
ity scenarios where observation times can be very short.

We also assess how many devices could be discovered
within 10 s in the multi-device testbed described in
Sec. VI-A, and report the results obtained in Fig. 15.

Note that the performance of our system in single-
channel mode of operation is comparable to that of
Ubertooth (fixed on the same channel); while Ubertooth
detects on average one more UAP than our system
when traffic is exchanged, our system again performs
better in the absence of traffic. To understand the reason
behind Ubertooth’s behaviour discrepancy, we examine
its sniffing code. We find that, differently to what is
reported in the documentation, Ubertooth does not use
timestamps of consecutively captured frames in recov-
ering target UAPs, as we do in our system. Instead, it
removes implausible UAPs iteratively, based on some
sanity checks on the frame’s payload. While this is fairly
effective when payloads are present in the frames, the
approach does not work when only NULL or POLL
frames are exchanged for keeping sessions alive. In these
situations, Ubertooth has to wait a considerable time
before collecting a useful data frame. For instance, in the
previous Car Testbed experiment, such frames are those
carrying instructions for updating the car’s display. To
make things worse, only a fraction of these frames can
be captured, since the hopping sequences followed by
Ubertooth is different than that followed by the devices.
In addition, it is worth noting that while our solution
only identifies valid LAPs, Ubertooth might exhibit false
positives in these scenarios.

Finally, we note that, even though we relied on B210
SDRs by Ettus for implementation and testing, it would
be straightforward to port our system to other platforms,
as long as they support IQ sampling. For instance,
it would be interesting to evaluate our system using
HackRF One, an SDR platform that provides up to
20 MS/s, and synchronising multiple devices through
clock daisy-chaining. With a single HackRF One, and
limiting the capture to just 8 or 16 channels, we antic-
ipate it is possible to achieve very good performance
at a price even lower than that of Ubertooth. We leave
such experimentation for future work. We remark that
the open-source nature of our system and the flexibility
it offers (as compared to proprietary ‘black-box’ com-
mercial platforms) lowers the entry barrier for attackers
and future research into BT security alike.

IX. DISCUSSION

The BT vulnerability we uncover can have serious
privacy implications as users rely increasingly more on
connected devices. Arguably, the most serious risk is that
of protracted surveillance, whereby a user’s locations can
be tracked with concealed wireless equipment, once their
identity is linked to that of a BT device they own. For

instance, road video footage used together with vehicle
license plate recognition software could be employed to
identify a smart car owner and the car’s BT address.
It would then be possible to track the person without
expensive video infrastructure, by only using BT sniffers,
as the system we presented. This is feasible with our
approach if deploying a camera next to the developed
sniffer, pointing this towards incoming traffic. One can
acquire a video frame every 100 ms, process it, and
discard the data. Character segmentation and optical
recognition [24] can be used to detect plate numbers.

As wearables adoption grows [25], both the risk of
surveillance and potential benefits of passenger flow
monitoring could be exploited with our BT sniffing
(and de-anonymization) system in urban settings. This
would require deployment of sniffing infrastructure only
at strategically selected hubs/checkpoints, such as airport
terminals, train stations, road tunnels, or bridge cross-
ings. For instance, there are only 21 main bridges and
16 tunnels that connect Manhattan to other boroughs of
New York City and New Jersey. Deploying our system at
such locations could offer insights into commuter flows.

Mitigation: Preserving BT device anonymity would
require a new revision of the Bluetooth standard. While
it is unreasonable to expect the whitening and HEC
generation procedures to be modified, given the number
of BT devices already on the market, full address or UAP
randmomization should be feasible. Cryptographically
generated addresses similar to those used in BLE or pro-
posed for IPv6 [26] could be used, by which the 64-bit
device identifier would be created with a cryptographic
hash of information exchanged by peers during pairing.

X. RELATED WORK

Connection oriented Bluetooth tracking was proposed
in [27] for room-level indoor localization of users,
with the goal of colleague searching and optimization
of building heating/cooling. However, the system only
works as long as target devices deliberately perform a
one-off registration. Early room-level tracking without
explicit user consent exploits the Bluetooth inquiry pro-
cess (see, e.g., [28], [29]). Bluetooth devices commonly
become “undiscoverable” after pairing, which questions
the practicality of early tracking approaches. Spill and
Bittau investigate the feasibility of eavesdropping on
undiscoverable devices and develop the first open-source
BT sniffer [30]. This solution is limited to a single
channel, relies on cyclic redundancy checks that are
not present in many BT profiles (or are encrypted),
which yields high false positive and miss detection rates,

questioning it practicality, as we have shown. Recent
work uses passive sniffing based on Ubertooth together
with active inquiry scanning to empirically verify the
feasibility of this approach for forensics and surveillance
purposes [31]. The value of the findings is limited,
given the shortcomings of single-channel sniffing and
imprecise detection of this platform. A dual-radio Uber-
tooth setup is used in [32] to jam and predict adaptive
hoping sequences, in view of BT/BLE sniffing. De-
anonymization is however not pursued, unlike in our
approach which doesn’t require active jamming, since
we are able to eavesdrop on all channels simultaneously.

Previous work also scrutinizes BLE privacy. Beacons
were used to establish a user’s indoor location [33],
which together with physical fingerprinting [34] can
underpin user tracking. M. Ryan highlights the simplicity
of snooping on BLE by exploiting the advertisement
messages sent periodically on dedicated channels [35].
Although the standard introduces address randomization,
Fawaz et al. show that more than 200 BLE devices
studied reveal their presence to adversaries and propose
an external management solution to mitigate this prob-
lem [12]. An SDR tool for BLE/Wi-Fi debugging is pro-
posed in [36], where multi-channel capture is considered.
BT is however substantially different than BLE and with
the advent of SDR platforms and the growing popularity
of connected car/wireless entertainment based on BT,
user privacy is at risk, as we revealed.

XI. CONCLUSIONS

We practically demonstrated that BT is inadequate for
ensuring user identity and location privacy. We proved
that apart from a 1/2 uncertainty about a master’s UAP,
which can be resolved through header data inspection,
the meaningful part of the master BT address is recov-
erable with a limited number of packets and without
requiring to examine the frames’ payloads, which can
be encrypted. We empirically proved the benefits of
capturing the entire BT spectrum with a full-band SDR
system that we developed. With the decreasing costs of
SDR platforms, BT sniffing will no longer be confined
to single-channel sniffing. As such, user privacy is at risk
and calls for revising the Bluetooth specification.

ACKNOWLEDGEMENTS

This material is based upon work partially supported
by Arm Ltd, the National Science Foundation under
Grant NSF/DGE-1661532, and the European Commis-
sion (EC) in the framework of the H2020-ICT-2016-2017
project ORCA (Grant agreement no. 732174).

REFERENCES

[1] E. C. Jimenez, P. K. Nakarmi, M. Naslund, and K. Norrman.
Subscription identifier privacy in 5g systems. In 2017 Interna-

tional Conference on Selected Topics in Mobile and Wireless

Networking, MoWNeT 2017, 2017.
[2] C. Sørseth, S. X. Zhou, S. F. Mjølsnes, and R. F. Olimid.

Experimental analysis of subscribers’ privacy exposure by lte
paging. Wireless Personal Communications, 109(1):675–693,
2019.

[3] S. F. Mjølsnes and R. F. Olimid. Experimental assessment of
private information disclosure in lte mobile networks. In ICETE

2017 - Proceedings of the 14th International Joint Conference

on e-Business and Telecommunications, volume 4, pages 507–
512, 2017.

[4] Bloomberg. Euclid Analytics Inc - Company profile and news,
Accessed: Sept. 2019.

[5] Wired. Tracking devices hidden in London’s recycling bins are
stalking your smartphone, August 2013.

[6] Arstechnica. iOS 8 to stymie trackers and marketers with MAC
address randomization, June 2014.

[7] Kassem Fawaz and Kang G Shin. Location privacy protection
for smartphone users. In Proceedings of the 2014 ACM SIGSAC

Conference on Computer and Communications Security, pages
239–250. ACM, 2014.

[8] United States Senate Judiciary Committee. Location Privacy
Protection Act of 2014, June 2014.

[9] Official Journal of the European Union. Regulation (EU)
2016/679 of the European Parliament and of the Council of
27 April 2016 on the protection of natural persons with regard
to the processing of personal data and on the free movement
of such data, and repealing Directive 95/46/EC (General Data
Protection Regulation), May 2016.

[10] Bluetooth SIG, Inc. Bluetooth Market update, 2019.
[11] Bluetooth SIG, Inc. Bluetooth Core Specification v5.1, Jan.

2019.
[12] Kassem Fawaz, Kyu-Han Kim, and Kang G. Shin. Protecting

privacy of BLE device users. In USENIX Security, August 2016.
[13] A. Dabrowski, N. Pianta, T. Klepp, M. Mulazzani, and

E. Weippl. Imsi-catch me if you can: Imsi-catcher-catchers.
In ACM International Conference Proceeding Series, volume
2014-December, pages 246–255, 2014.

[14] S. Park, A. Shaik, R. Borgaonkar, and J. . Seifert. Anatomy of
commercial imsi catchers and detectors. In Proceedings of the

ACM Conference on Computer and Communications Security,
pages 74–86, 2019.

[15] Ellisys. Bluetooth analyzers comparison chart. https://www.
ellisys.com/products/btcompare.php, Accessed: Sept. 2019.

[16] Frontline. Sodera Wide Band Bluetooth Protocol Ana-
lyzer. http://www.fte.com/products/sodera.aspx, Accessed: Sept.
2019.

[17] Project ubertooth. http://ubertooth.sourceforge.net/, Accessed:
June 2019.

[18] Photosware. The Photos Project. https://github.com/pothosware/
PothosCore, Accessed: June 2019.

[19] gr-bluetooth. Bluetooth for gnu radio. http://gr-bluetooth.
sourceforge.net/, Accessed: June 2019.

[20] R. H. Barker. Group synchronizing of binary digital sequences.
Communication Theory, pages 273–287, 1953.

[21] L.H. Charles Lee. Error-Control Block Codes for Communica-

tions Engineers. Artech House, 2000.
[22] Alan V. Oppenheim, Alan S. Willsky, and Ian T. Young. Signals

and Systems (2nd Edition). Pearson, 1996.

[23] F. J. Harris, C. Dick, and M. Rice. Digital receivers and
transmitters using polyphase filter banks for wireless com-
munications. IEEE Transactions on Microwave Theory and

Techniques, 51(4):1395–1412, April 2003.
[24] Tesseract Open Source OCR Engine.

https://github.com/tesseract-ocr/tesseract, Accessed: Oct.
2019.

[25] Mordor Intelligence. Smart Wearable Market - Growth, Trends,

and Forecast (2019 - 2024). 2019.
[26] Tuomas Aura. Cryptographically generated addresses (cga). In

International Conference on Information Security, pages 29–43.
Springer, 2003.

[27] Simon Hay and Robert Harle. Bluetooth tracking without
discoverability. In Proc. International Symposium on Location

and Context Awareness (LoCA), Tokyo, Japan, May 2009.
[28] Mortaza S. Bargh and Robert de Groote. Indoor localization

based on response rate of bluetooth inquiries. In Proc. ACM

International Workshop on Mobile Entity Localization and

Tracking in GPS-less Environments, MELT ’08, pages 49–54,
San Francisco, California, USA, 2008.

[29] V. Kostakos. Using bluetooth to capture passenger trips on
public transport buses. Personal and Ubiquitous Computing,
pages 1–13, 2008.

[30] Dominic Spill and Andrea Bittau. Bluesniff: Eve meets alice
and bluetooth. In USENIX WOOT, 2007.

[31] M. Chernyshev, C. Valli, and M. Johnstone. Revisiting Urban
War Nibbling: Mobile Passive Discovery of Classic Bluetooth
Devices Using Ubertooth One. IEEE Transactions on Informa-

tion Forensics and Security, 12(7):1625–1636, July 2017.
[32] Wahhab Albazrqaoe, Jun Huang, and Guoliang Xing. Practical

bluetooth traffic sniffing: Systems and privacy implications. In
Proc. ACM MobiSys, 2016.

[33] S. Kajioka, T. Mori, T. Uchiya, I. Takumi, and H. Matsuo.
Experiment of indoor position presumption based on rssi of
bluetooth le beacon. In Proc. IEEE Global Conference on

Consumer Electronics (GCCE), Oct 2014.
[34] Tien Dang Vo-Huu, Triet Dang Vo-Huu, and Guevara Noubir.

Fingerprinting Wi-Fi Devices Using Software Defined Radios.
In Proc. ACM WiSec, 2016.

[35] Mike Ryan. Bluetooth: With low energy comes low security.
In USENIX Workshop on Offensive Technologies, Washington,
D.C., 2013.

[36] Francesco Gringoli, Nahla Ali, Fabrizio Guerrini, and Paul
Patras. A flexible framework for debugging iot wireless ap-
plications. In IEEE Workshop on Metrology for Industry 4.0

and IoT, 2018.
[37] B. S. Peterson, R. O. Baldwin, and J. P. Kharoufeh. Bluetooth

inquiry time characterization and selection. IEEE Transactions

on Mobile Computing, 5(9):1173–1187, Sept 2006.

APPENDIX

A. Bluetooth Protocol Operation

We briefly describe basic concepts that we use to
explain our device address de-anonymization attack.

a) Physical Layer: BT adopts a Frequency-
hopping Spread Spectrum (FHSS) channel access
scheme. The 2.4 GHz band is divided into 79 contiguous
channels, each of 1-MHz. Data frames are modulated
using binary GFSK after bits are obfuscated through a

whitening procedure. By this, data is passed through a
LFSR initialized with part of the internal clock.

All BT frames start with an Access Code followed
by a header. Different types of frames are defined for
different services (e.g., keep-alive, audio streaming, etc.),
each of which has specific FEC following the header
that is protected with Hamming codes. As we show, we

exploit the header protection mechanism to reverse the

obfuscation applied over the entire frame.

b) MAC Layer: Throughout the different phases
a BT device undergoes when communicating, from
advertising (i.e. when a device is “discoverable” or
“scannable”), to scanning, and data exchange, it hops
across different channels 1,600 times per second. The
exact hopping sequence is negotiated and shared by ac-
tively communicating devices. Each piece of BT equip-
ment is identified by a 6-byte MAC address that does
not change over time. This address is logically divided
into three parts: a 2-byte NAP, a 1-byte UAP, and a
3-byte LAP. Devices form “piconets”, where a master
periodically polls slaves and all the frames exchanged
contain the LAP of the master.

c) Network Formation: A master establishing a
piconet initiates a discovery procedure to identify and
connect to other devices within range. For this, the
master broadcasts inquiries over 32 wake-up carriers,
which are equally spaced in the 79 MHz range, hopping
following a pseudo-random sequence that is derived from
its MAC address. Such packets are identified by an
Inquiry Access Code (IAC) that is known to all devices.

All devices listen periodically (every 1.28 s) for in-
quiries on a single frequency chosen from the set of 32
wake-up carriers, for a total duration of 11.25 ms. This
“inquiry scanning” frequency also changes, according to
the device’s own hopping sequence. When receiving an
inquiry frame, a device enters a back-off procedure and
remains on the channel where the inquiry was received,
for a random number of time slots uniformly distributed
in the [0, 1024) range (in order to reduce the probability
of collision with others that have received the same
inquiry). After back-off, the device returns to inquiry
scan mode and, upon receiving a second inquiry, it
replies in the next slot with a Frequency Hopping Syn-
chronization (FHS) message, which contains the address
of the device and its clock offset [37]. Note that non-

discoverable devices may no longer respond to inquiries

after establishing communication with a master.
If an inquiry is successful, the master enters a paging

mode and hops on a sequence derived from the slave’s
address, sending a page message to the device it wants

0 10 20 30 40 50 60 70 80 90 10
0

11
0

12
0

13
0

14
0

15
0

16
0

Time [min]

0

50

100

150

200

250

C
a

r
#

Slow traffic episode 1

Slow traffic episode 2

Fig. 16: Unique UAPs detected at different times during
an approximately 2.5-hour drive on the highway.

to connect to. This contains a so-called Device Access
Code (DAC) derived from the lower 24 bits of the paged
device’s address. An acknowledgement is sent back,
which contains the slave ID. The master then sends a
FHS frame, which the slave will use to subsequently
follow the master’s hopping sequence; this is computed

based on the master’s UAP and part of its clock. This
sequence is confirmed with another page response. The
master then assigns a 3-bit AMA to the slave and the
connection is established.

B. Privacy Infringements on the Move

Another experiment we conduct is with our sniffing
system deployed inside a car, with the antenna pointing
opposite to the direction of movement, while we drive
the car on the highway. Our aim is to assess how many
unique UAPs an attacker could infer under different
traffic conditions, as the sniffing system moves with
speeds ranging between 5 and 120 km/h depending on
road congestion levels, and verify how often we identify
the same target, thereby offering perspectives on the
surveillance risks to which connected cars are exposed
through the de-anonymization attack we uncover.

Fig. 16 illustrates our findings. Over the entire travel
duration, our system is able to detect over 250 dis-
tinct BT-powered cars. More importantly, during periods
when traffic is slow, we can re-identify several targets
multiple times. This highlights the potential of employ-
ing the privacy attack we uncover to follow targets while
remaining visually undetectable, since many of these
vehicle are hundreds of meters away from the sniffer,
mostly not within line of sight.

	Introduction
	Bluetooth Classic Overview
	Threat Model
	Attacker Capabilities
	Adversarial Scenarios
	User tracking and surveillance
	Stalking and espionage
	Compromising physical assets

	Full-band Bluetooth Sniffing
	System Architecture
	Data Acquisition
	Data Processing

	Re-identifying Bluetooth Devices
	Testbeds
	Controlled Multi-device Testbed
	Controlled Single-connection Testbed
	In-the-wild Environment

	Evaluation
	Re-identification Time
	Impact of Distance to Target
	Impact of Number of Channels Sniffed
	Surveillance Attacks

	Comparison Against Existing Solutions
	Discussion
	Related Work
	Conclusions
	References
	Appendix
	Bluetooth Protocol Operation
	Privacy Infringements on the Move

