
IEEE COMMUNICATIONS LETTERS, VOL. 23, NO. 11, NOVEMBER 2019 1931

Cryptographic Algorithms in Wearable Communications: An Empirical Analysis

Kristtopher Coelho, Danilo Damião, Guevara Noubir, Alex Borges , Michele Nogueira , and José Nacif

Abstract— In this letter, we assess the practical impact of
lightweight block and stream cipher algorithms on power con-
sumption and hardware resources for wearable devices that own
low computational resources. Differently from the literature,
we present an empirical and hardware-driven evaluation of the
most representative encryption algorithms with regard to the
requirements of wearable networks. We design and implement a
cryptography library useful for wearable devices. Results confirm
a strong correlation between the amount of logic/arithmetic
operations, assembly instructions and power consumption for the
two evaluated platforms, and they highlight the need to design
encryption algorithms for wearable devices with high energy
consumption efficiency, but strong security level similar to AES.

Index Terms— Wearable devices, cryptographic algorithms,
block cipher, stream cipher, and power consumption.

I. INTRODUCTION

MARKET forecasts that worldwide shipments of wear-
able computing devices will reach 929 million in 2021,

having as major drivers fitness and healthcare gadgets [1].
Wearable computing devices are smart electronic devices
that can be incorporated into clothing, worn on the body,
or implanted in the body, such as fitness trackers, smart-
watches, and the “neural dust” implantable sensor. Wireless
communication is essential for advancements in this field,
once it allows the connection between devices in and around
the human body, including low-rate devices like pedometers
and high-rate devices like augmented-reality glasses. This
communication relies on different standards such as those from
the IEEE 802.15 family [2] or the next generation 5G cellular.

Given data sensitiveness, popularity and user-reliance on
wearable devices, there has been an emergence of new and
varied attack vectors targeting privacy intrusions, that so far
cannot be addressed by classical techniques. In this letter, our
goal lies in empirically evaluating the practical impact of the
most representative lightweight cryptographic algorithms with
regard to the requirements of wearable networks, such as high
security and low computational resources, considering energy
constraints from implantable and non-implantable devices.

Existing studies have investigated wearable network require-
ments either from a software perspective [3], [4] or by simula-

Manuscript received June 19, 2019; revised July 17, 2019; accepted
August 19, 2019. Date of publication August 27, 2019; date of current version
November 11, 2019. This material was based upon work partially supported
by CAPES, CNPq, FAPEMIG, the Rede Nacional de Pesquisa under grant
No. 99/2017, and the National Science Foundation under Grant No. 1740907.
The associate editor coordinating the review of this letter and approving it for
publication was D. Ciuonzo. (Corresponding author: Michele Nogueira.)

K. Coelho, D. Damião, and J. Nacif are with the Science and Technology
Institute, Federal University of Viçosa, Viçosa 35690-000, Brazil.

G. Noubir is with the College of Computer and Information Science,
Northeastern University, Boston, MA 02120 USA.

A. Borges is with the Computer Science Department, Federal University of
Juiz de Fora, Juiz de Fora 36036-900, Brazil.

M. Nogueira is with the Department of Informatics, Federal University of
Paraná, Curitiba 81531-980, Brazil (e-mail: michele@inf.ufpr.br).

Digital Object Identifier 10.1109/LCOMM.2019.2937782

tions and analytical models [5], [6]. Despite the importance of
those studies, an empirical study complements them offering
insights and knowledge, which can aid the design of more
efficient and cost-effective solutions. Ours is the first to follow
a hardware-driven and empirical evaluation, highlighting the
impacts of the hardware specificity to cryptographic algo-
rithms in wearable devices.

Our analysis targets symmetric cryptography, where the
communicating wearable devices share the session key used
to encryption. Particularly, we focus our investigations on two
different classes of symmetric lightweight encryption algo-
rithms, as block ciphers [7], and stream cipher. For our
evaluation approach, we have designed and implemented a
cryptography library useful for wireless wearable devices.1

For power consumption measurements, we have designed
an instrumentation circuit and integrated it in the evaluated
platforms. Our analysis has focused on real-life, off-the-
shelf wearable platforms which consider the transmission
of data and other with greater processing power abstracting
communication.

Our results confirm the strong correlation between the
amount of logic/arithmetic operations required to encrypt data
block or stream, and their respective power consumption [9].
Results indicate that SKIPJACK algorithm can be up to
18.76% more efficient among the evaluated algorithms in
terms of power consumption, processing up to 32× fewer
instructions. It also consumes up to ≈ 3.5× less ROM mem-
ory related to AES. Analyzing time vs. power consumption,
the XTEA algorithm has a battery consumption almost 6×
lower than AES. But, it is worth to highlight the high security
level of AES, bringing us to the conclusion that it is necessary
efforts to design encryption algorithms for wearable devices
with high computational efficiency and high security level.

II. LIGHTWEIGHT CRYPTOGRAPHIC ALGORITHMS FOR

WEARABLE NETWORKS

A cryptosystem consists of a plaintext space P , a ciphertext
space C, and a key space K, an encryption algorithm Enc :
K × P → C, and a decryption algorithm Dec : K × C → P .
For each k ∈ K and p ∈ P , it is Dec(Enc(p)k)k = p.
In the communication model by Shannon [10], a cryptosystem
provides confidentiality to the information from an attacker.
Hence, a sender and a receiver communicate by a public
channel, where they exchange ciphertexts.

Symmetric key cryptography assumes a secure channel used
by the communicating parties to establish a secret session
key k, not accessible to the adversary. Given p, k, and
the cryptosystem, the sender can construct the ciphertext c
and send it to the receiver. The receiver can reconstruct the
plaintext p, given c, k, and the cryptosystem. Symmetric key
cryptography is relevant for wearable networks, that devices
have severe resource constraints (e.g., energy, memory, and

1https://github.com/UFV-Alumni/lib_crypto

1558-2558 © 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: Northeastern University. Downloaded on November 26,2020 at 20:54:10 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-5427-2384
https://orcid.org/0000-0003-0821-126X
https://orcid.org/0000-0003-0703-5620

1932 IEEE COMMUNICATIONS LETTERS, VOL. 23, NO. 11, NOVEMBER 2019

processing), and applications demand for low response time.
The attacker’s main goal lies in recovering p or k and,
according to Kerckhoff’s principle, an attacker knows the spec-
ification of the cryptosystem and has access to the ciphertext c.

While in the last decades the progress in the security
cryptographic primitives was based in modeling [11], this
letter focuses on power consumption analysis of established
block and stream ciphers. A block cipher is a cryptosystem
with gf(pn), where gf denotes the Galois field in order
n ∈ Z+ and plaintext p ∈ P . For each key k, the encryption
function Enc(p)k is a permutation. In the most general case,
the K corresponds to the set of permutations of size 2n!,
where a single k lies in a table of size 2n. The use of a
subset of permutations is reasonable by generating a small key.
To encrypt messages longer than the block size, we use a mode
of operation, such as Cipher Block Chaining, and integrity
protection, such as Galois Counter Mode [11].

A stream cipher encrypts binary digits of a plaintext one at
time. It follows an internal state x ∈ X , an update function L :
X → X , and an output function f : X → Z , where Z is called
the keystream alphabet. An output z ∈ Z is produced at time t,
according to zt = f(xt), where xt = Lt(x) and x is the initial
state. The stream of outputs z0, z1, . . . is called the keystream.
Each output symbol is combined to the corresponding plaintext
symbol to produce a ciphertext symbol.

We have analyzed recent literature on wearable crypto-
graphic algorithms [4], [5], [12]. We have chosen the algo-
rithms based on power and processing restrictions imposed
by wearable devices (e.g., energy limitations of implantable
and non-implantable devices). XTEA, XXTEA, SKIPJACK,
RC2, and AES are block ciphers; whereas RC4 is a stream
cipher. These encryption algorithms provide a security level
that can handle thresholds related to low-resource, minimal
area, low-memory and low-power, being well-known as “light”
algorithms. We have initially considered other algorithms,
e.g., KSEED, TWOFISH, and CAST5, but, they have shown to
be impractical for the current wearable device architecture due
to the excessive memory use, reported from MSP430 GCC.

The eXtension to TEA (XTEA) and the Corrected Block
TEA (XXTEA) encryption algorithms employ a 128-bit key
and blocks of 64-bits. XTEA operates in 64 rounds and
XXTEA has a variable number of rounds. In both, permu-
tations follow simple operations, e.g., addition, shifting and
XOR. For key recovery, the best attack reported on XTEA
was a related-key differential attack on 26 out of 64 rounds.
The cryptanalysis of XXTEA describes a successful chosen
plaintext attack with 259 plain-ciphertext pairs [4].

The SKIPJACK algorithm is a 32-round cipher which
applies two distinct rules labeled as A and B. These rules
are applied interleaved as A, B, A, B per 8 rounds. Per-
mutations comprise of shifts and Feistel’s, which use 32 of
the 64 bits from the secret key per permutation. Despite the
controversy around SKIPJACK design, cryptanalysis point out
a resistance for attacks of 248, using at least 234 plaintexts [13].
As SKIPJACK, RC2 works on 64-bit blocks and allows a
variable key size. It follows the key expansion and encryption
steps. Key expansion can extend any key size, in the range of 1
to 128 bytes, up to a 128-byte key. Encryption performs per-
mutations based on a substitution table. Estimates to retrieve
a secret key are proportional to the effort for analyzing about
24r (for r = 16) chosen plaintexts [14].

The Advanced Encryption Standard (AES) algorithm has
become the primary choice for various security services due
to its strong defense against known attacks. The best known
attacks against AES are slightly faster than brute-force and
require 2126.2 operations to recover an AES-128 key. In [15],
the authors presented an optimized version of AES for devices
with low computational capacity and memory resources, while
still providing low power consumption.

RC4 is a stream cipher and it comprises of a Key Scheduling
Algorithm (KSA) and a Pseudo-Random Generation Algo-
rithm (PRGA). KSA transforms a random key in an initial
permutation, whereas PRGA uses this initial permutation to
generate a pseudo-random output sequence. Cryptographic
transformations applied by the algorithm are linear and simple,
using permutations and sums of integer values. However, the
secure use of RC4 is non-trivial as experienced with Wi-Fi
WEP. The recovery requires a complex process of about 213

algorithm operations for 256-bit key [16].

III. EXPERIMENTS AND METHODOLOGY

In this letter, the experiments rely on two platforms:
(i) wearable devices from the Shimmer platform, model 2R
and (ii) a Teensy™ 3.2 microcontroller. The Shimmer devices
are equipped with a MSP430 F1611 microcontroller, 16-bit
RISC architecture. Each wearable device contains 48KB flash
memory and 10KB RAM. These devices sense vital signs
and movements from users by accelerometers, magnetometers,
and gyroscope, and transmit them to a coordinator device
(e.g., a smartphone) through wireless communication. These
low-power wireless devices run TinyOS, a Real-Time Operat-
ing System (RTOS). The Teensy platform is equipped with an
ARM® Cortex®-M4 of 72 MHz CPU and 32-bit architecture.
This device also contains a 256KB flash memory and 64KB
RAM memory. For Teensy, the algorithms were implemented
in C language and deployed using the Arduino interface.

We measure power consumption in different states (i.e., idle,
and run). At a glance, we set up the devices to the desired state
and continuously monitor it. The devices are automatically
placed in a low-power mode when the task queue is empty
(idle state). Hence, we are able to measure the device power
consumption in this state. Finally, to analyze the wearable on
the run state, we set up the device to continuously perform a
cryptography task — on 64-bits data blocks — using one of the
aforementioned cryptography algorithms on both platforms,
run state). In the Shimmer platform, run state, we consider
the cost of encrypted data transmission. Finally, unless we tell
otherwise, at each state we perform 2,000 samples and present
mean confidence interval of 95%.

We have designed and assembled a circuit for power
consumption measurement adapted from [8]. The circuit
comprises of a low-cost data acquisition board (DAQ -
ADALM1000) connected to a wearable, a 0.10 Ω resistor, and
a computer (Figure 1). We use Active Learning Interface for
Circuits and Electronics (ALICE) software to acquire voltage
measurements from both terminals of the resistor which are
connected to channels CH_A and CH_B of the DAQ. The
voltage can be easily transformed to current following the law
of Ohm, V = R × I , since the resistance value is known. To
make comparisons, we calculate the power consumption by
multiplying the current to the voltage. Then, power consump-
tion follows: P = ((CH_A − CH_B)/0.10) ∗ V mW.

Authorized licensed use limited to: Northeastern University. Downloaded on November 26,2020 at 20:54:10 UTC from IEEE Xplore. Restrictions apply.

COELHO et al.: CRYPTOGRAPHIC ALGORITHMS IN WEARABLE COMMUNICATIONS 1933

Fig. 1. Power consumption measurement.

DAQ delivers a maximum sampling rate of 100 ksps
(kilosamples per second). Therefore, we calculate power
consumption, mean, and the total consumption time for the
algorithms in each analyzed state of wearable devices. Also,
the computational complexity of the algorithms is of great rel-
evance because power consumption bottlenecks occur during
data processing and transmission. Hence, we also consider the
size of machine code, when it represents a large share of the
hardware resource consumption.

We also count the number of Assembly instructions using
the Godbolt online compiler and a manual process known as
Table Test. The Godbolt compiler converts programs from
several languages into Assembly code. For the experiment,
we use the MSP430 GCC compiler version 5.3.0 for Shimmer
platform and AVR GCC version 4.6.4 for Teensy platform,
both without optimization directives. Then, we convert the
code to Assembly code. Next, using the Table Test, we have
counted the final number of Assembly instructions.

Similarly, we also analyze the main operations in each
cryptographic algorithm. The considered operations are shift
left, shift right, and, or, not, xor, sum, subtraction, and
multiplication. We enumerate all these logical and arithmetic
operations when we want to confirm if the number of oper-
ations can be directly correlated with the final performance
and power consumption of each algorithm implementation [9].
Also, since wearable devices are severely constrained in
computational resources, and implantable devices have hard
limitations for replacement, we analyze the amount of memory
the implementation of each algorithm requires. We derive
this information to memory consumption (ROM and RAM
separately) of each cryptography algorithm using MSPGCC
compiler for Shimmer platform and AVR GCC for Teensy
platform [5]. To ensure equivalence between measurements,
we disregard the overhead produced by TinyOS on the Shim-
mer platform. Hence, we can assert that the presented data
refers exactly to each algorithm.

IV. RESULTS

Power consumption is one of the critical factors in the
design and development of wearable networks for both
high-end and low-end embedded devices. Thus, a comprehen-
sive power efficiency analysis, considering all possible factors
is of great relevance. A Power State Machine (PSM) represents
the possible states of a device, and a transition between two
states means power cost and delay. Low power states have a
longer delay between transitions for run states. The transition
time is presented in [17]. The time for other transitions is
insignificant and it is not represented in PSM.

Figure 2 represents the PSM of the evaluated devices. In the
idle state, the employed platforms run automatically under
low energy consumption, being attractive because they manage
themselves the different levels of suspension and interruptions,

Fig. 2. Wearable device power state machine (PSM).

TABLE I

COMPUTATIONAL COMPLEXITY VS. MEMORY CONSUMPTION.

which makes easier for the developer. The figure also presents
the average power consumption for each cryptographic
algorithm and evaluated state and the transition time between
states. Thus, we highlight the SKIPJACK algorithm, that
improves energy efficiency in 18% compared to AES.

The run state asymptotically dominates energy consump-
tion. The analysis of power consumption for the Shimmer
platform includes cryptographic processing and radio data
transmission. With the Teensey platform, we have excluded the
transmission operation and we can observe a similar behavior
to the energy consumption of the cryptographic algorithms.
Figure 3 shows the behavior of the evaluated algorithms in
both platforms through the Cumulative Distribution Functions
(CDFs). Figure 3a and 3b illustrate the results for the Teensy
Shimmer platforms.

The computational cost of logical and arithmetic operations
has a direct effect on processing time and wearable device
power consumption. Table I shows the number of operations
for each evaluated algorithm and their respective complexity.
The count is relative to the encryption function, once the
wearable device performs this function, but not decryption.
Thus, power consumption has a direct correlation with the
number of operations. Another correspondence observed is
the proportionality of ROM/RAM occupancy between the
algorithms, ≈ 11%. In addition to finding a ROM memory
consumption about ≈ 3.5× higher of AES in relation to
SKIPJACK, considering the Shimmer platform.

Table II displays information about the amount of logi-
cal/arithmetic operations and assembly instructions performed
by each cryptographic algorithm. This allows us to draw
a direct correlation between these parameters and energy
consumption. Hence, we observe that the SKIPJACK algo-
rithm performs fewer operations and, thus, fewer instructions

Authorized licensed use limited to: Northeastern University. Downloaded on November 26,2020 at 20:54:10 UTC from IEEE Xplore. Restrictions apply.

1934 IEEE COMMUNICATIONS LETTERS, VOL. 23, NO. 11, NOVEMBER 2019

Fig. 3. Power consumption in milliwatts on the run state.

TABLE II

LOGIC/ARITHMETIC OPERATIONS VS. ASSEMBLY INSTRUCTIONS.

TABLE III

BATTERY LIFE EXPECTANCY.

(≈ 32×), requiring less hardware performance and less energy,
particularly, when compared to AES.

Taking as a basis the cryptanalysis presented in Section II,
we analyze the tradeoff between power consumption and the
security level for each algorithm. SKIPJACK and AES are
the two extremes. SKIPJACK is the most power efficient;
whereas AES has the highest power consumption. However,
AES presents the highest security level.

We could also predict the battery lifetime for the devices,
as shown in Table III. We consider an internal battery
of 450 mA in the Shimmer platform and a demanding scenario,
in which the device performs a data transmission per minute.
It is estimated that the device can respond uninterruptedly for
up to 67 hours using XTEA as a cryptographic algorithm.
This means that the choice of the algorithm can directly
influence up to ≈ 5.9× the battery lifetime.

V. CONCLUSION

We have investigated block and stream ciphers for
end-to-end wearable devices secure communications. We have
performed a hardware-driven power consumption evaluation
under two platforms. The SKIPJACK algorithm exhibits the
best performance for power consumption and the second least
memory usage. The XTEA algorithm presents the longest
battery lifetime. Differently from AES, SKIPJACK and XTEA
have potential vulnerabilities pointed out in the literature.
Hence, despite the computational and energetic efficiency of
SKIPJACK and XTEA for the evaluated wearable devices,
AES still presents a high security level, leading us to the

conclusion that there is still a need to design encryption
algorithms for wearable devices with high energy consumption
efficiency and security level similar to AES.

REFERENCES

[1] C. C. Cheung, A. D. Krahn, and J. G. Andrade, “The emerging role
of wearable technologies in detection of arrhythmia,” Can. J. Cardiol.,
vol. 34, no. 8, pp. 1083–1087, 2018.

[2] Y. Li, Z. Chi, X. Liu, and T. Zhu, “Passive-ZigBee: Enabling ZigBee
communication in IoT networks with 1000X+ less power consumption,”
in Proc. 16th ACM Conf. Embedded Netw. Senor Syst., Nov. 2018,
pp. 159–171.

[3] S. Kerckhof, F. Durvaux, C. Hocquet, D. Bol, and F. X. Standaert,
“Towards green cryptography: A comparison of lightweight ciphers from
the energy viewpoint,” in Proc. Int. Workshop Cryptograph. Hardw.
Embedded Syst., 2012, pp. 390–407.

[4] S. Sallam and B. D. Beheshti, “A survey on lightweight cryptographic
algorithms,” in Proc. IEEE Region Conf., Oct. 2018, pp. 1784–1789.

[5] M. Cazorla, K. Marquet, and M. Minier, “Survey and benchmark of
lightweight block ciphers for wireless sensor networks,” in Proc. Int.
Conf. Secur. Cryptogr. (SECRYPT), 2013, pp. 1–6.

[6] M. El Azhari, N. El Moussaid, A. Toumanari, and R. Latif, “Equalized
energy consumption in wireless body area networks for a prolonged
network lifetime,” Wireless Commun. Mobile Comput., vol. 2017,
Dec. 2017, Art. no. 4157858.

[7] B. J. Mohd, T. Hayajneh, and A. V. Vasilakos, “A survey on lightweight
block ciphers for low-resource devices: Comparative study and open
issues,” J. Netw. Comput. Appl., vol. 58, pp. 73–93, Dec. 2015.

[8] T. Bessa, C. Gull, P. Quintāo, M. Frank, J. Nacif, and F. M. Q. Pereira,
“JetsonLEAP: A framework to measure power on a heterogeneous
system-on-a-chip device,” Sci. Comput. Program., vol. 173, pp. 21–36,
Mar. 2019.

[9] B. J. Mohd and T. Hayajneh, “Lightweight block ciphers for IoT:
Energy optimization and survivability techniques,” IEEE Access, vol. 6,
pp. 35966–35978, 2018.

[10] C. E. Shannon, “Communication theory of secrecy systems,” Bell Syst.
Tech. J., vol. 28, no. 4, pp. 656–715, 1949.

[11] J. Katz and Y. Lindell, Introduction to Modern Cryptography, 2nd ed.
Boca Raton, FL, USA: CRC Press, 2014.

[12] M. Dener, “Comparison of encryption algorithms in wireless sensor
networks,” in Proc. ITM Web Conf., vol. 22, 2018, pp. 1087–1097.

[13] E. Biham, A. Biryukov, and A. Shamir, “Cryptanalysis of Skipjack
reduced to 31 rounds using impossible differentials,” in Proc. Int. Conf.
Theory Appl. J. Cryptograph. Techn., 1999, vol. 18, no. 4, pp. 12–23.

[14] L. R. Knudsen, V. Rijimen, R. L. Rivest, and M. B. J. Robshaw,
“On the design and security of RC2,” in Proc. Int. Workshop Fast Softw.
Encryption, 1998, pp. 206–221.

[15] Y. A. Nasser, M. A. Bazzoun, and S. Abdul-Nabi, “AES algorithm
implementation for a simple low cost portable 8-bit microcontroller,”
in Proc. 6th Int. Conf. Digit. Inf. Process. Commun. (ICDIPC), 2016,
pp. 203–207.

[16] J. Son, E. Ko, U. B. Boyanapalli, D. Kim, Y. Kim, and M. Kang, “Fast
and accurate machine learning-based malware detection via RC4 cipher-
text analysis,” in Proc. Int. Conf. Comput., Netw. Commun. (ICNC),
2019, pp. 159–163.

[17] M. Goraczko, J. Liu, D. Lymberopoulos, S. Matic, B. Priyantha, and
F. Zhao, “Energy-optimal software partitioning in heterogeneous multi-
processor embedded systems,” in Proc. 45th ACM/IEEE Des. Automat.
Conf., Jun. 2008, pp. 191–196.

Authorized licensed use limited to: Northeastern University. Downloaded on November 26,2020 at 20:54:10 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

