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Abstract
Wi-Fi connectivity using open hotspots hosted on untrusted
Access Points (APs) has been a staple of mobile network de-
ployments for many years as mobile providers seek to offload
smartphone traffic to Wi-Fi. Currently, the available hotspot
solutions allow for mobility patterns and client identities
to be monitored by the parties hosting the APs as well as
by the underlying service provider. We propose a protocol
and system that allows a service provider to authenticate
its clients, and hides the client identity from both AP and
service provider at the time of authentication. Particularly,
the client is guaranteed that either the provider cannot do
better than to guess their identity randomly or they ob-
tain proof that the provider is trying to reveal their identity
by using different keys. Our protocol is based on Private
Information Retrieval (PIR) with an augmented cheating
detection mechanism based on our extensions to the NTRU
encryption scheme. The somewhat-homomorphic encryption
makes auditing of multiple rows in a single query possible,
and optimizes PIR for highly parallel GPU computations
with the use of the Fast Fourier Transform (FFT).

In this work we lay out the operation of our protocol in
detail, its security analysis, and propose an implementation
compatible with the Wi-Fi Extensible Authentication Pro-
tocol (EAP) along with optimizations for deployments of
over 10 million clients. We evaluate the performance of its
mobile and provider components, and show that a client can
be authenticated in 43.9 milliseconds on a GPU platform,
giving an end-to-end authentication of 1.12 seconds.

1. INTRODUCTION
Recent trends in offloading mobile traffic to Wi-Fi hotspots

solve traffic congestion issues for providers at the cost of client
identity and mobility patterns. Hotspots are largely deployed
as unencrypted untrusted Access Points (AP) with a captive
portal backend—often owned and operated by other ISP sub-
scribers. In this scenario a dishonest ISP may track which
APs a client connects to and when, revealing client’s mobility
patterns and from them other sensitive information, as was
shown in [40]. With the ongoing growth in mobile network
access, extensive quantities of data on clients’ mobility pat-
terns are being generated, and few countermeasures exist to
protect this leakage of private and sensitive information.

Under these conditions, some providers reacted to pro-
tect device identity information. For instance, smartphone
vendors (e.g., Apple iOS 8) included MAC address random-
ization [3] to prevent some types of device tracking. However,
mobility patterns can still be deduced from clients with dy-

namic addresses by the mobile provider by tracking client
ID access on APs over time. Alternatively, one can imagine
using a pass-through authentication scheme such as UMTS’
EAP-AKA [31] (or it’s GSM variant EAP-SIM) to prevent the
AP from tracking users. However, this does not prevent the
cellular operator from tracking the users mobility patterns.

While the problem of anonymity and particularly anony-
mous credentials has received a significant amount of at-
tention for a long time, the literature does not cover the
cases where an anonymous side channel is not available for
re-keying, changes to group membership are common, with
clients entering and leaving the system constantly, and that
protects against a server attempting to deanonymize clients.

In this work, we propose an anonymous authentication
scheme named TracEdge that hides client’s identity from
both AP operators and authentication server. Our proposed
scheme re-keys clients by letting them retrieve a different
access keys anonymously when needed, removing the need
for an anonymous side channel. Credentials in TracEdge are
not bound to the current set of authorized clients, making
membership changes a constant-time operation that does not
require long-term client re-keying. In the case of dishonest
providers, our protocol interaction gives clients proof that
a server has attempted to identify them, even before the
authentication is complete. The proof of misbehavior can
be disclosed and verified by any other third party, thereby
exposing malicious servers’ activities. This capability serves
as deterrent for dishonest servers, and it gives honest ones a
mechanism to keep client trust.

TracEdge, as any security mechanism, is not free. It adds
computational costs for the ISP, and client authentication
time may increase. Privacy-conscious providers however have
a strong incentive to adopt such anonymizing mechanisms
for two reasons: First, honest service providers may find that
the information their systems collect can become a liability,
and that it is in their best interest to keep client information
private on technical unavailability grounds. For instance,
Lavabit [48], a secure email provider, found itself closing
shop, rather than releasing client information. Secondly,
TracEdge’s costs are reasonabe as we will see in Section 6.

1.1 Problem Statement
A service provider offers network access to clients through

a set of Access Points (e.g., Wi-Fi hotspots) connected to
its system. Users subscribe to the service at any time by
contacting the provider, and agreeing to some terms of ser-
vice. By the end of the subscription process, the provider
knows identifying information about the subscribed client.



Likewise, clients may unsubscribe from service, ending their
authorization to the system.

After subscription, the client associates to an AP in the
provider’s network near to their current location and uses it to
authenticate to the provider’s server. The server must decide
whether the authenticating client is one of the subscribers.
The client however, does not wish to leak their identity to
either the ISP’s server or AP operator when connecting.
Specifically, we view both the access point and the authen-
tication server as active adversaries trying to deanonymize
the client at authentication time. The exchange between
this client and the server must therefore be indistinguishable
from any authentication exchange not just to third-party
eavesdroppers but to the authentication peers: the server
and AP.

We define an anonymous authentication protocol as an
exchange between client and server that has the following
properties. Let UID = {Ci : 1 ≤ i ≤ n} be the set of n client
identities known to provider P .

1. Given an authentication exchange with client c, the
server can decide if c is an element of UID.

2. For any server, access point, and external observer,
authentication exchanges for some client Ci are indis-
tinguishable from those for client Cj , for all 1 ≤ i, j ≤ n.

3. An authorized client Ci knows with a certain probability
of anonymity Pa whether presenting her credentials will
leak her identity to the provider.

4. If a malicious server can identify Ci, the authentica-
tion exchange provides proof that it has targeted Ci’s
identity.

We further constrain our scenario by noting clients do not
have access to an anonymous channel over which to interact
with the server without revealing their identity. Such is
the case when clients build and destroy links to the server
network over time.

1.2 Contributions
We design an anonymous authentication scheme as defined

above employing privacy-preserving techniques as building
blocks, and evaluate its performance. Our contributions are:

• A PIR-based authentication protocol enabling a client
to prove that they are authorized to access the network
without leaking any information about their identity.
Our protocol is secure against fully malicious, covert
adversaries [4], allowing detection of dishonest servers.

• A new underlying NTRU-based PIR technique we call
Multiple Row Selection (MRS) that allows the retrieval
of the sum of any subset of rows by using arbitrary
N -degree polynomials with a reduced number of mul-
tiplications on the server. This is a contribution of
independent interest, and it may be used as the PIR
mechanism for other applications.

• We design and implement a Wi-Fi construction for
TracEdge compatible with the Extensible Authentica-
tion Protocol (EAP). Our implementation scales to
databases in the order of 107 clients. Our FFT imple-
mentation using parallel GPU computations enable us
to reduce the server PIR computation time to 43.9ms.

To the best of our knowledge, TracEdge is the first anony-
mous authentication scheme that allows clients to detect
identity leaks and has sub-linear communication complexity
in the number of clients in a dynamic client membership
context. Our underlying NTRU-based PIR makes key re-
vocation immediate, with no communication cost, and with
constant authentication key sizes.

The subject of full client anonymity is a complex one, as in-
formation leaked by each communication layer can be used to
deanonymize clients. For instance, physical layer fingerprint-
ing techniques can use variations of behavior of hardware
implementations to identify devices [33]. On higher layers,
traffic patterns of the client after authentication succeeds
could be observed by the AP operator to deanonymize them.
While the above are real and interesting problems, TracEdge
does not claim to address them, and it is designed to be a
solution to the problem of anonymous Wi-Fi authentication.
We offer some discussion on the subject in Section 7.

This paper is organized as follows. Section 2 shows an
overview of related work. We present our anonymous au-
thentication method TracEdge in Section 3. Section 4 shows
our single-database Private Information Retrieval scheme.
Section 5 describes our system of TracEdge as a Wi-Fi authen-
tication method over 802.1X [30] Extensible Authentication
Protocol for large databases. We present the evaluation of
our scheme in Section 6. We conclude and discuss our results
on Section 7.

1.3 Notation
We denote K {m} as the symmetric-key encryption of mes-

sage m with key K. Public key encryption and decryption
of m using key PK is written as EPK(m) and DPK(m) re-
spectively. We use E(m) and D(m) for an homomorphic
encryption scheme to distinguish it from the above. Signa-
tures are noted as SigPK(m). The concatenation of a and b
is noted as a ‖ b, and the symbol ⊥ represents an invalid key
value.

2. RELATED WORK
Work on anonymous credentials spans several decades [5,

9, 10, 13]. With anonymous credentials, clients create inde-
pendent identities called pseudonyms with organizations who
will authenticate them, and in turn clients receive credentials
which they use on Zero-Knowledge proofs to authenticate
themselves to organizations. Pseudonyms are created such
that they do not reveal anything about the user apart from
ownership of some credential, and two pseudonyms belong-
ing to the same user do not reveal his underlying identity.
In addition to the above properties, proposed anonymous
credentials in the literature include other features such as
protections against user sharing of credentials, user revoca-
tion, and delegation of credentials. While user revocation
is practical in past work, it still requires relatively costly
computation to perform, and the identity of the user can be
retrieved either by the system’s CA, or deduced due to reuse
of credentials. Our work provides immediate and uncondi-
tional credential revocation and user deregistration while
maintaining the user identity hidden from the authenticating
access points.

Authentication protocols providing proof of membership
have been present in the literature for decades. Group [14]
and ring [47] signatures allow members of a group to sign a
message such that any third party can verify the message



was signed by a member of the group, but not its identity. In
both of these schemes signature size is linear in the number of
group members, which does not scale. In addition, members
entering and leaving the group in these schemes require
new keys to be generated—an expensive operation—and
to be provided to the members, limiting their practicality.
Anonymous authentication by Schechter et al. [49] is also
linear in the size of the group, but allows for dynamic group
membership. However, in optimizing the scheme for large
groups, a trade-off in privacy must be made by authenticating
smaller client subsets. Jarecki et al. [32] allow members of
groups to authenticate each other when they belong to the
same group and without revealing affiliation or the identity
of the group, but still depends on key redistribution when
members leave the group.

A substantial body of work [6, 16, 21, 51] relating to
Location-Based Services has been constructed over the years
due to their widespread deployment on smartphones. The
main idea behind much of these schemes relates to hiding
location data to thwart the adversary through various means,
some of them relying on collaborating with other clients to
perform queries. While such strategies protect against parties
that have no access to the location service itself, this would
not be the case in the scenario of network access, where the
mere act of authenticating to the hotspot provider already
leaks user location and identity.

Broadcast encryption [7, 18, 20, 28] considers the distri-
bution of protected content to authorized viewers, part of
its interest being due to its applications in digital copyright
management. User collusion is prevented by careful distri-
bution of keys to clients, limiting practicality of key sharing.
Part of our protocol may be formulated as a case of broad-
cast encryption, however existing schemes such as Fiat-Naor
are designed for one-way channels with limited collusion
protection.

Similarly, Logical Key Hierarchy (LKH) schemes [26, 39,
41, 56, 59] seek to distribute a secret among n recipients
such that revoked members cannot decrypt new messages.
For this the recipients are logically organized as leafs a tree
structure and store their own key as well as the keys of
every node in the way to the root. To update keys after the
revoking node x, the root sends new keys to every node on the
path to x, reducing broadcast costs to O (r log (n/r)) where
r is the number of revoked devices. Broadcast encryption
and LKH require re-keying and communication with users,
typically necessitating a channel that does not leak user
location, and do not protect against a cheating server. Our
work in contrast, does not make such assumptions about the
channel, makes a contribution on how it may be constructed
in practice, and provides clients with proof in the case of
server wrongdoing.

Private Information Retrieval has been an active area of
research starting with [15], where Chor, et al. showed in-
formation retrieval protocols over database replicas guar-
anteeing client privacy as long as at least some servers
do not collude. These protocols provide information theo-
retic security. Single-database Private Information Retrieval
(PIR) [22, 23, 34, 37], in contrast, can only provide privacy
against computationally bounded adversaries. PIR schemes
seek to provide as much privacy as the trivial construction of
retrieving the entire database, but with smaller than linear
communication complexity in the number of entries. While
traditionally PIR protocols use homomorphic cryptosystems

like [17, 44] to compute the PIR response to queries, their
practicality and scalability is limited due to the expensive
operations involved. New lattice-based PIR has received sig-
nificant attention in recent years [2, 22, 29, 35] for their im-
proved speed in comparison to number-theoretic algorithms,
allowing for faster processing.

Oblivious-RAM (ORAM) techniques [24, 27, 46, 52], in
contrast to read-only PIR, allow client read and writes to be
hidden from the server. While the added protection to write
patterns allows for greater flexibility, the overhead for write
operations has little utility in the one-sided key distribution
strategy we use for this work.

There has been significant interest in the industry on
improving Wi-Fi client security for public hotspots. Protocol
attacks ranging from key discovery to multi-layer Evil Twin
impersonation [25, 57] are periodically being discovered and
mitigated. New protocols and services that improve on the
client experience and security have also been proposed [36,
58]. Yet the number of available anonymous authentication
services for hotspots remains low, and is subject to the
same limitations for group re-keying and message size as the
schemes above.

3. ANONYMITY BY PIR
As stated on Section 1 TracEdge provides anonymous client

authentication, and as consequence of the mechanisms in
our protocol no traffic, AP usage patterns, nor identities
are disclosed to the server. More formally, given a group
of n clients, and access to a simulator of authentication ex-
changes, an adversary is not able to guess the client identity
for a given exchange with probability P > 1

n
+ ε, where ε is

“negligibly” small, depending only on the security parameters
of underlying cryptographic primitives. In addition, further
executions of the protocol provide no advantage to the adver-
sary. At the end of the authentication, the only information
the server learns is whether the connecting client has proved
membership to the group.

3.1 Adversary Model
TracEdgetargets protection against covert adversaries, see

[4] for an overview. In contrast to a semi-honest adversary,
a covert adversary is not bound to follow protocol execution
and observe, but can arbitrarily (maliciously) deviate from
the protocol to reach their goal. Yet, an important object of
such an adversary is to remain covert, i.e., not be caught in
performing malicious activities.

Covert adversaries are typical in scenarios where detection
of malicious behavior can have significant consequences for
the adversary. For example, an ISP that is reported to
“cheat” on their clients’ privacy will not only lose customers
and revenues, but might even face legal consequences.

With TracEdge, we design an authentication mechanism
that will protect clients’ privacy. In case an ISP tries to
cheat, clients will be able to prove this to a third party.

3.2 PIR Authentication
Algorithm 1 shows our basic authentication mechanism.

We assume a Public Key encryption scheme

S = (Apub,Apriv,E() ,D())

exists for every client A and for which the server and clients
know U , the set of subscriber’s public keys. To make keys
publicly available, a simple, integrity protected public key



directory like PGP keyservers [45], a public ledger such as the
one in Namecoin [54], or a traditional trusted CA structure
protecting identities may be used.

We also assume every server has a public identity known
to the clients, and that client certificates are marked to only
be used on this scheme to prevent protocol composition. To
authenticate a client, the server uses a random key K, for
which it builds a table with rows EApub(K) for every client
A in U . An authenticating client A has to anonymously
and efficiently retrieve the entry corresponding to their key.
Then, once K is recovered, they can use it to authenticate
using a standard challenge-response mechanism.

The client A can obtain the current key K without re-
vealing its identity by performing a PIR exchange with the
server. Given the table index i0 where A’s entry resides, the
client constructs a query vector v using additive homomor-
phic encryption (detailed on Section 4.3). The server then
computes the product of the vector with each entry in the
database and adds the results to obtain a response for the
client. For a detailed presentation of the new PIR scheme
we use, see Section 4. The main insight in PIR, is that the
result is obtained by performing a computation on every
element of the database, thus hiding the value requested by
the client to the server. This is in fact an Ω(n) operation
if full anonymity in the set is desired, as any row skipped
by the server leaks information about the query. In other
words, the cost of computation may be traded off by being
anonymous in a proportionally smaller set of the users. For
instance if O (m) m < n computation is desired, then one
may reduce the cost by a factor of k at the expense of being
anonymous in a smaller set.

While this protocol hides the identity of the client effec-
tively, a misbehaving server can still leak subscriber infor-
mation by assigning a different key for different clients. For
instance, the server may use two keys K1 and K2 for the
same table, and build it encrypting K1 with half the client
public keys of clients, and K2 with the others. Later mutual
authentication would then reveal the group to which the
client was placed. In the extreme case, a server may assign n
different keys in the table, one for each client, deanonymizing
the group completely.

To mitigate this exposure, Algorithm 1 has the server
commit to a value of the key at the start of the protocol for
all clients by computing a fresh cryptographic signature of K
and sending this value to the client. After PIR, and once an
authorized client has obtained the value of K, it can check
the signature. If the check passes, the client can continue
with the mutual authentication normally. If verification fails,
the client performs mutual authentication with an invalid
key to keep the authentication exchange indistinguishable
from an unauthorized client.

To check a server commitment Γ = gKhr mod p where r
is random nonce for the table, the client decrypts the value
K {r}1 in the server response with the retrieved value K′,
giving r′. If the client finds the commitment Γ equal to the

calculated value gK
′
hr′ mod p if and only if the retrieved

K′ matches the commitment.

3.3 Improving Detection of Misbehaving ISPs
While a commitment to a key for the entire table allows

1Note that the server could send r encrypted with the flagged
key of the client, but to do so, it would still need to guess
the authenticating client.

clients with a value of K different to the commitment to
detect wrongdoing, clients with the same K as the commit-
ment, however, can still leak a small amount of information
when authenticating and need to rely on other clients to
detect the server misbehavior.

To mitigate this problem, a client who would like to in-
crease their immediate confidence in the correct behavior of
the server can perform PIR retrievals of other clients’ entries
and check whether the database holds the expected values.
To do so, the client retrieves EBpub(K) and compares it with
its own encryption of K with B’s public key, increasing their
probability of finding a flagged key if one exists. As long
as the algorithm is used to encrypt K is deterministic, e.g.,
Elgamal with a “fixed” random coin, clients can verify the
extra entries they have obtained. In other words, on every
table build, the server chooses a random r to be used across
all encryptions of K and computes for all rows i

Eipub(K) = (r · P, r · ipub + PK) = (r · P, r · Yi + PK)

where Yi is client i’s public EC Elgamal key. Note that
because K is chosen uniformly at random, and is refreshed
after a new table is ready to be used, there is no need to
protect its encryption against chosen plaintext attacks.

In addition to the row auditing procedure outlined above,
our underlying PIR mechanism allows the query to retrieve
a summation of multiple rows, thus reducing the complexity
of row audit to a single query. We present the details of
our Multiple Row Selection PIR scheme in Section 4.2. The
process can be further streamlined by having the client re-
trieve a subset of the columns from the server. Since the PIR
computation both on the server and client side depends on
the number of columns retrieved, a faster key checking can
be achieved in trade for fewer key bits audited. Because of
multiple row selection, auditing becomes independent of the
number of rows checked. Furthermore, because a client need
not ask to retrieve all columns in the table, the key checking
process has at worst the same cost as that of retrieving a the
client key.

3.4 Correctness and Privacy
Given a key K, the client public key for the client APUB

and a valid encryption EAPUB(K), a mutual authentication
proving knowledge of K also proves A belongs to the group
of authenticated clients.

The privacy of TracEdge depends on two factors: the
underlying PIR scheme, and the detection of flagged keys in
the database if they exist. In secure PIR, any two queries
exchanged are indistinguishable for the server. Since the
identity of the client is bound to an index in the table, a
secure PIR will provide privacy at the query level to our
scheme.

Because the client obtains a signed response for both the
commitment to K and the PIR result during the protocol,
it can detect and prove to any third party when a server
has sent a key different from the committed one, violating
its client’s trust. A misbehaving server has to trade the
amount of information they learn with the chance of being
exposed. Assume that the server commits to key K1 but
sets m entries in the table with key K2. Table 1 summarizes
the trade-off available to the misbehaving server. The server
learns different amounts of information depending on whether
the query matches the commitment. However, any time a
client makes a query for an entry that doesn’t match the



Algorithm 1: TracEdge authentication.

Data: audit = α the number of times to check for flags
h = gy mod p the server’s public signing key
y the server’s private signing key
K the global key for this table
p large prime

C→ S : ts //timestamp

C← S : SigSPR

(
gKhr mod p ‖ ts

)
//server commits to an encryption of K with

random r for all clients

C→ S : PIR Q(A)
C← S : PIR Resp(EApub(K′) ),K {r}
SigSPR

(
PIR Resp(EApub(K′) ‖ K {r} ‖ ts)

)
C :Check signature, compute
K′ = PIR Extract(PIR Resp( EApub(K′) )

r′ ← DecryptK′ (K {r})

C : if gK
′
hr′ 6= gKhr then

K ←⊥ and report server
end
while audit > 0 do

C : row ← {1 . . . n} \A
C→ S : PIR Q(row)
C← S :
PIR Resp(Erowpub(K′′) ),

SigSPR

(
PIR Resp(Erowpub(K′′) ‖ ts)

)
C : Checks signature, computes
X = PIR Extract(PIR Resp( Erowpub(K′′) )

C : audit← audit− 1

C : if Erowpub(K′) 6= X then
K ←⊥ and report server

end

end
C↔ S : Mutual Authentication Protocol using K

commitment, they detect the misbehavior of the server and
can publicly expose it. While a misbehaving server learns a
limited amount of information about the identity of a client,
the probability of not being detected decreases exponentially
as a function of the number of queries.

Let DB = {ECi(Ki) , 1 ≤ i ≤ n} be a database of n au-
thorized clients, commitment K∗, and m flagged keys (i.e.,
there exist m indices i where Ki 6= K∗). A system receiv-
ing a queries to rows selected uniformly at random has a
probability pnd of no client detecting a flagged key:

pnd =

a−1∏
i=0

(
1− m

n− i

)
The maximum probability for a server to be undetected
by a non-flagged client occurs when m = 1, in which case
the minimal amount of information will be learned. The
flagged client, on the other hand, will detect the flagging
unconditionally, and will have proof the server has cheated.

Assuming queries are uniformly distributed in the set of

Table 1: Identity Leakage vs. Misbehaving Server Detection

Commit. matches No matches

Srv. learns log
(

n
n−m

)
bits log

(
n
m

)
bits

Srv. exposed? No, prob. n−m
n

Yes, prob. m
n

clients, the probability of being detected after i queries is

1−
(
1− m

n

)i
. To learn 1 bit about the identity of clients, the

misbehaving server will be exposed with probability 1−
(
1
2

)i
after i queries. Given the typical number of queries and
that when a server is exposed they lose the clients’ trust
irrevocably, a server cannot misbehave with impunity for any
reasonable amount of time. In Section 4.2, we will show how
multiple queries can be aggregated in a fraction on a single
PIR query.

3.5 Table Management
Because clients may enter or leave the authentication set

at any point, the authentication table must be managed such
that queries and row auditing present consistent results. The
operations related to table management in our model are as
follows:

Empty row creation The server computes the encryption
of key K using its own public key. This value is taken
to signify an empty row value.

Client ID Assignment At the time of registration to the
system, every client is assigned an empty table row.
This assignment will be maintained across table gen-
erations, and the value of the assigned row is commu-
nicated to the client. The server writes the encrypted
value of K for the new user on its corresponding row.

Table creation For every non-empty row, the server writes
the encryption of K with the public key of the client
assigned to the row. Empty entries receive the empty
row value.

Client removal The server writes an empty row value on
the exiting client row, and frees the client ID assignment
for the row, and the rekeying process is started.

Rekeying When the K expires, a new table is used. If
no tables are available in the table pool, a new one is
generated and the old table is marked as deprecated
and used until a new one is available. Keys retrieved
during this time expire a fixed time after retrieval, after
which clients are forced to authenticate.

Note that client removal can still happen during the time a
table is marked as deprecated, as the server can update the
row with the empty value on the fly. Therefore any number
of client removals may happen between old table deprecation
and the use of the new table. Keys expire after the table is
deprecated to prevent now invalid users to access the system
and to prevent credential disclosure.

4. PRIVATE INFORMATION RETRIEVAL
The Query and Response functions used in Algorithm 1 rely

on Private Information Retrieval primitives. We preface our
optimizations with an overview of PIR and NTRU Encrypt,
our underlying homomorphic encryption scheme, to offer a
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Figure 1: Private Information Retrieval overview.

better understanding of the mechanisms on which TracEdge
is built.

In a PIR protocol, a client and a server storing n records
exchange messages such that by the end of the protocol
the client learns the contents of a record of their choosing,
while the server cannot guess which record was retrieved
with probability greater than 1/n. To achieve this, the
server performs some operation related to the underlying
encryption scheme over the database records. We describe a
basic version of the scheme we use for TracEdge below.

4.1 Overview
In our scheme, the database is a set of n records of length `

bits. Every row i contains bits DBi = {bi,j , 1 ≤ j ≤ `}, and
we use NTRUEncrypt [29, 50] over the Ring Zq/

(
XN − 1

)
with polynomial multiplication ?, and prime N . The use of
NTRU allows for homomorphic addition E(m1) + E(m2) =
E(m1 +m2), and an efficient query mechanism we call Mul-
tiple Row Selection (MRS) that we describe in Section 4.2.
The main idea is to use the encryption of polynomials as
the query component to select the desired row as well as
rows within the same region. This gives the client the ability
to audit multiple rows in the database to ensure they are
not being targeted by the server (we describe this feature in
Section 3.4). With a large enough polynomial degree N , the
number of expensive multiplications will be reduced by this
factor. This stands in contrast to more traditional PIR in
which one encryption selects a single row of the database.

The query-response protocol for the i0-th database element
is as follows (see Figure 1):

Query Generation The client computes vector v of dn/Ne
encrypted polynomials of degree N , where all but one
is an encryption of the zero polynomial. To query
the database for element i0, the client encrypts the
polynomial xi0 mod N and assigns it to the bi0/Nc-th
element in v.

Response Generation To generate the reply, the server
divides the database in regions of N rows, grouping
bits in the same region’s column as a polynomial ei,j =∑N−1

i=0 bi,jx
j and computes e′i,j = vi?ei,j . The meaning

of ? depends on the additive homomorphism of E(·),
which for NTRU is polynomial multiplication modulo
XN − 1 as described in Section 4.3).

The server then computes a result vector r by adding
the resulting entries e′ column-wise, giving rj =

∑
i e
′
i,j ,

which is then sent to the client.

Decoding The client decrypts the reply vector and extracts
the information using the homomorphic properties of
the underlying encryption scheme E . For additive homo-
morphic encryption E(a+ b) = E(a)+E(b) for instance,
the elements of r can be written as

rj =
∑
i6=i0

ei,j ? E(0) + ei0,j0 ? E
(
xi0
)

= E
(
ei0,j0 ? x

i0
)

Note that the values in the databases need not be in
plaintext or even encrypted with the same E(·). As we
discuss in the following section, homomorphic addition and
our use of polynomial multiplication allows us to retrieve
the selected row. Further, the communication complexity of
our scheme can be improved by using Kushilevitz’s PIR [34].
This particular technique reduces communication complexity
to O (

√
n). While it can be generalized for O(n1/d), we

show in Section 6 that d = 2 gives enough savings for short
communication time.

4.2 NTRU-PIR Multiple Row Selection
An NTRU-PIR query with Multiple Row Selection takes

advantage of the properties of polynomial multiplication. For
any polynomial y =

∑N−1
i=0 yix

i in Zq [X] /
(
XN − 1

)
, the

product xi0 ? y mod
(
XN − 1

)
rotates the coefficients of y

by i0 positions or xi0 ? y =
∑N−1

i=0 yi+i0 mod Nx
i+i0 mod N .

When the NTRU-PIR operation multiplies the query vector
with every column region in the table, the resulting operation
is an NTRU encryption of either the zero polynomial for
regions where the query vector v was zero, or a rotation of
the query region, where v contained xi0 . In fact, setting
any single coefficient in a component of the query vector will
result in a rotation of the column returned.

In general, for any query vector v, the resulting vector r
contains a summation of the rows whose indexes match the
non-zero coefficients of v. This is a useful observation for it
allows clients to verify the compliance of the server database
with the claimed commitment with a single query over an
arbitrary set of rows. To do so, the client constructs a query
vector with more than one non-zero coefficient. To verify the
result, the client simply adds the expected encryptions of K
of every row corresponding to the query and tests for equality.
Any flagged key included in the set deviates the result away
from the calculated value, and reveals server misbehavior.
Note that, it is sufficient for the client to retrieve a subset l
of the columns at the cost of a reduced detection probability
by probability (1− 1

2l
). Therefore, a cheating server can be

mitigated in the covert adversaries model at the fraction of
the cost of a single PIR query.

4.3 NTRU Encryption
In this section we describe the properties of NTRU [53]

encryption and the modifications we implemented to make
it suitable for PIR.

NTRU Encrypt is a public-key encryption scheme that
operates on the ring of integer polynomials Zq [X] /

(
XN − 1

)
where Zq is the ring of integers modulo q, a small power of two,
and N a prime. The element p is a small polynomial relatively
prime to q, usually X − 2 or 3. To support homomorphic
additions without decryption failure, we select a suitable
value of q empirically in Section 6.



Multiplication in the ring is defined as the product of
polynomials modulo XN − 1. If f and g are polynomials in
the ring, then their product f ? g =

∑N−1
i=0 hix

i where

hk =
∑

i+j≡k mod N

fi · gj

The private key f is chosen at random with the standard [53]
recommending coefficients in the range [−1, 1]. The public
key is h = p ? fq ? g mod q where fq is the inverse of the
secret key in Zq [X] /

(
XN − 1

)
.

The encryption of message polynomial Pm is

c = r ? h+ Pm mod q,

where r is a polynomial chosen at random modulo q.
Decryption consists of two steps. First the value a = f ? c

mod q is computed. Secondly, Pm = fp?a mod p is obtained
to reveal the plaintext, where fp is the inverse modulo p of
the secret key.

When performing the response generation phase of our
PIR protocol, every bit region ei,j of the database will be
multiplied with the query polynomial for that region.The
result vector for column j is

rj =
∑
i 6=i0

E(0) ? ei,j + E
(
xi0
)
? ei0,j0

so to extract the response, we note that polynomial multi-
plication g ? xi0 mod (XN − 1) rotates the coefficients of g
cyclically by i0 positions. In particular, coefficient k of g is

(g ? xi0)k = gk−i0 mod N

therefore, to calculate the bit associated with column rj the
client extracts the 2 · i0 mod N -th bit of D(rj).

4.4 Parallel NTRU-PIR
The PIR computation itself consists of expensive polyno-

mial multiplications and the addition of columns into the
result value. Since we intend to deploy this system on GPUs,
we need to parallelize the NTRU-PIR as much as possible.
For this, we map the polynomial multiplications into point
multiplications of the corresponding Fast Fourier Transforms
(FFT). We sum over the whole table before applying the
inverse FFT. There are two distinct advantages to this. First,
it reduces the complexity of multiplications to O (N logN)
on the degree of the polynomials, instead of N2. Second,
the component-wise multiplication of the coefficients in the
frequency domain is an operation much more susceptible to
parallel computation, as every result coefficient depends only
on a single complex multiplication.

Performing the addition of column polynomials in parallel
treats polynomials as leaves in a binary tree, with every
addition step removing children and writing the result in the
parent. Because the value of every non-leaf node depends
on the addition of its children there is a loss of roughly half
the computation power on average. At the last step, there
is a single process computing the addition of the last set of
elements. However, because our elements are polynomials
of degree N , every coefficient can be computed in parallel,
even to the last addition.

5. SYSTEM
We implement TracEdge as an extension to the Protected

EAP [30], using the same TLS tunnel establishment in the

Client Access Point Server

Associate

TLS session start

Request-Identity

Response-ts

Commit(K, ts)

Access-Request-ts

PIR_Q(v)

Sig[PIR_Resp(r)],x1

H(x2||x1||K),x2 

H(x1||x2||K)

Ksc, Kcs
4-Way Handshake

Figure 2: Architecture of the EAP-TE protocol.

common Wi-Fi WPA-Enterprise framework. This ensures the
authentication server has a set of authentic public and private
keys that can be verified with a Certification Authority. We
describe the implemented protocol components and also offer
a basic summary of the operation of 802.1X. In addition,
usage of the TLS tunnel provides lower-layer fragmentation
and reassembly of large (longer than 1020-byte) packets for
the underlying method.

Access to the directory of client public keys is crucial for
the key checking mechanism. Since clients are authenticating
to set up a link to the ISP, access to the directory can be
performed through other channels such as mobile data or
through the AP providing access only to the directory.

5.1 The EAP-TE method
Figure 2 shows the architecture of EAP-TE. After the

client first associates to the AP, it starts a TLS tunnel
with the Authentication Server, where standard checks are
performed to ensure the identity of the server. After tunnel
establishment is complete, both client and server share a
session key KCS to encrypt all later communication. This
protects the conversation against eavesdropping. After this
point, all protocol messages are encapsulated within EAPOL
frames on the air, and re-encapsulated as RADIUS Access-
Request/Access-Challenge packets on the back-haul. The
authenticator initiates by sending an initial EAP-Request
packet with an unused protocol identifier.

The first phase of the EAP-TE starts by sending an en-
coded timestamp as the identity to the authenticator in re-
sponse to the first EAP-Request packet. Subsequent packets
containing the commitment, PIR Query, PIR Response and
key are exchanged similarly. The final mutual authentication
we selected is a simple challenge-response for both parties
using SHA-256 as the cryptographic hashing function. The
final session keys are built by hashing the initial timestamp,
the key value and the strings server and client.

5.2 The Supplicant
Our client query generation is a wpa-supplicant [38] patch

for Linux and Android systems. Query generation on the



client involves computing n/N NTRU encryptions in poly-
nomials. The size of the query is n× |q| bits, or |q| bits per
database entry. Using Kushilevitz and Ostrovsky’s [34] PIR
allows us to reduce this to |q|

√
n.

An important client parameter is its row in the database.
We assume that every client obtains their fixed database
index at the time of registration with the Service Provider.
As noted in Section 1.1, the server may know identifying
information about the client, including its fixed row number,
but the PIR protocol prevents the server from learning it at
authentication time.

5.3 The Authentication Server
The authentication server in EAP-TE provides two impor-

tant functions in the system. First, it must generate the
encrypted key tables that will be used during authentication.
Because the server cannot know which row the clients may
be accessing, it must be careful not to keep invalid entries
even for rows with unassigned clients. For unassigned rows,
it may encrypt the key with its own public key, which must
be made available to the clients.

The PIR Reply generation is the most expensive opera-
tion in the protocol. It is potentially parallelizable, where
computation of the result is divided among a large number
of threads. We evaluate the performance gains from GPU
parallelization in Section 6.

As clients enter and leave the system, index management
must keep the invariance of the client entry index. Empty
database rows are kept with a special encryption of K with
the server’s public key. This allows auditing clients to check
validity of the committed K, while protecting the key itself
from discovery. When a new client subscribes, the server
chooses one of the empty rows and assigns it to the client.
Later, when a client unsubscribes, the association is cleared
and the row value is replaced with the special value from
above.

5.4 Optimizations
Several expensive operations occur in EAP-TE. On the

client side, vectors with
√
n elements with mostly E(0) are

generated to form the PIR query. While NTRU Encrypt is a
fast operation compared to other number-theoretic schemes,
polynomial multiplication is intensive enough to add consid-
erable time for large numbers of clients if done naively. We
show the impact of the implementation on the speed of poly-
nomial multiplication on Section 6. Because no polynomial
in the vector depends on others this an easily parallelizable
operation. Moreover, pre-computation of zero-polynomials
during idle times can aid in offsetting this cost in the handset.

As outline in Section 3.5, tables need not be generated
immediately. Delay in key revokation in this case works
similarly to current response times of around one hour for
mobile providers. Another strategy for optimization is to
keep the public-key bit length small. Since K is short-lived
and it is discarded after new tables come to the pool, it is
not necessary to use a large security parameter.

Resolving a PIR query has the server compute a value
over every column of the table, so limiting the size of the
key implies computation savings. We can obtain even larger
savings by using a cryptosystem with small key sizes, like
ECC. Table generation can be quite costly for the large
number of clients we consider. For this construction we use
a version of ECC-Elgamal encryption for every client entry

with pre-computed ephemeral keys. This optimization pre-
computes the value H(K) ·P and uses it to build every entry
in the table, i.e., (H(K) · P,H(K) · x · P +K), where x ·P is
the client’s public key. This halves the number of EC scalar
multiplications.

Our system uses the parallel NTRU-PIR described in
Section 4.4. A practical trade-off of this technique that data
transfers between the host memory and the GPU device’s
RAM must occur before the operations start. Fortunately,
these transfers can be pipelined while the processors work on
previously loaded data. Another trade-off is a more involved
implementation that must deal with processor occupancy
and GPU memory access times carefully such that they do
not offset the speed gains of running the code in parallel.
We show the performance of our GPU implementation on
Section 6.

Our implementation using Fast-Fourier transform-based
polynomial multiplication over GPUs using CUDA. Every
column region in the database is stored in FFT form after
table generation, as is the query vector received by the
client. The table is split column-wise among GPU devices
to fill the device’s available memory. Computation starts
with component-wise multiplication of the FFT forms of the
query vector and every column. Next every column region is
added to obtain a final degree N polynomial in FFT form
that is then transformed back into the time domain.

Addition is a two-step process to maximize the number of
parallel operations. First, β CUDA blocks add two polyno-
mials at a time in shared memory, producing β polynomials.
Finally a single block adds the former to get the result for
the column. We find the optimum value of the parameter β
on Section 6.

6. EVALUATION RESULTS
We evaluate the efficiency of a TracEdge construction by

benchmarking its components. For the server components
we use a combination of off-the-shelf desktop machines with
medium-range GPUs and production-grade Amazon EC2
instance. The clients consist of Android-based smartphones.

We choose our security parameters assuming a key lifespan
of a few hours and an AP density consistent with a modern
urban ISP hotspot deployment allowing tens of Mbits/second.
We justify these assumptions in Section 6. We test the
client query upload time assuming the wireless link to be the
bottleneck in this operation. Our measurements for database
building are done using two ECC curves: the smallest and the
fastest of the publicly available [11, 12]. To test PIR result
computations on the server we measure the time elapsed in
computing the client’s response from a query. Because this
is the most computationally expensive operation we attempt
to characterize the behavior of the basic operations in two
implementations: CPU and GPU. For system specifications
see Table 4.

Table 2 summarizes the evaluation parameters for EAP-
TE. We choose a 128-bit key for K that fits within the EC
Elgamal modulus size, and gives enough entropy to generate
suitable WPA encryption keys. A small modulus size limits
the width of the table, reducing the time needed for the PIR
response generation. Conversely, a faster curve allows for
quicker table generation but impacts PIR response due to
wider row length. While these may seem modest security
parameters, we assume the lifetime of K to be in the order of
hours, as the server periodically generates new tables. Thus,



Table 2: Implementation choices

Parameter Value

|K| 128-bit
EPUB(K) EC Elgamal [19]
EC Curves sect131r1, sect163k1
H(·) SHA-256
E(·) NTRU-Encrypt [29]
NTRU Parameters APR2011_439_FAST [53]
N 439
q 221

n 107 clients

Table 3: Choice of q

q Observed Additions

211 2
212 47
213 250
214 951
215 4408
216 18087
217 73047
218 367865
219 1.12× 106

220 7.01× 106

221 2.21× 107

we limit table size, generation time, and key lifetime. We
discuss the implications and countermeasures of extended
key lifetime in Section 7.

We chose our NTRU modulus parameter q by empirically
testing the minimum number of additions observed before
an encryption failure occurs. For every value of q, we add a
ciphertext addition of E(0) to E(1). After every addition, we
check whether the decryption returns the original value. We
record the minimum number of additions observed over 108

repetitions. Table 3 summarizes our results.

6.1 Database and Query Generation
Given the parameters in Table 2 for TracEdge, the maxi-

mum size of the table using EC Elgamal over 163-bit security
is 41×107Bytes, or 410MB. Our server code builds a database
table by choosing a key K uniformly at random, and using
H(K) as the scalar multiplier for the ephemeral Elgamal key.
We take the mean time to create a table over 100 samples
on a multi-threaded implementation, shown in Table 5.

Query generation in the client happens every time the client
wishes to authenticate to the server. A query for our PIR
scheme is a vector of |q| ×

√
n = 4

√
107 or 12.6KB, assuming

32-bit integers to store coefficients. We benchmarked our

Table 4: Evaluation systems

Hardware Setup Graphics/WLAN

Srv. 1 Quad 3.0GHz, 8GB 9800GT (112c)
Srv. 2 Quad 2.5GHz, 8GB GTX280 (240c)
Srv. 3 2x 8c. Xeon, 130GB -
Srv. 4 8x Xeon, 21GB 2x GF100 (448c)
Srv. 5 8x Xeon, 21GB 1x GK104 (1536c)
Srv. 6 Quad 2.5GHz, 8GB GTX780 (2304c)
Cli. 1 Galaxy SII 1GB RAM 802.11bgn
Cli. 2 HTC One 2GB RAM 802.11abgn

Table 5: Table creation time (s) ±σ

Server sect163k1 sect131r1

1 1160± 4 3424± 9
2 1190± 9 3211± 13
3 261± 7 751± 12
4 1105s± 3 2997± 10

Table 6: Query generation on client

Device Avg. Encryption (µs)±σ Total time

1 159.3± 0.12 1.86s
2 173.4± 0.08 1.98s

client’s query generation over 1000 repetitions and Table 6
summarizes the results.

6.2 Communication Complexity, and Perfor-
mance

Communication complexity determines the amount of data
that needs to be sent over the air. The scale of our client
database makes it a good candidate to use the technique
in [34]. By processing the table as a square with

√
n rows

and columns over two iterations, the server needs to send

back N
√
`
√
n elements back, containing the encryption of a

database element. Using 32-bit integers this yields a total
of 1.25MB for the response. Assuming a 10Mbps data rate,
this transmission completes in 1.0 seconds.

We measure rate quality over the air using 50 public Wi-Fi
hotspots from a large ISP in an U.S. urban area. We associate
our mobile client devices from Table 4 to the target APs and
connect to a test server at a well-provisioned site. Afterwards
we make a similar measurement with Speedtest [43] as a
control. We measure downlink and uplink throughput over
a period of 10 seconds. Figure 3 shows how over 50% of the
sampled APs can sustain throughputs higher than 10Mbps
over 10 seconds.

Response extraction at the client is performed by decrypt-
ing all the polynomials received from the server. Table 7
shows average times for our clients over 1000 samples.

We also measure authentication latency as seen on the
client handsets, defined as the time between query transmis-
sion and response receipt in Table 7, and it includes 350ms
computation time on the single-GPU system and 0.9s net-
work latency. We compare the measured latency value with
the expected latency for a multiple-GPU system later in this
section.

6.3 Response Computation
The most computationally intense stage in TracEdge is

response generation, which consists of two phases: polyno-
mial multiplication modulo XN −1, and polynomial addition
modulo q. Even though polynomial multiplication is a fast
operation compared to other homomorphic cryptographic
schemes, the large size of the database can make compu-

Table 7: Query extraction and latency on client

Device Av. Decryption Total time Latency

1 63.7± 0.20µs 45.3ms 1.41s
2 78.6± 0.13µs 55.9ms 1.42s
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Figure 3: Public ISP hotspot throughput in urban area.

Table 8: Unoptimized Polynomial Operations N = 439 (µs)

Srv. Add. Mult. GPU Mult. Total/col.

1 4.28 251.6± 0.33 76.5 438s
2 2.67 228.2± 0.38 38.4 225ms
3 2.94 129.9± 0.05 - -
4 2.97 130.2± 0.1 13.4 113.5ms
5 2.97 130.2± 0.1 5.9 48.8ms
6 2.67 228.2± 0.38 5.7 27.9ms

tation lengthy. Fortunately, the operation is suitable for
parallelization, as discussed in Section 4.4. We evaluate two
computation strategies: multi-threading over CPU cores and
GPU computation using CUDA [42]. Table 8 shows the
average operation time for each server per database column
on a straightforward polynomial multiplication and addition
implementation.

GPU computations clearly outperform the threaded pro-
gram as can be expected, and also scale well on the number
of cores and devices. For the case of Server 6, a set of 8
mid-range GPUs (2300-core) could compute the response
of 10 million rows in little more than 1.1 seconds key table.
However, evaluation times still fall in the order of seconds
due to the nature of the O

(
N2
)

multiplication algorithm
used.

In contrast, the Fast Fourier Transform strategy outlined
in Section 5.4 significantly reduces the evaluation time per
column (over an order of magnitude gain). Figures 4a and 4b
show the average time taken per column multiplication and
addition over 500 samples using different block/threading
configurations. Every curve represents a block configuration
for the first addition step, while the time shown includes
both addition steps. From our results we find each device
has different optimum block parameter (as described in Sec-
tion 5.4) with β = 64 for the Amazon instance and β = 96 for
the GTX780. The mid-range GTX780 device takes 1.077ms
per-column computation for the FFT multiplication and ad-
dition versus 28ms with the former implementation. This
implies an array of 8 GTX780 GPUs can compute the PIR
response of 10 million 326-bit wide entries in 43.9ms. The

improvement comes from increased parallelism during the
point-to-point product in the frequency domain, where the
result is dependent only on the two factor coefficients.

Our results above give the time required of end-to-end
authentication using TracEdge by adding query transmission,
PIR computation, response transmission and query extrac-
tion of 1.12 seconds. Because table and query generation
can be performed offline they do not add to authentication
time. Likewise, mutual authentication after the global key
is retrieved is not considered for end-to-end authentication
as it is fast and common to other secure Wi-Fi authentica-
tion protocols. As shown in Table 7, our single-GPU system
performs closely to the expected computation time in a multi-
GPU system. Moreover, because multiple row auditing has a
lesser or equal cost than key retrieval, two GPUs are enough
perform the operation simultaneously.

To understand how well our system performs under heavy
client load, we measure the maximum number of authentica-
tions per second our server is able to sustain by saturating
with with client queries. While our server is only able to
maintain 2.3 authentications per second with only one GPU
because of the number of memory transfers required to pro-
cess the whole table, a multi-GPU with 8 devices can sustain
up to 60 auth/s.

Building a multi-GPU setup assuming a $380 retail price
of the GTX780 devices plus four host computers with two
GPUs installed per host, would cost in the range of $4000-
5000. This results an investment of at most $83.33 per
authentication/sec from the provider for 10 million clients.

7. CONCLUSIONS AND DISCUSSION
We have presented TracEdge, an authentication proto-

col that protects client identity against covert adversaries.
TracEdgemitigates location tracing for general applications
and is able to detect dishonest servers attempting to identify
clients. In addition, we show a proposal for a 802.11 imple-
mentation over EAP and an estimation of its computational
and communication costs. The key PIR component can per-
form response computation in 43.9 ms on a platform with
8 off-the-shelf GTX780 GPUs. With devices in the market
with over 5700 cores, computation times can be reduced
further by augmenting hardware capabilities.

Implementation of TracEdge implies a cost on the ISP, as
multiple parallel computation devices need to be deployed
for operation. As stated in Section 6, as much as $83 per
authentication per second may be required, making TracEdge
more of a niche market solution for clients who are more
focused on privacy. A more reduced user base however, also
lowers the hardware requirements linearly.

While delaying table generation opens the possibility of
credential sharing where a client may authenticate with the
server and then share the retrieved key with unauthorized
clients, prevention can be achieved with a combination of
TracEdge with a USIM component [1] and Distance Bound-
ing Protocols [8] running between the SIM card and AP. In
this case, the AP needs to have access to the authentication
key. Similar to EAP-AKA method [31] which uses the sub-
scriber module to authenticate to a network, a TracEdge
implementation would store the retrieved authentication key
and use it to produce the necessary keying material, prevent-
ing human/software access to this value. The outcome of the
distance bounding authentication is a time-limited shared
session key between this specific AP and the mobile client.
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Figure 4: CUDA parameter impact in PIR computation time.

Sharing this session key with other cheating clients does not
help them since it is tied to a single AP-client session. An
unauthorized client would then need to be co-located with
the original client, contending for the same AP.

Further identity leaks from traffic pattern analysis are still
possible as they fall outside the scope of TracEdge. A client
concerned with this risk may use anonymity networks such as
TOR to hide their identity to the access point. While there is
a performance penalty for using these networks, their perfor-
mance has seen an upward trend, reaching 9 Mbps per relay
average [55], making it comparable with our link through-
put wardriving experiment in Section 6. This suggests relay
anonymity networks are no longer a bottleneck.
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