
Assumption-Free Fuzzy PSI via Predicate Encryption

Erik-Oliver Blass
Airbus

Guevara Noubir
Northeastern University

Abstract

We present the first protocol for efficient Fuzzy Private Set
Intersection (PSI) that achieves linear communication com-
plexity, does not depend on restrictive assumptions on the
distribution of party inputs, and abstains from inefficient fully
homomorphic encryption. Specifically, our protocol enables
two parties to compute all pairs of elements from their respec-
tive sets that are within a given Hamming distance, without
constraints on how these sets are structured. Our key insight
is that securely computing the (threshold) Hamming distance
between two inputs can be reduced to securely computing
their inner product. Leveraging this reduction, we construct a
Fuzzy PSI protocol using recent techniques for inner-product
predicate encryption. To enable the use of predicate encryp-
tion in our setting, we establish that these predicate encryption
schemes only require a weak notion of simulation security.
We also demonstrate how their internal key derivation can be
efficiently distributed without a trusted third party.

As a result, our Fuzzy PSI on top of predicate encryption
achieves optimal linear communication complexity for arbi-
trary input distributions. Our implementation validates its
feasibility and demonstrates improved performance over the
most closely related work.

1 Introduction

Private Set Intersection (PSI) is an increasingly popular ap-
proach to enable collaborations in a variety of data-driven
tasks. Given two parties, each with a set of elements, PSI
allows the computation of the intersection of the two sets
without revealing any additional information to the parties.
Introduced in seminal works such as Meadows [45] and Freed-
man et al. [27], PSI has since garnered significant interest both
from the research community and industry. This has led to
efficient PSI protocols as well as adoption and deployments
by major companies including Google [39], Meta [12], and
Microsoft [46]. It turns out that communication complexity
between parties typically represents the primary performance

bottleneck in real-world scenarios, as PSI computations of-
ten process data in batches rather than real-time [39]. So,
current state-of-the-art in PSI features optimal linear com-
munication complexity in the size of the parties’ input sets,
see [17, 31, 43, 56] for an overview.

While traditional PSI identifies exact matches between
elements, many real-world applications require finding ele-
ments within a distance threshold. Examples include a client
matching fingerprints against a biometric database, querying
security logs with traffic features, analyzing GPS coordinates,
or identifying DNA sequence variations.

The idea of relaxing the element equality constraint, gen-
erally referred to as Fuzzy PSI (FPSI) was initially also men-
tioned by Freedman et al. [27]. In FPSI, two parties (sender
and receiver) hold their own set of vectors. A pair of vectors,
one from each set, is considered to be in the intersection if
the distance between them is below a predefined threshold.
However, as naïve solutions result in exponential communica-
tion cost (in the data dimension), efficient solutions were left
for future work. It is only lately that FPSI has seen a revival
of interest due to the applications needs and the industry’s
general interest and adoption of PSI techniques.

Many solutions have recently been proposed that signifi-
cantly improve the communication and computation complex-
ity of FPSI protocols [21, 29, 32, 33, 57, 63, 65]. Yet, current
solutions achieve linear communication complexity in the
dataset size, the data dimension, and the distance threshold
only by making strong assumptions about input data distri-
butions. These structure-aware PSI approaches require spe-
cific data properties for input sets, such as minimum distance
thresholds between elements or distinct element differences
across dimensions. While current approaches demonstrate
high effectiveness when applied to datasets that conform to
their underlying structural assumptions, no existing solution
achieves linear communication complexity for arbitrarily dis-
tributed input data. However, in cases where input data is
unpredictable, deviates from idealized distributions, or fails
to meet strict minimum distance thresholds, FPSI solutions
for arbitrary input distributions are essential.

Table 1: Comparison of asymptotic communication and computation complexities. For protocols with multiple variants, we
summarize lower bounds to highlight key parameters. S: FPSI sender, R: FPSI receiver, nS,nR: number of vectors from S and R
(denoted as n when nS = nR), ω: vector length, t: threshold, B1,B2 : FHE parameters.

Protocol Metric Assumption Communication Computation

[64] Hamming FPR/FNR O(ωnSnRB1) S : O(ωnSnRB2) R : O(
(ω

t
)
nR)

[16] Hamming & L1 FPR O(nSnRt2) S : O((ω+ t2)nSnR) R : O((ω+ t)nSnR)

[29]

Hamming R. UniqC O(ω2nS + ωtnR) S : O(ω2nS) R : O(ω2nS + ωtnR)
L! R→S. disj. proj. O(ωt(nS +nR)) S : O(ωtnS +nR) R : O(nS + ωtnR)

Lp R→S. disj. proj. O((ωt + p log t)nS +
ωtnR)

S : O((ωt + p log t)nS +nR) R : O(nS + ωtnR)

[21] Hamming (generalizes) d(x,y)↑ t or
d(x,y)↓ ∀t, ∀ > 3 O(n1+ 1

∀↔1) S/R : O(n1+ 1
∀↔1)

[32]
L!

nR receiver balls: radius
t, separated c · t, c > 2 O((4log t)ωnR +nS) S : O((2t)ωnR) R : O((2log t)ωnS))

c > 4 O(2ωωnR log t +nS) S : O((2t)ωnR) R : O(ωnS log t)
L! ↗ disj. proj. O(ωnR log t +nS) S : O((2t)ωnR) R : O(ωnS log t)

[65]

Lp,L!
nR receiver balls: radius
t, separated c · t, c > 2 O(tωnR +2ωnS) S : O(2ωtnS) R : O(tωnR +2ωnS))

c > 4 O(t2ωωnR +nS) S : O(ωnS) R : O(t2ωωnR +nS))
L! ↗ disj. proj. O((tω)2nR +nS) S : O(ω2nS) R : O((tω)2nS +nR)

Lp c > 2t(ω
1
p +1) O(t pnS + t2ωωnR) S : O((ω+ t p)nS) R : O(nS + t2ωωnR))

[57] L1,L2,L!
Disjoint Hash,

0 ↑ s ↑ ω
#(ω(nS2s +nR2ω↔s)) S : #(ωnS2s) R : #(ωnR2ω↔s)

[66]
L! O((nS +nR)(log t)ω) O((nS +nR)(log t)ω)

Lp 2∀-apart on all dim. O(nS(ω+ p log t)+
nR(ωt + p log t)) O(nS(ω+ p log t)+nR(ωt + p log t))

Ours Hamming None O(ω(nS + tnR)) S : O(ω(nS + tnR)) R : O(ωtnSnR)
– FPR/FNR: assumes that receiver can tolerate non-negiligible false positive/negative rate.
– R. UniqC: assumes that for each vector of R there exist at least t +1 dimensions s.t. on each of these dimensions this vector has a unique value different

from all other elements of R.
– R. disj. proj.: assumes that for each vector y of R there exists at least one dimension j on which |y[j]↔y

↘[j]|> 2t for all other elements y
↘ of R.

– R→S. disj. proj.: assumes that disj. proj. assumption holds for sender and receiver sets.

This paper introduces an efficient FPSI protocol achieving
linear communication complexity for arbitrary input distribu-
tions. Our protocol computes the intersection of vectors from
two parties within a Hamming distance threshold t. By lever-
aging inner-product predicate encryption, we reduce (private)
fuzzy intersection computation to (private) testing whether
vector inner-products match specific values. Pairwise testing
to verify that one party’s inputs are within a specified Ham-
ming distance of the other party’s inputs can be performed
offline, eliminating the need for any communication. Instead,
one party simply sends encryptions of their input vectors, and
the other party obtains decryption keys for each of their input
vectors, leading to both linear communication complexity and
concrete practicality.

While we discuss related work in great detail later in Sec-
tion 5, we compare the main features of our protocol to related
work in Table 1. In summary, our technical highlights are:

• We present the first scheme to securely realize fuzzy private
set intersection for Hamming distance, featuring linear com-
munication complexity in the size of parties’ input sets, the
data dimension, and the distance threshold. Our techniques

do not make any restrictive assumption on the structure or
distribution of the parties’ sets.

• Towards practicality, we show that inner-product predi-
cate encryption, when used in our scheme, only needs
to satisfy a weak notion of selective security to achieve
full simulation security of fuzzy PSI. This weak notion
covers both a game-based formulation (IND-WSS) and a
simulation-based formulation (Sim-WSS). We prove, first,
that IND-WSS≃ Sim-WSS. Surprisingly, we then prove
that today’s concretely practical selectively secure schemes
are already IND-WSS secure and thus usable as a building
block, i.e., they are composable.

• We design a two-party, distributed, and concretely practical
version of the key derivation scheme for the predicate en-
cryption scheme by Park [55]. A two-party key derivation
instead of relying on a trusted third party is an important
building block in our main construction.

• To show concrete practicality of our techniques, we imple-
ment and benchmark them. Our code is openly available [6].

PARAMETERS: Number nS of input vectors xi from Sender S, num-
ber nR of input vectors yi from Receiver R where
xi,yi ⇐ {0,1}ω, vector length ω, threshold t

1. Wait for input InS = (x1, . . . ,xnS) from sender S and InR =
(y1, . . . ,ynR) from receiver R.

2. Output OutR = {(xi,y j)|xi ⇐ InS,y j ⇐ InR s.t. HD(xi,y j) < t}
to R.

Figure 1: Ideal fuzzy PSI functionality FFPSI

Other metrics: We discuss potential extensions of Hamming
distance to other metrics in Appendix E.

Computational complexity: A key design decision in our pro-
tocol is the trade-off between communication and computa-
tion. We explicitly prioritize achieving minimal, linear com-
munication complexity for arbitrary data distributions which
necessitates a quadratic O(nSnR) computational cost at the
receiver. This cost arises from the pairwise testing required
when no structural assumptions can be leveraged to prune the
search space. While this computational complexity is a known
barrier when working on unstructured data [16, 64], we argue
it is a justified trade-off in several important scenarios.

First, in many real-world deployments, particularly dis-
tributed systems, communication is the dominant performance
bottleneck and cost driver [39]. Computation is local, paral-
lelizable, and benefits from Moore’s Law, while network band-
width is constrained by physical infrastructure. Our protocol
is designed for these communication-bound environments.
Second, the protocol is practical for asymmetric use-cases,
where a client with a small set queries a large server database.
Examples include contact discovery on mobile devices, bio-
metric authentication against a server, or checking a small
list of threat indicators against a large security log. In these
scenarios, the quadratic cost remains well within feasible lim-
its. Our evaluation (Section 4) provides concrete evidence
for the protocol’s efficiency in these contexts. Our primary
contribution is therefore a new, optimal design point for FPSI
that prioritizes linear communication and assumption-free
deployment, addressing a critical gap in the literature for
communication-constrained and asymmetric applications.

1.1 Our results in a nutshell

This paper addresses the secure computation of Fuzzy Private
Set Intersection (Fuzzy PSI), formalized as an ideal func-
tionality in Figure 1. In this setting, a sender S holds an
input set InS = {x1, . . . ,xnS}, and a receiver R holds an in-
put set InR = {y1, . . . ,ynR}. Each element xi and y j is a bi-
nary vector of length ω, i.e., xi,y j ⇐ {0,1}ω. The goal is to
compute the fuzzy intersection of InS and InR, defined as all
pairs (xi ⇐ InS,y j ⇐ InR) such that their Hamming distance
HD(xi,y j) is below a threshold t. The crucial security re-
quirement is that R learns only the fuzzy intersection, while S
learns nothing about R’s input.

We propose a new protocol ∃FPSI that securely realizes
the ideal functionality FFPSI from Figure 1. Our construction
follows two main steps: (1) we design ∃FPSI assuming the
existence of a black-box inner product functionality, and (2)
realizing this black-box functionality through inner product
predicate encryption techniques.

Constructing ∃FPSI from Inner Products: Assume access to a
black-box functionality that, given input vectors x from S and
y from R, outputs to R whether the inner product ⇒x,y⇑ equals
a threshold %. Beyond this output, R does not learn anything
about S’ input, and S does not learn anything about R’s input.

If we have such a black-box functionality, the idea is then to
exploit a well-known relation between the Hamming distance
of two vectors and their inner product [42]. Roughly speaking,
sender S creates a new vector x

↘ out of x, and Receiver R a
new vector y

↘ out of y such that HD(x,y) = ⇒x↘,y↘⇑ holds. So,
one converts the problem of testing whether x and y have
Hamming distance % to the problem of testing whether the
inner product of x

↘ and y
↘ equals %.

Building on this reduction, we determine whether for the
two vectors x and y their Hamming distance is less than a
threshold t by computing for % ⇐ {0, . . . , t} whether ⇒x↘,y↘⇑=
%. So in conclusion, we construct our fuzzy PSI protocol ∃FPSI

by iterating over inner product tests.
At this point, we omit (crucial) subtleties about R learning

the exact Hamming distance instead of only learning whether
the Hamming distance is less than t and refer to Section 2
for full details on how we overcome them. Also, we rele-
gate aspects such as the need for the black box inner product
functionality revealing x in case ⇒x↘,y↘⇑= % to Section 2.

Secure, Efficient Two-Party Inner Product Computation: The
second step is to actually build such a black-box inner product
test functionality described above with the goal of achieving
communication complexity linear in sizes nS and nR of the
parties’ input sets (as well as ω and t).

We employ a sub-type of functional encryption called pred-
icate encryption for inner product predicates. This encryption
allows one party to encrypt a message m under a vector x⇐Zω

p
to obtain ciphertext c. Another party with vector y ⇐ Zω

p and
corresponding secret key sky can decrypt c to retrieve m if and
only if ⇒x,y⇑= 0. If ⇒x,y⇑ ⇓= 0, decryption fails, revealing no
information about m or x beyond the inequality of the inner
product. The idea is that S encrypts each xi with itself (m= xi)
and sends the resulting ciphertexts to R. Receiver R obtains
decryption keys sky j for each y j and tests whether they can
decrypt each ciphertext, yielding a simplified version of the
black-box we want. The communication cost of these steps is
linear in nS, nR, ω, and t.

However, using predicate encryption again presents two
technical challenges which we overcome. First, practical pred-
icate encryption schemes are only selectively secure under
game-based definitions. This renders secure composition as
part of our main construction ∃FPSI difficult. Second, as with

functional encryption also predicate encryption is typically
run by a trusted third party that sets up the keys (public key,
master secret key) and serves secret keys sky to recipients
using a key derivation algorithm. In our fuzzy PSI scenario,
there are only two parties, sender and receiver, who cannot
resort to a trusted third party.

We address the first challenge by devising a new weak(er)
selective security definition for predicate encryption for which
we can show that it implies a weak notion of simulation-based
security that is sufficiently strong to be useful for our purposes.
As this new simulation-based security definition is implied by
current selectively secure predicate encryption schemes, we
can use these schemes as a simple hybrid in our constructions.

We solve the second challenge by letting the fuzzy PSI
Sender S run the trusted third party and set up the system.
Then, for each query for a decryption key sky from Receiver
R, we propose a new two-party key derivation protocol, where
the input from S is the master secret key, the input from R
is y, and the only information R learns is sky. Sender S does
not learn anything about y. Although such a two-party key
derivation protocol can be achieved by reverting to general
2PC techniques, the outcome is often impractical in terms
of high communication or computation costs. Consequently,
we design a new concretely practical OT-based protocol tai-
lored to a recent inner product predicate encryption scheme,
maintaining linear communication complexity in nR.

Summary: By abstracting these two steps, we arrive at the
following informal, simplified description of protocol ∃FPSI.

1) Sender S sets up a predicate encryption scheme for inner
products, encrypts slightly modified versions of each input
vector xi, and sends resulting ciphertexts ci to Receiver R.

2) S and R engage in a two-party distributed key derivation
protocol allowing R to obtain a secret key sky j for a slight
variation of each of R’s input vectors y j.

3) For each combination of ci and sky j , R tries to decrypt
ci. A successful decryption reveals that the inner product of
xi and y j satisfies a specific condition, implying that xi and
y j are within a certain Hamming distance. Simultaneously, R
recovers xi and adds (xi,y j) to the fuzzy intersection.

The resulting communication complexity is in O(nS +nR)
for sending all ciphertexts from S to R and obtaining secret
keys. Computational complexity is in O(nS ·nR) as R has to
try all possible combinations of ciphertexts and secret keys.

1.2 Preliminaries

We briefly summarize the notation used throughout this paper.
To denote a length-n ordered sequence of elements xi, we

write (x1, . . . ,xn). Vectors x are sequences of elements and
written in bold fonts. For vector x = (x1, . . . ,xn) of length n,
we write x[i] to denote the ith element xi. We use i ⇐ [n] as
a shorthand for i ⇐ {1, . . . ,n} and (xi)i⇐[n] as a shorthand for

sequence (x1, . . . ,xn). We make use of predicates [A ?
= B] that

PARAMETERS: Prime p, vector length ω, number nS of input vectors
xi ⇐ {↔1,1}ω from Sender S, number nR of input
vectors y j ⇐ {↔1,1}ω from Receiver R, set T ⇔ N

1. Wait for vectors (xi)i⇐[nS] from S.
2. Wait for vectors (y j) j⇐[nR] from R.
3. Send (bi, j,%, x̂i, j,%)i⇐[nS], j⇐[nR],%⇐T to R, where

bi, j,% = [⇒xi,y j⇑
?
= %] x̂i, j,% =

{
xi, if bi, j,% = 1
↖, otherwise.

Figure 2: Ideal restricted inner-product predicate encryption
functionality FPEI

can either evaluate to 1 (true) or 0 (false). If A equals B, then
[A ?

= B] evaluates to 1, otherwise it evaluates to 0.
For Fuzzy PSI, the inputs of sender and receiver are sets,

and each element in the set is a vector. As we will see later
in Section 3, predicate encryption schemes are defined over
attribute vectors over vector space Zω

p. At the same time,
Fuzzy PSI requires binary vectors over {0,1} as input, and
other functionalities need vectors over {↔1,1} as input. If
clear from the context, we will use terms attribute vectors and
vectors interchangeably in this paper.

Security model: We operate in the standard semi-honest secu-
rity model, where parties follow the protocol, but are curious
to learn from the transcript. This approach is consistent with
the vast majority of the Fuzzy PSI literature [13, 16, 20, 21,
29, 32, 35, 57, 63–66], allowing us to focus on the core chal-
lenge of achieving linear communication for unstructured
data. We briefly discuss a potential path to malicious security
in the full version of this paper [7].

2 Protocol Details

This section focuses on our main contribution, a protocol
∃FPSI securely realizing ideal fuzzy PSI functionality FFPSI.
To simplify exposition and ease understanding, we assume
for now the existence of an ideal functionality FPEI as shown
in Figure 2. We will use FPEI in the construction of protocol
∃FPSI as a building block. Later in Section 3, we then describe
the actual protocol implementing building block FPEI.

The main idea behind ideal functionality FPEI is that Sender
S sends their input vectors xi ⇐ {↔1,1}ω to a trusted third
party (TTP), and also Receiver R sends their vectors y j ⇐
{↔1,1}ω to the TTP. Observe that, for FPEI, input vectors xi
and y j are over {↔1,1} and not binary vectors. For set T ⇔N,
the TTP then sends back to R whether, for all xi, y j, and %⇐ T ,
the inner products are equal to %. That is, Receiver R learns
all predicates [⇒xi,y j⇑

?
= %]. Moreover, in case ⇒xi,y j⇑=%, R

also learns xi.
We call FPEI a restricted inner-product predicate encryp-

tion functionality, as it is close to regular predicate encryption
for inner product predicates, but we are restricting to input
vectors over {↔1,1} instead of Zp and require inner products

equal to %. We will clarify details in Section 3.

2.1 Building Fuzzy PSI with FPEI

The key challenge to overcome when privately computing
fuzzy PSI for the Hamming distance is to privately compute
the Hamming distance itself. Our approach for privately com-
puting the Hamming distance begins by exploiting a well-
known relation between the Hamming distance HD(x,y) of
two vectors x and y and their inner product ⇒x,y⇑. However,
instantiating this relation in a secure protocol turns out to
be non-trivial, as it requires composable security and a dis-
tributed key setup.

In general, the Hamming distance of two binary vectors
x,y ⇐ {0,1}ω can be computed using the inner product with
the following trick [42]. For vector x ⇐ {0,1}ω (and simi-
larly y) construct vector x

↘ ⇐ {↔1,1}ω (and similarly y
↘) by

setting x
↘[i] = ↔1 if x[i] = 0, and x

↘[i] = 1 if x[i] = 1. As a
consequence, we have HD(x,y) = ω↔⇒x↘,y↘⇑

2 .

To compute [HD(x,y)
?
= t] for some t ⇐ N, we just have

to check whether [⇒x↘,y↘⇑ ?
= ω↔2t]. So, for % = ω↔ 2t, we

have [HD(x,y)
?
= t] = [⇒x↘,y↘⇑ ?

= %], which we can compute
using FPEI. To check whether the Hamming distance of vec-

tors x and y is less than some threshold t, [HD(x,y)
?
< t] = 1,

our idea is to simply compute for & ⇐ (0, . . . , t ↔1) whether
[HD(x,y)

?
= &] = 1 by setting T in FPEI appropriately. Specif-

ically, to compute [HD(x,y)
?
< t], we compute [⇒x↘,y↘⇑ ?

= %] for

%⇐ T = {ω↔2t+2, . . . ,ω} with FPEI. As soon as [HD(x,y)
?
<

t] = 1, this approach leaks t to the adversary which is more

than an ideal functionality computing [HD(x,y)
?
< t] would

leak. However, in the specific context of Fuzzy PSI, this addi-
tional leakage is consistent with the target ideal functionality:
for the case HD(x,y)< t, the Fuzzy PSI ideal functionality
FFPSI of Figure 1 outputs x anyway in the clear to receiver R
which allows R to also compute HD(x,y). We conclude by
presenting an ideal functionality F <t

HD and a realizing protocol
∃<t

HD that for two sets of vectors (xi)i⇐[nS] and (y j) j⇐[nR]

1. output [HD(xi,y j)
?
< t] to R and

2. output xi and HD(xi,y j) to R if HD(xi,y j)< t.
Figure 3 shows F <t

HD, and Figure 4 shows ∃<t
HD. Protocol

∃<t
HD follows exactly the intuition we have described above.

Lemma 1 (Proof in Appendix B.1). Protocol ∃<t
HD securely

realizes F <t
HD in the FPEI-hybrid model with parameter T =

{ω↔2t +2, . . . ,ω}.

2.2 Fuzzy PSI Protocol ∃FPSI

With F <t
HD at hand, the construction of a fuzzy PSI protocol

becomes straightforward. In our fuzzy PSI protocol ∃FPSI

shown in Figure 5, Receiver R simply outputs each y j and

PARAMETERS: Threshold t, vector length ω, number nS of input vec-
tors xi ⇐ {0,1}ω from S, number nR of input vectors
y j ⇐ {0,1}ω from R

1. Wait for vectors (xi)i⇐[nS] from Sender S.
2. Wait for vectors (y j) j⇐[nR] from Receiver R.
3. Send (bi, j,∋i, j,zi, j)i⇐[nS], j⇐[nR] to R where

bi, j = [HD(xi,y j)
?
< t] ∋i, j =

{
⇒xi,y j⇑, if bi, j = 1
↖, otherwise.

zi, j =

{
xi, if bi, j = 1
↖, otherwise.

Figure 3: Ideal functionality F <t
HD

INPUT OF S: (xi)i⇐[ns],xi ⇐ {0,1}ω

INPUT OF R: (y j) j⇐[nR],y j ⇐ {0,1}ω

PARAMETERS: Threshold t, an ideal functionality FPEI for length ω
vectors and % ⇐ T = {ω↔2t +2, . . . ,ω}

PROTOCOL:
1. For i ⇐ [nS],

(a) S creates vector x
↘
i by replacing each 0 in xi by a ↔1.

(b) S sends x
↘
i to FPEI.

2. For j ⇐ [nR]
(a) R creates vector y

↘
j by replacing all 0 elements of y j by ↔1.

(b) R sends y
↘
j to FPEI.

3. For i ⇐ [nS], j ⇐ [nR], and % ⇐ T = {ω↔2t +2, . . . ,ω} FPEI sends
(ui, j,%,vi, j,%) back to R.

4. For i ⇐ [nS], j ⇐ [nR],
• if ↗(i, j,%) such that ui, j,% = 1, R outputs (bi, j = 1,∋i, j =

ω↔%
2 ,zi, j = vi, j,%), where every ↔1 element of vi, j,% is replaced

by a 0.
• otherwise, if ⇓ ↗ui, j,% = 1, R outputs (bi, j = 0,∋i, j = zi, j =↖).

Figure 4: Protocol ∃<t
HD in the FPEI-hybrid model

corresponding xi = zi, j for which bi, j from F <t
HD equals 1. So,

R outputs the xi that are within Hamming distance less than t
to y j, as indicated by bi, j = 1.

Theorem 1 (Proof in Appendix B.2). Protocol ∃FPSI securely
realizes FFPSI in the F <t

HD-hybrid model.

3 Realizing FPEI

After presenting protocol ∃FPSI for Fuzzy Private Set Intersec-
tion, we now turn to the construction of its core component, a
protocol for ideal functionality hybrid FPEI. Our approach is
based on predicate encryption techniques for inner product
predicates, which, as we will demonstrate, already achieve a
functionality closely aligned with FPEI. However, embedding
predicate encryption as a building block within a more com-
plex protocol introduces additional technical challenges. We
begin with an introduction to relevant predicate encryption
schemes, their challenges, and how to realize FPEI with them.

INPUT OF S: Input vectors (xi)i⇐[nS], xi ⇐ {0,1}ω

INPUT OF R: Input vectors (y j) j⇐[nR], y j ⇐ {0,1}ω

PARAMETERS: Number ns of input vectors from S, number nR of
input vectors from R, vector length ω, threshold t

PROTOCOL:
1. S sends (xi)i⇐[nS] in shuffled order to F <t

HD, R sends (y j) j⇐[nR] to
F <t
HD.

2. R receives back (bi, j,∋i, j,zi, j)i⇐[nR], j⇐[nS] from F <t
HD.

3. For each bi, j = 1, R outputs (zi, j,y j).

Figure 5: Fuzzy PSI Protocol ∃FPSI in the F <t
HD-hybrid model

3.1 Predicate Encryption

Informally, predicate encryption is a sub-class of functional
encryption where the decryption of a ciphertext is possible
only if a predicate function f over private key and ciphertext
evaluates to 1, see [10, 11, 42, 53, 62] for an overview. More
specifically, a predicate encryption scheme for function f en-
crypts plaintext m under attribute x to ciphertext c. A receiver
holding the private key for an attribute y can decrypt c back
to m if and only if function fy(x) evaluates to 1.

Standard examples for predicate functions f include
identity-based encryption [8, 9, 59, 61], where attributes x
and y could be identities (such as bit strings). In this case,
fy(x) outputs 1 if and only if x = y. In attribute-based en-
cryption [5, 37, 68], attributes x and y come from different
attribute spaces. Here, x can be a Boolean formula in n vari-
ables, and y is an assignment for the n variables. Predicate
function fy(x) evaluates to 1 if and only if Boolean formula x
evaluates to true for assignment y.

As with functional encryption, predicate encryption is typi-
cally applied in scenarios where the receiver of ciphertext c
has to ask a third trusted party for private keys corresponding
to attribute y. For example, in ID-based encryption, the re-
ceiver would need to show valid credentials to the TTP to get
back the private key that allows decryption of all ciphertexts
encrypted under their ID y.

The above examples of predicate encryption are called pay-
load hiding. A ciphertext encrypting a payload (plaintext m)
under attribute x can only be decrypted by a private key for
attribute y, if fy(x) evaluates to 1. In this paper, we require a
simplified variation of payload-hiding predicate encryption
where the payload m is the actual attribute x. So, after decryp-
tion, the receiver does not only learn that fy(x) = 1, but they
also learn x in the clear. We will show later in Appendix A that
any predicate encryption scheme trivially realizes simplified
predicate encryption by setting plaintext m = x.

We now formalize the intuition behind this simplified pred-
icate encryption and then define its security properties.

Definition 1. For attribute space (, let predicate f : (↙(∝
{0,1} be a function mapping attributes x and y from (
to 1 or 0. Let) be the security parameter and C the ci-
phertext space. A simplified predicate encryption scheme

PE= (Setup,KDer,Enc,Dec) for predicate f is defined as

• (pk,msk) ′ Setup(1)): generates a public key pk and a
master secret key msk.

• sky ′ KDer(msk,y): on input master secret key msk and
an attribute y ⇐ (, this algorithm outputs a secret key sky.

• c ′ Encpk(x): using public key pk, this algorithm takes
attribute x ⇐ (to output a ciphertext c ⇐ C .

• {x,↖}′ Decsky(c): for secret key sky and a ciphertext c,
this algorithm outputs either x ⇐ (or ↖.

For correctness, we require that, for all x,y ⇐ (such that
fy(x) = 1,

Pr[Decsky(c) =x : (pk,msk)′ Setup(1)),

sky ′ KDer(msk,y),c ′ Encpk(x)] = 1.

Discussion: In the definition above, we limit expressiveness
and present the simplified version of predicate encryption
only to suit our application’s specific needs and to ease no-
tation. For completeness sake, note that, in the general case
of predicate encryption, f could also be defined over two dif-
ferent input spaces. There also exist predicate-only predicate
encryption schemes that do not encrypt a plaintext, but only
output if fy(x) = 1, i.e., [fy(x)

?
= 1]. Also, we only consider so

called (strongly) attribute-hiding, payload-hiding predicate
encryption where x and m are both hidden in case the receiver
uses a secret key y where fy(x) = 0. We stress that predicate-
only predicate encryption does not give the same properties
as what we target with our simplified predicate encryption,
and we discuss differences in the full version of this paper [7].
We point out that several other types of predicate encryption
schemes with different security guarantees exist. For a more
in-depth introduction, we refer to [10, 42, 53]. We discuss
these variations and their use for our main construction in the
full version of this paper [7].

Of specific interest in this paper are predicate encryption
schemes for the prominent inner-product predicate [1, 19,
23, 36, 40, 42, 49–52, 55, 69]. There, attributes x and y are
length-ω vectors from vector space (= Zω

p for a prime p with
|p|=), and fy(x) = 1 if and only if they are orthogonal, so
their inner product ⇒x,y⇑ is 0.

As simplified predicate encryption for the inner-product
predicate over Zω

p is at the core of this work, we write predi-
cate encryption as a shorthand from now on if obvious from
the context. We will also use vector notation x for attributes.

3.2 Security of Predicate Encryption

The standard, strong security definition for predicate encryp-
tion is adaptive security. The idea is that the adversary learns,
first, the public key and then gets oracle access to KDer before
specifying their challenge attribute(s). For predicate encryp-
tion of general predicates as well as for functional encryp-
tion of general functions, it has been shown difficult to find

simulation-based security definitions and prove security in the
standard model [10, 15, 53]. Similar to adaptive simulation-
based security for public key encryption [48], the main chal-
lenge for the simulator is to send a ciphertext to the adversary
without knowing which decryption keys the adversary will
request in the future, so which information the adversary will
be able to compute from the underlying plaintext.

Recent works have introduced sophisticated predicate en-
cryption schemes that achieve adaptive simulation security for
inner product predicates [1, 23, 36, 69]. While these schemes
could theoretically serve as hybrid functionalities in our main
Fuzzy PSI protocol and its security proof, the resulting scheme
would not necessarily be practical or even implementable. The
concrete practicality of these recent schemes remains uncer-
tain due (I) their use of fully-homomorphic encryption as a
building block, (II) use of complexity leveraging in their se-
curity argument or (III) ciphertext and key sizes being linear
in the number of plaintexts. Concrete practicality of recent
theoretical advances has yet to be validated through imple-
mentations and parameter evaluations, as no concrete imple-
mentations or performance assessments currently exist.

Game-Based Security: An alternative line of work has pre-
sented predicate encryption schemes that are proven secure
for a game-based security definition [19, 40, 42, 49–52, 55].
Some of these schemes offer only selective security (see dis-
cussion below), work in impractical groups of composite order
or have large key sizes. Yet, there exist other schemes that are
not only asymptotically efficient, but also concretely practical
with implementations available [47, 55]. Unfortunately, using
a predicate encryption primitive secure under a game-based
definition as a black-box to prove simulation-based security
of a more complex protocol realizing FPEI (and ultimately
Fuzzy PSI) is involved. There are no composability guaran-
tees implied by this type of security definition, and the security
proof would need to include a cumbersome reduction to the
predicate encryption scheme.

A way to remedy this problem, and our strategy in this
section, is to show that a game-based definition implies a
similar simulation-based definition. As a result, any scheme
providing the game-based security can be used as a hybrid
functionality in the more complex protocol, offering the cor-
responding simulation-based security. There has been only
limited exploration of the relationship between game-based
and simulation-based security in predicate encryption so far.
O’Neill [53] was able to show for general functional encryp-
tion that a special type of security called token-non-adaptive
(TNA) security implies a corresponding simulation-based def-
inition. Unfortunately, current concretely practical predicate
encryption schemes [19, 40, 42, 49–52, 55] offer selective
security, a notion that is different from TNA security, and
there is no simulation-based security definition implied by
selective security for predicate encryption schemes.

Roadmap for the remainder of this section: Surprisingly, we

Experiment ExpIND-SS
PE,A ()) Experiment ExpIND-WSS

PE,A ())

b $′↔ {0,1} b $′↔ {0,1}
((xi,0,xi,1)i⇐[n],st)′ A1(1)) ((xi,0,xi,1)i⇐[n],(y j) j⇐[n↘],st)′ A1(1))
(pk,msk)′ Setup(1)) (pk,msk)′ Setup(1))
(ci ′ Encpk(xi,b))i⇐[n] K = (KDer(msk,y j)) j⇐[n↘]

b↘ ′ AKDer(msk,·)
2 (pk,(ci)i⇐[n],st) (ci ′ Encpk(xi,b))i⇐[n]

If b = b↘ output 1, else output 0. b↘ ′ A2(pk,K ,(ci)i⇐[n],st)
If b = b↘ output 1, else output 0.

Figure 6: (Weak) selective game-based definitions

observe and prove that FPEI can be implemented by any
predicate encryption primitive that meets a weak(er) notion
of simulation-based security (Sim-WSS) that we introduce.
We also show that this weaker notion of simulation secu-
rity is implied by a weaker notion of game-based security
(IND-WSS) which, in turn, is already achieved by existing
predicate encryption schemes that are so far proven secure
only using a game-based, selective security definition. That
is, we prove that existing predicate encryption schemes can
serve as simulation-secure building blocks to securely realize
FPEI under their respective hardness assumptions. Finally, we
eliminate the need for a TTP during the key derivation of
predicate encryption schemes. For the general case, we use
2PC. For the scheme of Park [55], we develop a more efficient
solution by a careful modification of its KDer algorithm.

3.3 Selective Security

We follow the approach suggested by Boneh et al. [10]
and O’Neill [53]. We define a weak game-based definition
for which we can show that it implies a weak simulation-
based security definition for predicate encryption. Our weak
simulation-based security definition might not have much
utility for general predicate encryption scenarios in other ap-
plications and other contexts, but it is sufficiently strong to
be useful as a building block in the special case of Fuzzy PSI
and securely realizing FPEI.

We start with a simplified game-based notion for selec-
tive security, matching our simplified predicate encryption
where the plaintext m equals the attribute x under which it
is encrypted. To avoid cumbersome notation, we adopt this
simplification without loss of generality, as it does not affect
the validity of our results. More precisely, the only difference
between this simplified selective security below and regular
selective security is that the adversary cannot output plain-
texts m as part of their challenge. Appendix A shows that
any predicate encryption scheme with standard selective secu-
rity from related work [42, 49, 50, 55] also trivially realizes
simplified predicate encryption in the random oracle model.

The main idea of selective security [3, 14, 34] in general is
that the adversary has to commit to the attributes they want
to be challenged on before receiving the public key. Below is
the formal simplified selective security game-based definition
IND-SS (“IND-Selective Security”) for predicate encryption.

Definition 2 (IND-SS). Let) be the security parameter,PE=
(Setup,KDer,Enc,Dec) be a predicate encryption scheme,
and A = (A1,A2) be an adversary.

Consider security experiment ExpIND-SS
PE,A ()) in Figure 6

where xi,0,xi,1 ⇐ (. For each of A’s inputs y ⇐ (to an or-
acle call KDer(msk, ·), it must hold that
1. (fy(xi,0) = fy(xi,1))i⇐[n] and

2. for each i: if fy(xi,0) = fy(xi,1) = 1, then xi,0 = xi,1.
The probability that experiment ExpIND-SS

PE,A ()) outputs 1 is
Pr[ExpIND-SS

PE,A ()) = 1].
A predicate encryption scheme PE is IND-SS secure iff for

all PPT ()) adversaries A , the following is negligible in):

AdvIND-SS
PE,A ()) = 2 ·Pr[ExpIND-SS

PE,A ()) = 1]↔1.

As standard, Definition 2 requires equality of predicate
evaluations and equality of attributes in case an attribute can
be decrypted, so that A cannot trivially derive b.

In the IND-SS security definition above as well as in all
following definitions, we specify security for multiple encryp-
tions (Definition 12.5 of Katz and Lindell [41]). The adversary
can send n pairs of attribute vectors (xi,0,xi,1)i⇐[n] instead of a
single pair of attributes (x0,x1). As with regular public key en-
cryption, also selectively secure predicate encryption schemes
secure for one encryption are secure for multiple encryptions
using a standard hybrid argument, see, e.g., Lemma 6 in [34].

3.4 Weak Selective Security

Yet, even for this selective security setting, it is unclear how
to derive a simulation-based definition, amenable for com-
position to prove the security of our fuzzy PSI scheme, and
that could be reduced to Definition 2. In the reduction, a
simulator Sim would receive an x from the adversary in the
beginning and need to generate an x

↘ such that fyi(x) = fyi(x
↘)

for all yi that Sim would not have at this step. Attributes yi
become available to Sim only later during key derivation. Our
insight is that, for the specific case of Fuzzy PSI, the following
weaker definition of selective security for predicate encryption
is sufficient. In our weaker definition, the adversary specifies
challenge attribute x and all yi they will query for during key
derivation up front. The weaker selective game-based security
implies a simulation-based security that we use in our proof
of Fuzzy PSI. In the full version of this paper [7], we further
discuss real-world implications and use cases for predicate
encryption schemes that meet our weaker security definition.

Note that our weak selective security resembles the one for
arbitrary functional encryption by Garg and Srinivasan [30]
and the “very selective” security by Agrawal [1].

3.4.1 Game-Based Security

We will now present our weak game-based security defi-
nition IND-WSS (IND-“Weak Selective Security”). Both the

game-based IND-WSS definition as well as our simulation-
based definition Sim-WSS later follow the game- and
simulation-based template definitions for adaptive security of
O’Neill [53]. As with selective security, the difference to these
templates is that the adversary essentially commits to both
the challenge attributes (xi,0,xi,1) and the y j before Setup is
called, and the adversary can only get keys for the y j they
have initially committed to. We will obtain two interesting
(sub-)results: first, the weaker IND-WSS and Sim-WSS secu-
rity definitions prove sufficient for our fuzzy PSI construction.
Second, there are already concretely practical schemes that
satisfy them. Our new security notions also hold indepen-
dent value and potential for other applications, since they are
satisfied by a wider range of predicate encryption schemes

Definition 3 (IND-WSS). Let) be the security parameter,
PE= (Setup,KDer,Enc,Dec) be a simple predicate encryp-
tion scheme, and A = (A1,A2) be an adversary. Consider
security experiment ExpIND-WSS

PE,A ()) in Figure 6. All xi,0, xi,1,
and y j output by A1 must be such that
1. fy j(xi,0) = fy j(xi,1).
2. if fy j(xi,0) = fy j(xi,1) = 1, then xi,0 = xi,1.
The probability that experiment ExpIND-WSS

PE,A ()) outputs 1 is
Pr[ExpIND-WSS

PE,A ()) = 1].
Predicate encryption scheme PE is IND-WSS secure iff for

all PPT ()) adversaries A , the following is negligible in):

AdvIND-WSS
PE,A ()) = 2 ·Pr[ExpIND-WSS

PE,A ()) = 1]↔1.

Before presenting the simulation-based security definition
implied by IND-WSS, we briefly show that IND-SS security
implies IND-WSS security. With IND-WSS being weaker
than IND-SS, we can then use any concretely practical selec-
tively secure predicate encryption scheme for inner-products
in our implementation and evaluation. It will automatically
satisfy our weak simulation-based security definition, too.

Lemma 2 (Proof in Appendix B.3). Let PE be IND-SS secure
predicate encryption. Then, PE is also IND-WSS secure.

3.4.2 Preimage Sampleability

Before completing the transition from game-based to
simulation-based security, we need one final ingredient. Pred-
icate f for which our predicate encryption scheme is defined
for must be preimage sampleable [53]. Preimage sampleabil-
ity for f means that, given a sequence of fy j(x) for unknown
x, you can efficiently compute an x

↘ such that fy j(x) = fy j(x
↘)

for all j. As preimage sampleability is not new [53] and for
space reasons, we defer its definition and the proof that inner-
product predicate is preimage sampleable to Appendix C.

3.4.3 Simulation-based Security

Finally, we present our simulation-based security definition
Sim-WSS (“Sim-weak selective security”).

ExpSim-WSS-real
PE,A ()) ExpSim-WSS-ideal

PE,A ,Sim ())
((xi)i⇐[n],(y j) j⇐[n↘],∗)′ A1(1)) ((xi)i⇐[n],(y j) j⇐[n↘],∗)′ A1(1))
(msk, pk)′ Setup(1)) (msk, pk)′ Setup(1))
K = (KDer(msk,y j)) j⇐[n] K = (KDer(msk,y j)) j⇐[n]
cr ′ (Encpk(xi))i⇐[n] cs ′ Sim(pk,(y j, fy j(xi))i⇐[n], j⇐[n↘],K)
∗↘ ′ A2(pk,cr,K) ∗↘ ′ A2(pk,cs,K)
If ∗ = ∗↘ output 1 else 0. If ∗ = ∗↘ output 1 else 0.

Figure 7: Simulation-based security experiments

Definition 4 (Sim-WSS). Let) be the security param-
eter, PE = (Setup,KDer,Enc,Dec) be a predicate en-
cryption scheme, and A = (A1,A2) be an adversary.
Consider the two security experiments ExpSim-WSS-real

PE,A ())
and ExpSim-WSS-ideal

PE,A ,Sim ()) in Figure 7. Let the probabil-
ities that experiment ExpSim-WSS-real

PE,A ()) and experiment
ExpSim-WSS-ideal

PE,A ()) output 1 be

Pr[ExpSim-WSS-real
PE,A ()) = 1] and Pr[ExpSim-WSS-ideal

PE,A ()) = 1].

Predicate encryption scheme PE is Sim-WSS secure iff there
exists a PPT ()) simulator Sim such that for all PPT ()) ad-
versaries A , the following is negligible in):

AdvSim-WSS
PE,A ,Sim()) = Pr[ExpSim-WSS-real

PE,A ()) = 1]↔
Pr[ExpSim-WSS-ideal

PE,A ()) = 1].

The security intuition behind this definition is that A1 out-
puts vectors (xi)i⇐[n] and (y j)i⇐[n↘], but also some value ∗.
Only after this step is the public/master key setup. In the
real experiment, (xi)i⇐[n] is encrypted into a ciphertext cr. A
scheme is simulation secure if there exists a simulator Sim
that can generate a ciphertext cs using only the output of the
ideal functionality, the public key pk and K (the set of private
keys for (y j)i⇐[n↘]), such that allowing any adversary A2 access
to the ciphertext cr, along with the public key pk and K does
not give it a non-negligible advantage, to guess ∗, over a run
using cs the ciphertext output by the Sim. The intuition is that
the ciphertext does not reveal anything about the (xi)i⇐[n] that
cannot be simulated from the output of the ideal functionality.

Lemma 3 (Proof in Appendix B.4). Let PE be an IND-WSS
secure predicate encryption scheme for a preimage sam-
pleable predicate function. Then, PE is also Sim-WSS secure.

3.5 Two-Party distributed KDer

So far, we have silently ignored two important issues. First,
we have assumed that Receiver R can somehow obtain secret
keys K for each of their input vectors y. In the standard
setting of predicate encryption, it is typically a TTP that runs
Setup, derives master secret key msk, and then answers KDer
queries by clients. However, in our two-party setting where
Sender S sets up the encryption, and S and R are mutually
untrusted, we need a distributed two-party KDer. Essentially,

PARAMETERS: Prime p, predicate encryption scheme PE set up by
Sender S for vectors of length (ω+ 1), number nR
of input vectors y j ⇐ {0,1}ω from Receiver R, set
T ⇔ N

1. Wait for master secret key msk from S.
2. Wait for vectors (y j) j⇐[nR] from R.
3. For each j ⇐ [nR],% ⇐ T ,

(a) Create length-(ω+1) vector y j,% by setting

y j,%[1] = y j[1], . . . ,y j,%[ω] = y j[ω],y j,%[ω+1] =↔%.

(b) Send sky j,% ′ KDer(msk,y j,%) to R.

Figure 8: Ideal functionality FKDer

S and R engage in a two-party KDer such that S does not learn
anything about R’s input y, R does not learn anything about
msk, but R still obtains secret key sky ′ KDer(msk,y).

The second issue that we have ignored is that standard
predicate encryption only tests whether the inner product of
vectors equals 0, i.e., [⇒x,y⇑ ?

= 0]. However, for functionality
FPEI, we need to test whether the inner product equals any
% ⇐ N, so [⇒x,y⇑ ?

= %].
We address both issues in this section in a combined way.

Support for arbitrary inner products: The second issue of
privately testing for arbitrary inner products can be easily
addressed. There exists a well-known transformation [42]
that allows to check whether [⇒x,y⇑ ?

= t] for t ⇐ N by just
using the regular functionality for predicate [⇒x,y⇑ ?

= 0] as a
sub-routine. Specifically, to check whether, for two length-ω
vectors x and y, their inner product equals t instead of 0, we
create two vectors x

↘,y↘ of length (ω+1). For i ⇐ {1, . . . ,ω},
we set x

↘[i] = x[i] and y
↘[i] = y[i]. At position ω+ 1, we set

x
↘[ω+1] = 1 and y

↘[ω+1] =↔t. Evaluating the inner product
predicate on x

↘ and y
↘ as input allows deriving if the inner

product of x and y is t, i.e., [⇒x↘,y↘⇑ ?
= 0] = [⇒x,y⇑ ?

= t].
So, to support checking for arbitrary products of length-

ω vectors, we instantiate a predicate encryption scheme for
length-(ω+1) vectors and run the above transformation.

Secure KDer Computation: The transformation of working on
length-(ω+1) vectors leads to the ideal functionality FKDer

shown in Figure 8. To be able to test whether the inner product
of two length-ω vectors is %, R needs to retrieve secret key sky↘

for corresponding length-(ω+1) vector y
↘.

There are several ways one can realize such an FKDer func-
tionality, and we present two approaches. One is a black-box
technique based on 2PC (such as garbled circuits), and one
is modifying the actual real-world KDer algorithm of the
predicate encryption scheme used. While both techniques are
asymptotically efficient with computation and communication
complexity polynomial in the security parameter, the second
approach is also concretely practical for the scheme we will
be using (and others) in our implementation later in Section 4.

INPUT OF S: Master secret key msk of predicate encryption scheme
PE for length-(ω + 1) vectors, msk includes G,
G j,i,Hj,i ⇐G, f j,i ⇐ Zp, for j ⇐ [4], i ⇐ [ω+1]

INPUT OF R: Vectors (y j) j⇐[nR],y j ⇐ {↔1,1}ω

PARAMETERS: Pairing group G used in PE, prime p, number nR of
R’s input vectors, length ω, set T ⇔ N

PROTOCOL:
For each y j, for % ⇐ T ,
1. let length-(ω+1) vector

y
↘[1] = y j[1], . . . ,y↘[ω] = y j[ω],y

↘[ω+1] =↔%.
2. for i ⇐ [ω],

(a) for u ⇐ [4], S chooses random Mu,i
$′G and computes

K↔1
u,i = Gu,i ↔Hu,i K1

u,i = Gu,i +Hu,i

+↔1
u,i = Mu,i + fu,iK↔1

u,i +1
u,i = Mu,i + fu,iK1

u,i.
(b) S and R engage in 1-out-of-2 OT where S is the OT sender

with input (K↔1
u,i ||+

↔1
u,i)u⇐[4] and (K1

u,i||+1
u,i)u⇐[4], and R is the

OT receiver with input y
↘[i] receiving Ky

↘[i]. R extracts the
Ky

↘[i]
u,i which are part of secret key sky↘ and the (+y

↘[i]
u,i)u⇐[4].

3. For u ⇐ [4], S chooses random Mu,ω+1
$′Zp and sets

Ku,ω+1 = Gu,ω+1 +y
↘[ω+1] ·Hu,ω+1 and

+u,ω+1 = Mu,ω+1 + fu,ω+1Ku,ω+1.
4. S sends (Ku,ω+1,+u,ω+1)u⇐[4] and , = G↔−i⇐[ω+1],u⇐[4] Mu,i to R.

5. R computes KA = ,+−i⇐[ω],u⇐[4] +
y[i]
u,i +−u⇐[4] +u,ω+1 which is

part of sky↘ .
6. S computes and sends KB = G↘ completing sky↘ .

Figure 9: Protocol ∃KDer in the FOT-hybrid model

3.5.1 Using 2PC

General two- or multi-party computation techniques such
as garbled circuits allow parties to compute any functionality
or circuit in a way that both parties only see the output of that
computation, but learn nothing else about the other parties’
input, see Evans et al. [26] for an overview.

Consequently, for any specific predicate encryption scheme
PE, let CKDer(msk,y) be a circuit representation implement-
ing PE’s key derivation algorithm KDer(msk,y) with master
secret key msk and attribute y being its input. Let 2PC be
a two-party secure circuit computation mechanism such as
garbled circuits where (o1,o2)′ 2PC(C , i1, i2) securely eval-
uates circuit C on Party 1’s input i1, Party 2’s input i2 and
outputs o1 to Party 1 and o2 to Party 2. We can just plug cir-
cuit CKDer, msk, and y into this mechanism, so S and R jointly
run 2PC(CKDer,msk,y) to obtain o1 = ↖ for S and o2 = sky
for R. The 2PC evaluation of CKDer is asymptotically efficient
and securely realizes FKDer by definition.

3.5.2 Concretely practical construction for Park [55]

For the concrete case of the predicate encryption scheme by
Park [55] used in our evaluation, there exists a more practical
version of two-party KDer without reverting to general 2PC.

Intuition: In Park’s scheme, secret keys comprise ω elements
Ki from some pairing group G, essentially one for each com-

ponent of attribute vector y. The main idea for a two-party
KDer is that the sender prepares two different version of each
Ki: K↔1,i for the case that y[i] = ↔1 and K1,i for y[i] = 1.
Sender S and receiver R then run ω 1-out-of-2 OTs, where
in the ith OT, S inputs (K↔1,i,K1,i), R inputs bit y[i], and R
receives Ky[i],i.

Technical details: As the exact details require some un-
derstanding of Park [55]’s scheme, we summarize the
key derivation (Section 4.1 in [55]). The scheme works
for attributes y ⇐ Zω

p. For an attribute y, the TTP com-
putes secret key sky consisting of 4ω+ 2 elements sky =
((K1,i,K2,i,K3,i,K4,i)i⇐[ω],KA,KB) ⇐G4ω+2. Specifically,

• the first 4ω elements Kj,i are computed as Kj,i = G j,i +y[i] ·
Hj,i, where Gi, j,Hi, j ⇐G do not depend on y, but only on
master secret key msk and independent randomness.

• KA =G+−ω
i=1(f1,iK1,i+ f2,iK2,i+ f3,iK3,i+ f4,iK4,i) where

G ⇐G and f j,i ⇐ Zp come from msk.
• KB = G↘ ⇐G does not depend on y, but only independent

randomness.

We now convert the above KDer into a concretely practical,
secure two-party KDer protocol where Sender S inputs master
secret key msk, and Receiver R inputs y. Recall that in our
case length-ω vectors are transformed to length ω+1 vectors
y
↘, where the first ω elements are either ↔1 or 1, and the last

element is always set to ↔t. For the first ω elements, we let S
compute the two possible versions for each Kj,i that R could
obtain (for either ↔1 or 1) and mask the K f j ,i

j,i by a random
factor M such that R cannot learn more than KA. Then, R can
fetch the Kj,i with OT and compute KA by peeling off random
factors M. For the (ω+1)th element of y

↘, S sends the Kj,ω+1
in the clear. Figure 9 presents protocol ∃KDer in full detail.

Lemma 4 (Proof in in Appendix B.5). Protocol ∃KDer se-
curely realizes FKDer from Figure 8 in the FOT-hybrid model.

Discussion: We point out that several other predicate encryp-
tion schemes for the inner product predicate use key derivation
techniques similar to the one by Park [55], and we conjecture
that our efficient two party KDer technique from above also
applies in their cases [49–52, 69].

There exists a trivial optimization for ∃PEI that we have
omitted from Figure 9 to keep our exposition simple: instead
of running one separate 1-out-of-2 OTs for each % ⇐ T , ob-
serve that R’s choices do not change for the same y

↘. Thus, we
can run a single OT for the combination of (K↔1

u,i ||+1
u,i) for all

% of the same y
↘. Our implementation in Section 4 uses this

optimization to reduce the number of OTs by a factor of |T |.

3.6 ∃PEI from Sim-WSS and KDer

Finally, we complete the construction of a new protocol
to securely realize ideal functionality FPEI (Figure 2) with
the presentation of protocol ∃PEI in Figure 10. It combines

INPUT OF S: (xi)i⇐[nS],xi ⇐ {↔1,1}ω

INPUT OF R: (y j) j⇐[nR],y j ⇐ {↔1,1}ω

PARAMETERS: Set T ⇔ N, predicate encryption scheme PE for
attribute vectors of length ω+1 and matching FKDer-
hybrid for attribute vectors of length ω and parameter
T , security parameter), numbers of input nS,nR

PROTOCOL:
1. S invokes Setup(1)) and gets (pk,msk). S sends msk to FKDer.
2. R sends (y j) j⇐[nR] to FKDer and gets back secret keys K .
3. For each xi, let length-(ω+1) vector x

↘
i be such that

x
↘
i[1] = xi[1], . . . ,x↘i[ω] = xi[ω],x↘i[ω+1] = 1.

S computes (ci ′ Encpk(x
↘
i))i⇐[nS] and sends the ci to R.

4. For i ⇐ [nS], sk j,% ⇐ K ,
• R computes zi, j,% =Decsk j (ci)
• if zi, j,% =↖, R outputs (0,↖), else R outputs (1,zi, j,%).

Figure 10: Protocol ∃PEI in the FKDer-hybrid model

Sim-WSS-secure predicate encryption and distributed KDer
in the now obvious way.

Theorem 2 (Proof in Appendix B.6). Let PE be a Sim-WSS-
secure predicate encryption scheme (simplified predicate en-
cryption for inner-product predicate over Zω

p). Then, ∃PEI se-
curely realizes functionality FPEI in the FKDer-hybrid model.

3.7 Discussion

One might argue that basing our construction of protocol
∃PEI and thus also ∃FPSI on a strong attribute-hiding predi-
cate encryption scheme is unnecessarily restrictive, hinders
performance, and weaker predicate-only predicate encryption
schemes could be sufficient. However, the current state of
the art suggests otherwise. For space reasons, we defer the
detailed discussion to the full version of this paper [7].

Sim-WSS-secure predicate encryption is of independent
interest beyond FPSI. We analyze its broader applicability in
the full version [7]. Additionally, Appendix D formalizes an
extension to fuzzy labeled PSI.

4 Evaluation

We have implemented protocol ∃FPSI and evaluated its per-
formance through benchmarks across various combinations
of parameters nS = nR, t, and ω. The goal of our evaluation
is to investigate the concrete performance of protocol ∃FPSI

across various parameters and to understand practical trade-
offs of achieving linear communication fuzzy PSI without
data structure assumptions.

We report on the concrete performance of ∃FPSI without

directly comparing it to existing protocols. Related work
considering Hamming distance relies on strong assumptions
about the input data structure to optimize performance. For in-
stance, Chongchitmate et al. [21] assume a significant gap ∀t
between elements not within threshold t and evaluate for large

values of ∀ (e.g., 8). Gao et al. [29] require the “R. UniqC”
assumption, where for each vector of Receiver R there exist
at least t + 1 dimensions such that on each of these dimen-
sions this vector has a unique value different from all other
elements of R. Uzun et al. [64] and Chakraborti et al. [16]
offer probabilistic security, permitting a false positive rate,
while we provide strict, deterministic security guarantees.

In conclusion, our work is free from requiring such assump-
tions, as our techniques support arbitrary input conditions. So,
any direct performance comparison would be both uninfor-
mative and inherently unfair. Only to provide context and put
our benchmarks into perspective, we also present time and
communication cost of the work by Chakraborti et al. [16]
(USENIX’23, an improvement of Uzun et al. [64]) alongside
our measurements. This line of work is closest to ours regard-
ing the distribution of inputs in their main protocols. However,
we stress that [16] is computing only an approximate fuzzy
PSI when a non-negligible false-positive rate is acceptable.

FHE Strawman: To establish another cost baseline and demon-
strate the computational inefficiency and high cost of straight-
forward FHE-based solutions, we have also implemented and
benchmarked an FHE strawman protocol. There, Receiver R
encrypts inputs y j and sends them to Sender S. For each xi,
S computes whether any y j is within the Hamming distance
t. Specifically, S homomorphically computes the encryption
of xi+ri ·∃nR

j=0∃t↔1
%=0(−

ω
s=0 xi[s]∞y j[s]↔%) for randomly cho-

sen ri. These ciphertexts are sent back to R, who decrypts
them. If xi is in distance t of any yi, decryption reveals a
xi. We have implemented this approach using Microsoft’s
SEAL library [60]. To avoid FHE parameter explosion and
improve performance, we have also performed optimizations,
e.g., we have computed XORs relying only on additions, ex-
ploiting the fact that S knows xi[s]. We have also reduced the
number of ciphertext multiplications to nS · (lognR + log t) by
structuring terms as a binary tree.

Our implementation is written in C++ and available for
download [6]. At its core, we have re-implemented the predi-
cate encryption scheme by Park [55]. This predicate encryp-
tion scheme is selectively secure for a game-based definition,
it is designed for the inner-product predicate over Zω

p, so it
offers preimage sampleability and is Sim-WSS secure. In
contrast to its previous implementation [47], we have ported
Park’s scheme to the popular MCL library [44] which has
allowed easy adoption of the original KDer algorithm to our
distributed setting (Figure 9). Cryptographic operations are
performed over the Type-3 BN-254 curve using the optimal
Ate pairing. To realize the OT functionality FOT in ∃KDer,
we borrow the Ferret-OT implementation from EMP-OT [67].
Ferret realizes random OT, so S encrypts the possible two
choices inside each key with the random values output by
the random OT and sends the result to R. We use the hash-
based KEM-hybrid transformation described in Appendix A
to encrypt vectors x as plaintexts m in the underlying predi-

Table 2: Benchmarks result. Communication: total data between sender and receiver, Time: total runtime, Cost: monetary cost
for one run on t2.xlarge instances, n: number of input vectors from sender and receiver (nS = nR), ω: vector length, t: threshold
for Hamming distance, ∈: provides weaker security, values for [16] estimated from their paper (see text)

Communication (MByte)

n = 128 n = 512 n = 1024 n = 4096
ω= 16 ω= 32 ω= 16 ω= 32 ω= 16 ω= 32 ω= 16 ω= 32

t = 8 t = 16 t = 8 t = 16 t = 8 t = 16 t = 8 t = 16 t = 8 t = 16 t = 8 t = 16 t = 8 t = 16 t = 8 t = 16
[16]∈ 3316 13264 3316 13264 53054 212217 53054 212217 212217 848867 212217 848867 3.4 ·106 1.4 ·107 3.4 ·106 1.4 ·107

FHE 446 446 446 446 1783 1783 1783 1783 3566 3566 3566 3566 14266 14266 14266 14266
Ours 17 32 33 64 64 127 129 256 128 253 258 511 509 1009 1029 2041

Time (s)

n = 128 n = 512 n = 1024 n = 4096
ω= 16 ω= 32 ω= 16 ω= 32 ω= 16 ω= 32 ω= 16 ω= 32

t = 8 t = 16 t = 8 t = 16 t = 8 t = 16 t = 8 t = 16 t = 8 t = 16 t = 8 t = 16 t = 8 t = 16 t = 8 t = 16
[16]∈ WAN 837 1611 837 1611 13396 25777 13396 25777 53586 103109 53586 103109 857369 1.6 ·106 857369 1.6 ·106

FHE WAN 659 1159 768 1276 10238 18320 11834 19960 40791 73212 47206 79676 638014 1.1 ·106 746429 1.3 ·106

Ours WAN 87 180 176 350 1393 2789 2647 5298 5397 10781 10538 21160 85450 171476 167762 339133
[16]∈ LAN 577 571 577 571 9235 9132 9235 9132 36940 36526 36940 36526 591036 584418 591036 584418
FHE LAN 624 1124 733 1241 10098 18180 11694 19820 40511 72932 46926 79396 636895 1.1 ·106 745310 1.3 ·106

Ours LAN 86 177 172 343 1388 2774 2639 5286 5384 10756 10566 21069 85799 168381 166305 333309
Cost (US$)

n = 128 n = 512 n = 1024 n = 4096
ω= 16 ω= 32 ω= 16 ω= 32 ω= 16 ω= 32 ω= 16 ω= 32

t = 8 t = 16 t = 8 t = 16 t = 8 t = 16 t = 8 t = 16 t = 8 t = 16 t = 8 t = 16 t = 8 t = 16 t = 8 t = 16
[16]∈ WAN 0.33 1.25 0.33 1.25 5.35 19.98 5.35 19.98 21.41 79.92 21.41 79.92 343 1279 343 1279
FHE WAN 0.07 0.1 0.08 0.1 0.68 1.1 0.77 1.19 2.42 4.09 2.75 4.42 34.15 60.51 39.74 66.64
Ours WAN 0.01 0.01 0.01 0.02 0.08 0.15 0.15 0.3 0.29 0.58 0.57 1.14 4.45 8.93 8.74 17.66
[16]∈ LAN 0.32 1.2 0.32 1.2 5.14 19.12 5.14 19.12 20.56 76.49 20.56 76.49 329 1224 329 1224
FHE LAN 0.07 0.1 0.08 0.1 0.68 1.09 0.76 1.18 2.4 4.07 2.73 4.41 34.09 60.45 39.68 66.58
Ours LAN 0.01 0.01 0.01 0.02 0.08 0.15 0.15 0.29 0.29 0.58 0.57 1.13 4.47 8.77 8.66 17.36

cate encryption scheme. We use AES-based hash Blake2 and
AES-based PRG from cryptoTools [58].

Table 2 summarizes our main benchmarks. All benchmarks,
∃FPSI and the FHE strawman, were performed on a single
Intel Xeon W-1290 CPU. To precisely control the connec-
tion speed between sender and receiver, we employ tc and
Wondershaper [38] to emulate two different network envi-
ronments. First, we set RTT to 70 ms and a bandwidth limit of
100 MBit/s, corresponding to a typical intra-continental WAN
setting. Second, we set RTT to 2 ms and a bandwidth limit of
5 GBit/s, corresponding to a typical LAN setup. As the source
code of [16] is not available, and their evaluation is only for
one single symmetric set size of n = ns = nR = 100, Table 2
presents only symmetric set sizes and interpolates Chakraborti
et al.’s measurements (Section 6 of [16]) for other parame-
ters. They report timings for two t2.xlarge Amazon EC2
instances, roughly comparable to our setup in the LAN set-
ting. As our CPU offers 4 more threads (20 instead of 16), we
reduce in their favor their timings by 25%, assuming perfect
parallelization of their scheme. Timings for [16], the FHE
strawman, and ∃FPSI in Table 2 are dominated by quadratic
computation time. In ∃FPSI due to the quadratic complexity
of Receiver R trying to decrypt all ciphertexts with all secret
keys. The quadratic decryption in ∃FPSI, as well as in the
FHE strawman, are easily parallelizable, so the total runtime
can be significantly reduced on multi-core architectures. The
timings in Table 2 are total end-to-end times for full protocol

runs of ∃FPSI and interpolations for [16] (based on their eval-
uation) and the FHE strawman (based on micro-benchmarks).
For ∃FPSI, this includes the time to encrypt all sender inputs,
perform OT-based distributed key derivation, decryption by
R, and all network transmission time. Communication cost in-
cludes all n ciphertexts and distributed key derivation (OT and
sending the two encrypted choices). For FHE, timings include
encryption, decryption, and network transmission time.

Table 2 also presents estimates of the monetary costs for
each of the three schemes. We assume sender and receiver ex-
ecuting in cloud environments where CPU time and network
communication cost money. To estimate these costs, we adopt
pricing again from an Amazon t2.xlarge AWS instance [2].
Our cost estimations assume inter-data center communication
in the WAN and LAN settings from above.

Discussion: Our construction significantly outperforms both
the most closely related work by Chakraborti et al. [16]
(USENIX’23) and the FHE-based strawman. We expect the
latter to be also limited by poor scalability, as FHE parameters
must be adapted to accommodate increasing noise levels.

Our evaluation confirms the theoretical complexity: the
quadratic computational cost at the receiver becomes the
primary performance driver for large, symmetric input sets.
However, this cost is highly amenable to parallelization.
The O(nSnR) decryption checks are independent and can
be distributed across multiple cores or machines, leading
to near-linear speedups. To demonstrate this, we have also

benchmarked ∃FPSI on a c7a.metal-48xl instance with 192
threads, see Table 3 (appendix). While this instance is more
expensive than a t2.xlarge, it reduces the 6 hour runtime
for n = 1024 to 26 min. More powerful cloud instance offer
even more parallelization and are in easy reach for commer-
cial deployment scenarios. More importantly, ∃FPSI’s value
is most evident in its target scenarios: asymmetric workloads
in communication-constrained environments. For example,
a client can check a set of 128 elements against a server
database of 131k elements in 90 min (ω= 16, t = 8, Table 4
in appendix). This turnaround is practical for offline or batch-
processing applications, including biometric matching or
threat intelligence queries where assumption-based protocols
are inapplicable. Our experiments also validate that the time
cost of communication is negligible compared to computation,
especially for larger set sizes (e.g., WAN communication time
is only 0.2% of total time for n = 1024,ω= 32, t = 8). So, the
WAN and LAN settings show little performance differences.
We even observed cases where the total time for WAN was
slightly smaller than for LAN (e.g., by 0.2% for above setup),
most likely due to operating system jitter, running in a cloud
environment, and other effects such as thermal throttling that
impact CPU speed. By supporting unstructured data, we es-
tablish a new baseline for assumption-free FPSI minimizing
communication, often the bottleneck in distributed systems.

5 Related Work

Fuzzy PSI: Several schemes aim to achieve linear commu-
nication or computation complexity. A common strategy is
clustering input data to reduce complexity. However, these
techniques make strong assumptions about data distribution.

Uzun et al. [64] propose a Fuzzy Labeled PSI scheme
(FLPSI) with Locality Sensitive Hashing and noise removal
techniques. They map samples from an Euclidean space to
bitstrings amenable to Hamming distance comparisons. The
paper uses a combination of subsampling and 2PC compu-
tation to derive smaller sets of inputs to be fed into existing
exact Labeled PSI schemes. FLPSI is defined only for a close-
ness functions with probabilistic guarantees distinguishing
close (matching) and far (non-matching) elements. It is not
defined for elements that are neither close nor far and does
not provide formal guarantees for distance thresholds.

Garimella et al. [32] introduce structure-aware PSI (sa-PSI)
with communication complexity linear in the sender’s set de-
scription size, not its cardinality. They exploit the structure
of parties’ elements and introduce a paradigm for structure-
aware PSI using weak boolean function secret-sharing (FSS).
This is applied to FPSI, when the sender’s set is defined by
balls of radius t, and the metric is L! in an ω-dimensional
space (and additional constraints). For globally-axis-disjoint
structures (the projection of the balls onto every axis is
disjoint), communication becomes linear in the dimension.

Follow-up works introduce a maliciously secure protocol [33]
and eliminate) in the solution’s complexity [13].

van Baarsen and Pu [65] combine an oblivious key-value
store with additive homomorphic encryption (AHE) to con-
struct a FPSI supporting the L! distance. In follow-up
work [66], they replace an AHE-based OPRF with a VOLE-
based construction, extending support to general Lp distances.
However, in the general case, the cost is exponential in the di-
mension ω. This exponential overhead is eliminated assuming
input points are at least 2t-apart on every coordinate.

Chakraborti et al. [16] propose FPSI schemes for Hamming
and integer distances. They represent each input element as
a set and formulate the condition for revealing an element to
the receiver as the size of the sets’ difference exceeding ω↔ t.
To cope with leakage when elements are within the (t,2t)
interval, [16, 35] propose two solutions: (I) homomorphically
computing the Hamming distance between elements and fil-
tering elements beyond the threshold, or (II) a sub-sampling
technique. In addition to a quadratic communication complex-
ity, this approach has a non-negligible false positive rate.

Son et al. [63] present a FPSI scheme for cosine similarity
with computation and communication linear in the dimension
of each set element. Thee paper builds on fully homomor-
phic encryption, optimizing it for approximate sign function
evaluation. Unfortunately, the approach requires the sender’s
elements to be separated by at least twice the threshold t.

Richardson et al. [57] generalize the PSI scheme by Cho
et al. [20] to provide FPSI for Euclidean distances L1,L2, and
L!. This scheme uses conditionally overlapping hashing of
sender and receiver inputs to execute a PSI over a small set
of bins. Although it offers the possibility of trade-offs, the
complexity remains exponential in the dimension of the data,
limiting its applicability to low-dimentional setups.

Gao et al. [29] present Fuzzy mapping, an abstraction of
previous approaches using coarse mapping to cluster sender
and receiver elements to reduce the number of PSI executions.
The underlying assumption is that, for R’s elements, on at
least t + 1 dimensions, each element has a unique attribute
relatively to all other elements. Under this assumption, they
design a solution for Hamming distance and L! norm.

Chongchitmate et al. [21] propose FPSI for structured data
assuming that elements are either “close” (distance ↑ t) or
sufficiently “far” (distance ↓ 3t). The scheme achieves near-
linear computation and communication complexity for Ham-
ming distance and generalizes to other distances using low
distortion embeddings to Hamming distance.

In conclusion, recent schemes demonstrate reductions in
complexity when input data aligns with their structural as-
sumptions. Still, the inherent dependence on structure limits
general applicability, the limitation addressed by our work.

Functional&predicate encryption are active research ar-
eas [1, 10, 19, 23, 36, 40, 42, 49–53, 55, 69]. We build FPSI
from IND-WSS predicate encryption and instantiate with
Park’s scheme, but support any selectively-secure scheme.

Ethical Considerations

This work presents a protocol for efficient Fuzzy Private Set
Intersection (FPSI). While our research methodology was
primarily theoretical and computational, involving no human
subjects or personal data during benchmarks, the application
of this technology might have ethical implications for privacy
and surveillance. Below, we carefully analyze the stakeholders
involved, the potential impacts of deploying this technology,
and our rationale for publishing this work.

Stakeholder Identification We identified the following
stakeholders who could be impacted by the availability of this
protocol.

Data Subjects The individuals whose personal information
(biometrics, location history, genetic data) is contained within
the datasets being compared. This group includes vulnerable
populations whose data might be sensitive or stigmatized.

Data Custodians Organizations or individuals holding the
datasets (service providers, government agencies, individual
users) who wish to compute intersections without revealing
their full databases.

Adversarial Actors Entities seeking to identify specific
targets within large, leaked or public datasets.

The Broader Public Society at large, which benefits from
privacy-preserving technologies, but is also harmed by the
proliferation of efficient surveillance tools.

Impact Analysis and Dual Use The publication of this
protocol facilitates data matching, where a party with a (small)
set of queries can efficiently check against a large database.
This capability could have dual-use impacts:

Positive Impact: Privacy & Security The protocol benefits
Data Subjects and Custodians by enabling necessary security
checks without exposing raw data. For example, a user can
check if their biometric data appears in a database without
revealing their identity to the server. Without this protocol,
such checks require trusting the server with cleartext data.
Thus, the proposed techniques make legitimate data sharing
with strong privacy guarantees more efficient, preventing un-
restricted mass-sharing of private data.

Negative Impact: Surveillance The linear communication
complexity we achieve might lower one barrier to mass
surveillance. While FPSI is unlikely to impact nation-state
adversaries surveilling citizens’ raw private data, it might pro-
vide increased efficiency to actors operating in a legal context
that prevents them from mass surveillance. They might claim
to retrieve information about specific targets as authorized
by laws while not learning anything about other users. Previ-
ously, the communication cost of such assumption-free FPSI
might have made this prohibitive in messy, unstructured data.

Mitigations To mitigate the risks to data subjects, first
our protocol design focuses on strict data minimization and
provable security. The protocol is formally proven to reveal
only the intersection and the Hamming distance of intersect-
ing elements. No auxiliary information about non-matching

elements is revealed, preventing attacks where an adversary
tries to learn about the database structure or infer attributes
of non-targets. Second, our FPSI technique allows the data
provider to restrict how many entries can be retrieved . This
limits the information gain to exactly what is necessary for
the intersection task for a rate limited number of entries.

Conclusion We have carefully debated whether the risk of
enabling efficient surveillance outweighs the benefit of provid-
ing a privacy-preserving tool. We concluded that publishing
is the ethical choice, mainly for two reasons:

The Alternative is Worse In the absence of efficient PSI, or-
ganizations currently solve the matching problem by sharing
full datasets in clear or using weak anonymization. This status
quo causes massive, definite privacy harms to data subjects
every day. Our protocol offers a secure alternative that stops
this leakage.

Assumption-Free Security When data distribution assump-
tions of existing works fail in real-world scenarios, those
protocols can leak information or fail silently. By providing
an assumption-free baseline, we ensure that privacy guaran-
tees hold even for the messy, unpredictable data distributions
found in the real world.

Ultimately, we believe that democratizing access to effi-
cient, provably secure matching tools empowers defenders
and privacy advocates more than it aids adversaries, who of-
ten already possess the resources to perform less efficient, but
equally invasive matching.

Open Science

We release the artifacts needed to build and reproduce our
results via Zenodo [6]. They include: (1) our C++ implemen-
tation and build files, (2) scripts to reproduce experiments
and collect logs, (3) the SEAL-integrated micro-benchmark
for FHE timings, (4) LAN/WAN network emulation scripts,
and (5) third-party dependencies with small patches needed to
compile. The top-level README lists the directory structure
and maps artifacts to the corresponding results.

References

[1] S. Agrawal. Stronger Security for Reusable Garbled
Circuits, General Definitions and Attacks. In CRYPTO,
2017.

[2] Amazon. Amazon EC2 On-Demand Pricing,
2022. https://aws.amazon.com/ec2/pricing/on-
demand/.

[3] P. Ananth, Z. Brakerski, G. Segev, and V. Vaikun-
tanathan. From Selective to Adaptive Security in Func-
tional Encryption. In CRYPTO, 2015.

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/

[4] M. Bellare and P. Rogaway. Random Oracles are Practi-
cal: A Paradigm for Designing Efficient Protocols. In
CCS, 1993.

[5] J. Bethencourt, A. Sahai, and B. Waters. Ciphertext-
Policy Attribute-Based Encryption. In Symposium on
Security and Privacy, 2007.

[6] E.-O. Blass and G. Noubir. Source code, 2025. https:
//zenodo.org/records/17936990.

[7] Erik-Oliver Blass and Guevara Noubir. Assumption-
free fuzzy PSI via predicate encryption. Cryptology
ePrint Archive, Paper 2025/217, 2025. URL https:
//eprint.iacr.org/2025/217.

[8] D. Boneh and X. Boyen. Efficient Selective-ID Secure
Identity-Based Encryption Without Random Oracles. In
EUROCRYPT, 2004.

[9] D. Boneh and M. K. Franklin. Identity-Based Encryp-
tion from the Weil Pairing. SIAM J. Comput., 32(3),
2003.

[10] D. Boneh, A. Sahai, and B. Waters. Functional Encryp-
tion: Definitions and Challenges. In TCC, 2011.

[11] D. Boneh, A. Sahai, and B. Waters. Functional encryp-
tion: a new vision for public-key cryptography. Commun.
ACM, 55(11), 2012.

[12] P. Buddhavarapu, A. Knox, P. Mohassel, S. Sengupta,
E. Taubeneck, and V. Vlaskin. Private matching for
compute. Cryptology ePrint Archive, Paper 2020/599,
2020. URL https://eprint.iacr.org/2020/599.

[13] D. Bui, G. Garimella, P. Miao, and P. Van Long
Pham. New Framework for Structure-Aware PSI
From Distributed Function Secret Sharing. Cryptol-
ogy ePrint Archive, Paper 2025/907, 2025. URL https:
//eprint.iacr.org/2025/907.

[14] R. Canetti, S. Halevi, and J. Katz. A Forward-Secure
Public-Key Encryption Scheme. In EUROCRYPT, 2003.

[15] A. De Caro, V. Iovino, A. Jain, A. O’Neill, O. Paneth,
and G. Persiano. On the Achievability of Simulation-
Based Security for Functional Encryption. In CRYPTO,
2013.

[16] A. Chakraborti, G. Fanti, and M. K. Reiter. Distance-
Aware private set intersection. In USENIX, 2023.

[17] M. Chase and P. Miao. Private set intersection in the
internet setting from lightweight oblivious PRF. In
(CRYPTO), 2020.

[18] H. Chen, Z. Huang, K. Laine, and P. Rindal. Labeled PSI
from Fully Homomorphic Encryption with Malicious
Security. In CCS, 2018.

[19] J. Chen, J. Gong, and H. Wee. Improved Inner-Product
Encryption with Adaptive Security and Full Attribute-
Hiding. In ASIACRYPT, 2018.

[20] C. Cho, D. Dachman-Soled, and S. Jarecki. Efficient
concurrent covert computation of string equality and set
intersection. In CT-RSA, 2016.

[21] W. Chongchitmate, S. Lu, and R. Ostrovsky. Approxi-
mate PSI with near-linear communication. Cryptology
ePrint Archive, Paper 2024/682, 2024. URL https:
//eprint.iacr.org/2024/682.

[22] R. Cramer and V. Shoup. Design and Analysis of Prac-
tical Public-Key Encryption Schemes Secure against
Adaptive Chosen Ciphertext Attack. SIAM J. Comput.,
33(1), 2003.

[23] P. Datta, T. Okamoto, and K. Takashima. Adaptively
Simulation-Secure Attribute-Hiding Predicate Encryp-
tion. In ASIACRYPT, 2018.

[24] S. Dirksen and S. Mendelson. Fast binary embeddings
with gaussian circulant matrices: improved bounds. Dis-
crete & Computational Geometry, 60(3), 2018.

[25] S. Dirksen and S. Mendelson. Non-gaussian hyper-
plane tessellations and robust one-bit compressed sens-
ing. Journal of the European Mathematical Society, 23
(9), 2021.

[26] D. Evans, V. Kolesnikov, and M. Rosulek. A Pragmatic
Introduction to Secure Multi-Party Computation. Now
Publishers Inc, 2018.

[27] M. J. Freedman, K. Nissim, and B. Pinkas. Efficient
private matching and set intersection. In EUROCRYPT,
2004.

[28] E. Fujisaki and T. Okamoto. Secure Integration of Asym-
metric and Symmetric Encryption Schemes. J. Cryptol.,
26(1), 2013.

[29] Y. Gao, L. Qi, X. Liu, Y. Luo, and L. Wang. Efficient
fuzzy private set intersection from fuzzy mapping. Cryp-
tology ePrint Archive, Paper 2024/1462, 2024. URL
https://eprint.iacr.org/2024/1462.

[30] S. Garg and A. Srinivasan. Single-Key to Multi-Key
Functional Encryption with Polynomial Loss. In TCC,
2016.

[31] G. Garimella, B. Pinkas, M. Rosulek, N. Trieu, and
A. Yanai. Oblivious key-value stores and amplification
for private set intersection. In CRYPTO, 2021.

[32] G. Garimella, M. Rosulek, and J. Singh. Structure-aware
private set intersection, with applications to fuzzy match-
ing. In CRYPTO, 2022.

https://zenodo.org/records/17936990
https://zenodo.org/records/17936990
https://eprint.iacr.org/2025/217
https://eprint.iacr.org/2025/217
https://eprint.iacr.org/2020/599
https://eprint.iacr.org/2025/907
https://eprint.iacr.org/2025/907
https://eprint.iacr.org/2024/682
https://eprint.iacr.org/2024/682
https://eprint.iacr.org/2024/1462

[33] G. Garimella, M. Rosulek, and J. Singh. Malicious
secure, structure-aware private set intersection. In
CRYPTO, 2023.

[34] Romain Gay. Public-Key Encryption, Revisited: Tight
Security and Richer Functionalities. PhD thesis, 2019.
https://www.di.ens.fr/~rgay/thesis.pdf.

[35] S. Ghosh and M. Simkin. The communication complex-
ity of threshold private set intersection. In CRYPTO,
2019.

[36] S. Gorbunov, V. Vaikuntanathan, and H. Wee. Predicate
Encryption for Circuits from LWE. In CRYPTO, 2015.

[37] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-
based encryption for fine-grained access control of en-
crypted data. In CCS, 2006.

[38] B. Hubert, J. Geul, and S. Sehier. Wondershaper,
a command-line utility for limiting an adapter’s
bandwidth, 2021. https://github.com/magnific0/
wondershaper.

[39] M. Ion, B. Kreuter, A. E. Nergiz, S. Patel, S. Saxena,
K. Seth, M. Raykova, D. Shanahan, and M. Yung. On
deploying secure computing: private intersection-sum-
with-cardinality. In EuroS&P, 2020.

[40] S. Katsumata, R. Nishimaki, S. Yamada, and T. Ya-
makawa. Adaptively Secure Inner Product Encryption
from LWE. In ASIACRYPT, 2020.

[41] J. Katz and Y. Lindell. Introduction to Modern Cryptog-
raphy, Third Edition. Chapman & Hall, 2020.

[42] J. Katz, A. Sahai, and B. Waters. Predicate encryption
supporting disjunctions, polynomial equations, and inner
products. In EUROCRYPT, 2008.

[43] V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu.
Efficient batched oblivious PRF with applications to
private set intersection. In CCS, 2016.

[44] Shigeo M. MCL – A portable and fast pairing-based
cryptography library, 2025. https://github.com/
herumi/mcl.

[45] C. Meadows. A More Efficient Cryptographic Match-
making Protocol for Use in the Absence of a Continu-
ously Available Third Party. In Symposium on Security
and Privacy, 1986.

[46] Microsoft. Password Monitor: Safeguarding
passwords in Microsoft Edge, 2021. https:
//www.microsoft.com/en-us/research/blog/
password-monitor-safeguarding-passwords-in-
microsoft-edge/.

[47] MIRACL. Multiprecision Integer and Ratio-
nal Arithmetic Cryptographic Library, 2023.
https://github.com/miracl/MIRACL/blob/
master/source/curve/pairing/ipe.cpp.

[48] J. Buus Nielsen. Separating Random Oracle Proofs from
Complexity Theoretic Proofs: The Non-committing En-
cryption Case. In CRYPTO, 2002.

[49] T. Okamoto and K. Takashima. Hierarchical Predicate
Encryption for Inner-Products. In ASIACRYPT, 2009.

[50] T. Okamoto and K. Takashima. Fully Secure Unbounded
Inner-Product and Attribute-Based Encryption. In ASI-
ACRYPT, 2012.

[51] T. Okamoto and K. Takashima. Efficient (Hierarchical)
Inner-Product Encryption Tightly Reduced from the De-
cisional Linear Assumption. Trans. Fundam. Electron.
Commun. Comput. Sci., 2013.

[52] T. Okamoto and K. Takashima. Adaptively Attribute-
Hiding (Hierarchical) Inner Product Encryption. Trans.
Fundam. Electron. Commun. Comput. Sci., 99-A(1),
2016.

[53] A. O’Neill. Definitional Issues in Functional Encryption.
Cryptology ePrint Archive, Paper 2010/556, 2010. URL
https://eprint.iacr.org/2010/556.

[54] R. Ostrovsky and Y. Rabani. Low distortion embeddings
for edit distance. Journal of the ACM, 54(5), 2007.

[55] J. Hwan Park. Inner-product encryption under standard
assumptions. In Designs, Codes and Cryptography,
2011.

[56] S. Raghuraman and P. Rindal. Blazing Fast PSI from
Improved OKVS and Subfield VOLE. In CCS, 2022.

[57] D. Richardson, M. Rosulek, and J. Xu. Fuzzy PSI
via oblivious protocol routing. Cryptology ePrint
Archive, Paper 2024/1642, 2024. URL https://
eprint.iacr.org/2024/1642.

[58] P. Rindal. cryptoTools library, 2025. https://
github.com/ladnir/cryptoTools.

[59] A. Sahai and B. Waters. Fuzzy Identity-Based Encryp-
tion. In EUROCRYPT, 2005.

[60] SEAL. Microsoft SEAL (release 4.1). https://
github.com/Microsoft/SEAL, January 2023. Mi-
crosoft Research, Redmond, WA.

[61] A. Shamir. Identity-Based Cryptosystems and Signature
Schemes. In CRYPTO, 1984.

[62] E. Shen, E. Shi, and B. Waters. Predicate Privacy in
Encryption Systems. In TCC, 2009.

https://www.di.ens.fr/~rgay/thesis.pdf
https://github.com/magnific0/wondershaper
https://github.com/magnific0/wondershaper
https://github.com/herumi/mcl
https://github.com/herumi/mcl
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://github.com/miracl/MIRACL/blob/master/source/curve/pairing/ipe.cpp
https://github.com/miracl/MIRACL/blob/master/source/curve/pairing/ipe.cpp
https://eprint.iacr.org/2010/556
https://eprint.iacr.org/2024/1642
https://eprint.iacr.org/2024/1642
https://github.com/ladnir/cryptoTools
https://github.com/ladnir/cryptoTools
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

[63] H. Son, S. Paik, Y. Kim, S. Kim, H. Chung, and J. H. Seo.
Doubly efficient fuzzy private set intersection for high-
dimensional data with cosine similarity. Cryptology
ePrint Archive, Paper 2025/054, 2025. URL https:
//eprint.iacr.org/2025/054.

[64] E. Uzun, S. P. Chung, V. Kolesnikov, A. Boldyreva, and
W. Lee. Fuzzy labeled private set intersection with
applications to private Real-Time biometric search. In
USENIX, 2021.

[65] A. van Baarsen and S. Pu. Fuzzy private set intersection
with large hyperballs. In EUROCRYPT, 2024.

[66] A. van Baarsen and S. Pu. Fuzzy Private Set Inter-
section from VOLE. Cryptology ePrint Archive, Pa-
per 2025/911, 2025. URL https://eprint.iacr.org/
2025/911.

[67] X. Wang, A. J. Malozemoff, and J. Katz. EMP-toolkit:
Efficient MultiParty computation toolkit. https://
github.com/emp-toolkit, 2016.

[68] B. Waters. Ciphertext-Policy Attribute-Based Encryp-
tion: An Expressive, Efficient, and Provably Secure Re-
alization. In PKC, 2011.

[69] H. Wee. Attribute-Hiding Predicate Encryption in Bilin-
ear Groups, Revisited. In TCC, 2017.

A Simplified Predicate Encryption

In our exposition in Section 3.1, we have defined a simplified
predicate encryption scheme that directly encrypts a vector
x ⇐ (to ciphertext c, i.e., c ′ Encpk(x). Decryption under se-
cret key sky in our simplified definition directly yields x if and
only if ⇒x,y⇑= 0. Yet, standard predicate encryption schemes
allow a more powerful setup where a plaintext m from plain-
text space M is encrypted under x, i.e., c ′ Encpk(m,x). De-
cryption yields m if and only if ⇒x,y⇑= 0. If decryption fails,
nothing is revealed about m. Moreover, in any case, nothing
about x is revealed besides whether ⇒x,y⇑= 0. The security
definition for both simplified and standard predicate encryp-
tion is selective security where the adversary has to output up
front the vectors (xi,0,xi,1) they want to be challenged upon.

We now show that any standard predicate encryption
scheme can be transformed into a simplified predicate encryp-
tion scheme. While there are various ways how to perform
such a transform, we apply the typical approach of hybrid
enryption. There, the predicate encryption scheme is used as
a Key Encapsulation Mechanism (KEM) to encrypt a sym-
metric key which is then used with symmetric key encryption
to encrypt whatever input should be encrypted, see [4, 22, 28]
for an overview.

First, let P E = (SET UP ,K DER ,EN C ,DEC) be a
standard predicate encryption scheme for predicate f . We con-
struct simplified predicate encryption scheme PE= (Setup,
KDer,Enc,Dec) for predicate f in the following way.

For PE, we set Setup to be exactly like SET UP , and
KDer to be exactly like K DER . We only change encryption
and decryption in the following straightforward way.

1. Encpk(x): To encrypt x in the simplified encryption

scheme, choose a random m $′M and use a cryptographic
hash function H (modeled as a random oracle) to hash
it to a key k = H(m) for a semantically secure encryp-
tion (E,D). Then encrypt m under x using EN C , i.e.,
c1 ′ EN C pk(m,x). Use the semantically secure encryp-
tion to encrypt the bit-representation of x and key k to
ciphertext c2 ′ Ek(x). Send (c1,c2) to the other party.

2. Decsky
(c1,c2): To decrypt (c1,c2) with sky, run

DEC sky
(c1). If decryption is successful, not return-

ing ↖ but returning m↘, compute k↘ = H(m↘) and decrypt
c2 to x

↘ using the semantically secure encryption with key
k↘, i.e., x

↘ = Dk↘(c2).

Note that one can also use a PRG G instead of semantically
secure encryption (E,D) with k serving as its seed to pro-
duce a one-time pad. The security of this KEM-style hybrid
encryption scheme PE in the random oracle model follows
directly from the security of P E and the underlying encryp-
tion scheme (E,D) (or PRG G), analogous to the argument
by Bellare and Rogaway [4].

B Security Proofs

B.1 Lemma 1

Proof. Regarding correctness, recall, first, our conversion be-
tween vectors over {0,1} and {↔1,1}. More importantly,
observe that the way we construct vectors x

↘
i and y

↘
j leads to

[⇒x↘i,y↘ j⇑
?
= %] = [HD(xi,y j)

?
=

ω↔ %
2

].

So, for each & ⇐ {0, . . . , t↔1}, R learns HD(xi,y j)
?
= & which

allows them to correctly compute and output both bi, j, ∋i, j,
and zi, j in the last step of Protocol ∃<t

HD.
For security, we construct simulators SimS and SimR for

the views of S and R.
SimS((xi)i⇐[nS]): This simulator is trivial, as S does not

receive any message or output. It simply runs the simulator
for the sender in the FPEI-hybrid using arbitrary input to create
the view for S.
SimR((y j) j⇐[nR],(bi, j,∋i, j,zi, j)i⇐[nS], j⇐[nR]) : Again, the only

messages that SimR has to generate for R are the responses
from FPEI. For this, SimR calls the receiver’s simulator of
the FPEI-hybrid. As input to this simulator, SimR uses the

https://eprint.iacr.org/2025/054
https://eprint.iacr.org/2025/054
https://eprint.iacr.org/2025/911
https://eprint.iacr.org/2025/911
https://github.com/emp-toolkit
https://github.com/emp-toolkit

Table 3: Benchmark results on AWS c7a.metal-48xl instance (AMD Epyc 9R14 CPU, 192 threads), comparison to Intel Xeon
W-1290 CPU (20 threads), monetary cost for one run on c7a.metal-48xl instance.

Time (s)

n = 128 n = 512 n = 1024 n = 4096
ω= 16 ω= 32 ω= 16 ω= 32 ω= 16 ω= 32 ω= 16 ω= 32

t = 8 t = 16 t = 8 t = 16 t = 8 t = 16 t = 8 t = 16 t = 8 t = 16 t = 8 t = 16 t = 8 t = 16 t = 8 t = 16
Xeon WAN 87 180 176 350 1393 2789 2647 5298 5397 10781 10538 21160 85450 171476 167762 339133
Xeon LAN 86 177 172 343 1388 2774 2639 5286 5384 10756 10566 21069 85799 168381 166305 333309

c7a.48xl WAN 13 23 23 43 110 215 210 417 409 815 794 1587 5700 11344 11079 22088
c7a.48xl LAN 9 18 17 38 103 205 198 400 399 799 771 1542 5708 11204 11280 21928

Cost (US$)

c7a.48xl WAN 0.04 0.07 0.07 0.13 0.33 0.64 0.63 1.24 1.21 2.41 2.35 4.7 16.75 33.33 32.55 64.9
c7a.48xl LAN 0.03 0.06 0.05 0.12 0.31 0.61 0.59 1.19 1.18 2.36 2.28 4.56 16.77 32.92 33.14 64.43

Table 4: Benchmark results and monetary cost for ∃FPSI with asymmetric set size nS = 217 = 131072, nR = 27 = 128 on AWS
c7a.metal-48xl instance.

Communication (MByte)

ω= 16 ω= 32
t = 8 t = 16 t = 8 t = 16
285 301 557 589

Time (s)

ω= 16 ω= 32
t = 8 t = 16 t = 8 t = 16

WAN 5654 11490 11107 22074
LAN 5678 11412 10940 22628

Cost (US$)

ω= 16 ω= 32
t = 8 t = 16 t = 8 t = 16

WAN 16.59 33.69 32.59 64.73
LAN 16.66 33.46 32.1 66.36

(y↘ j) j⇐[nR]. For its output part, the FPEI simulator requires
nSnR · |T | pairs (bi, j,%, x̂i, j,%). For each bi, j = 1 in its own input,
SimR sets the output pair for the FPEI simulator to (b

i, j,
ω↔∋i, j

2
=

1, x̂
i, j,

ω↔∋i, j
2

= zi, j) and all other pairs to (0,↖).

B.2 Theorem 1

Proof. Correctness of FFPSI follows immediately from the
correctness of the F <t

HD-hybrid: R outputs the set of (xi,y j)
that have Hamming distance less than t which is the definition
of Fuzzy PSI output.

For security, we construct simulators SimS for S and SimR
for R. Note that S shuffles their input using a random permuta-
tion . before sending it to the F <t

HD-hybrid. This is a standard
trick, so that R does not learn the real indices of S’s input in
the intersection. Not to overload notation in the following,
we will just write xi to denote the ith input of S to ∃FPSI even
though it is actually the .(i)th input.

SimS((xi)i⇐[nS]) : Sender S does not receive any message or
produce any output, so SimS just runs the sender’s simulator
of the F <t

HD-hybrid with arbitrary input to generate S’ view.
SimR(InR = (y j) j⇐[nR],OutR = {(xi,y j)|HD(xi,y j)< t}) :

To generate the view of Receiver R, SimR runs the receiver’s
simulator of the F <t

HD-hybrid with the following input and out-
put. The input for the F <t

HD simulator is simply InR =(y j) j⇐[nR].
For the output (bi, j,∋i, j,zi, j) of the F <t

HD simulator, SimR sets:

• for each (xi,y j) ⇐ OutR, bi, j = 1, ∋i, j = ⇒xi,y j⇑, zi, j = xi.

• for all i⇐ [nS] and j ⇐ [nR] such that (xi,y j) ⇓⇐OutR, bi, j = 0,
∋i, j =↖, zi, j =↖.

B.3 Lemma 2

Proof. Assume PE is not IND-WSS secure, so there exists
adversary A∈ = (A∈

1 ,A∈
2) in the IND-WSS game such that

AdvIND-WSS
PE,A∈ ()) is non-negligible in). We construct adversary

B = (B1,B2) for the IND-SS game in Figure 6 that uses this
adversary A∈ as a sub-routine. We show that AdvIND-SS

PE,B ()) =
AdvIND-WSS

PE,A∈ ()).
B1 runs A∈

1 to get the xi,0,xi,1 and the (y j). B1 forwards
the xi,0 and xi,1 to the IND-SS challenger. After receiving
public key pk and ciphertexts ci back, B2 asks key derivation
oracle KDer for the private keys corresponding to attributes
(y j) j⇐[n↘]. Let the sequence of these private keys returned by
the oracle be K . Finally, B2 calls A∈

2 with pk, K , and the ci
as input and outputs whatever A∈

2 outputs.
Our reduction is tight, as B has the same runtime and suc-

cess probability as A∈.

B.4 Lemma 3

Proof. Assume PE is not Sim-WSS secure. Consequently,
for any simulator Sim, there exists an adversary A = (A1,A2)
from the Real and Ideal experiments of Definition 4 such that,
the advantage AdvSim-WSS

PE,A ,Sim()) is not negligible (intuitively

distinguishing the real ciphertext cr from the simulator cipher-
text cs). We will use the preimage samplability property to
build a specific simulator Sim∈. Given our assumption that
PE is not Sim-WSS secure, it means that there exists a corre-
sponding adversary A∈ = (A∈

1 ,A∈
2) from the Real and Ideal

experiments of Definition 4 such that, AdvSim-WSS
PE,A∈,Sim∈()) is not

negligible. We will use Sim∈ and A∈ to construct an adversary
B = (B1,B2) for the IND-WSS experiment of Definition 3.

Constructing B: Adversary B1 starts by running A∈
1 . It ob-

tains ((xi,0)i⇐[n],(y j) j⇐[n↘],∗). As predicate functions fy j are
preimage sampleable, B1 uses the y j to compute an (xi,1)i⇐[n]
such that, for all y j⇐[n↘], predicates fy j are the same for xi,0
and xi,1, so fy j(xi,0) = fy j(xi,1).

Observe that, with non-negligible probability, there exists
an i ⇐ [n] such that xi,1 ⇓= xi,0 and for all j ⇐ [n↘]: fy j(xi,0) =
fy j(xi,1) = 0. Otherwise, PE would already be Sim-WSS se-
cure, because the fyi(xi,0) would automatically reveal xi,0
to the adversary by preimage sampling. Specifically, if for
the computed (xi,1)i⇐[n] it would hold that (xi,0 = xi,1)i⇐[n]
or fy j(xi,0) = 1 (which would reveal xi,0), with probabil-
ity 1 ↔ negl()), then it is possible to create the follow-
ing simulator Sim↘ for Definition 4. Simulator Sim↘ com-
putes inputs (xi,0)i⇐[n] using preimage sampling and encrypts
cs ′ (Encpk(xi,0))i⇐[n]. No adversary A2’s output can be
distinguished using input (pk,cr = (Encpk(xi,0))i⇐[n],K) or
(pk,cs = (Encpk(xi,0))i⇐[n],K). This would contradict our as-
sumption that PE is not Sim-WSS secure.

Constructing Sim∈: Consequently, consider (xi,1 ⇓= xi,0)i⇐[n]
in the following. For every i such that there exists j ⇐
[n↘] with fy j(xi,0) = 1, set xi,1 to xi,0. From the argument
above, there will remain at least one i for which xi,1 ⇓=
xi,0. B1 builds the following simulator Sim∈. First, B1 sub-
mits ((xi,0)i⇐[n],(xi,1)i⇐[n],(y j) j⇐[n↘],∗) as its first output in
the IND-WSS game. Note that we use ∗ from A1’s out-
put as B1’s state. After running Setup, the IND-WSS chal-
lenger computes K and either c ′ (Encpk(xi,0))i⇐[n] or c ′
(Encpk(xi,1))i⇐[n]. B2 gets (pk,K ,c, t). The output of Sim∈

is defined as the ciphertext c obtained from the challenger
in the IND-WSS game. At this stage, B2 calls A∈

2 (pk,c,K)
and receives ∗↘. If ∗ = ∗↘ then B2 outputs b↘ = 0 to the
IND-WSS challenger, otherwise they output b↘ = 1. The
intuition is that if the challenger has chosen b = 1, then
c ′ (Encpk(xi,1))i⇐[n] leads to a ∗↘ that is different from ∗
with a non-negligible probability compared to a ∗↘ derived
from c ′ (Encpk(xi,0))i⇐[n].

Analysis: First, we note the following two properties.
(1) Pr[b↘ = b|b = 0] = Pr[ExpSim-WSS-real

PE,A ()) = 1] =

AdvSim-WSS
PE,A ,Sim())+Pr[ExpSim-WSS-ideal

PE,A ()) = 1] and (2) Pr[b↘ =
b|b = 1] = 1 ↔ Pr[b↘ = 0|b = 1]Pr[b↘ = b|b = 1] = 1 ↔
Pr[ExpSim-WSS-ideal

PE,A ()) = 1].
Therefore, Pr[b↘ = b] = Pr[b↘ = b|b = 0] · Pr[b =

0] + Pr[b↘ = b|b = 1] · Pr[b = 1] = (AdvSim-WSS
PE,A ,Sim()) +

Pr[ExpSim-WSS-ideal
PE,A ())= 1]) 1

2 +(1↔Pr[ExpSim-WSS-ideal
PE,A ())=

1]) 1
2 = 1

2 +
AdvSim-WSS

PE,A ,Sim())
2 .

As a result, adversary B , would win the indistinguishability
game IND-WSS with a non-negligible advantage half of the
advantage of the adversary in the Sim-WSS experiment.

B.5 Lemma 4

Proof. Observe that ∃KDer is correct, as R, first, retrieves all
Kj,i corresponding to input y. Second, , removes all random-
ness added to the + j,i such that R correctly computes KA, too.

For security, we show existence of simulators SimS for S
and SimR for R.
SimS(PE,msk): This simulator for Sender S is trivial, as

it only has to run the FOT-simulator for the OT sender with
arbitrary input.
SimR((y j) j⇐[nR],(sky j,%) j⇐[nR],%⇐T): Simulator SimR for R

starts by running the FOT simulator for the OT receiver (for
each y j,%, i). From its input sky j,% , SimR takes the ω values Ku,i
as input to the OT simulator. To simulate the +u,i, it chooses
random values /u,i ⇐G as input to the OT simulator. Observe
that the /u,i are indistinguishable from the +u,i sent in the real
protocol execution. Then S sends Ku,ω+1 and another random
/u,ω+1 ⇐G to R to simulate Message (4) from ∃KDer.

With KA being part of sky j,% coming from the ideal func-
tionality, SimR sends , = KA ↔−u⇐[4],i⇐[ω+1] /u,i to R which is
indistinguishable from the message sent in the real protocol
execution. Finally, SimR sends KB from the ideal functional-
ity’s key sky j to R.

B.6 Theorem 2

Proof. Observe the correctness of ∃PEI from the protocol de-
scription. Let PE be a Sim-WSS secure predicate encryption
scheme for the simplified predicate encryption for the inner-
product predicate over Zω

p. In the FKDer-hybrid model, let PE
support an ideal FKDer functionality. We need to show the
existence of simulators SimS and SimR capable of generating
respective views for S and R that are indistinguishable from
real protocol executions.

SimS((xi)i⇐[nS]): We first note that Sender S does not receive
any message or output. Hence, its view is trivial to simulate:
SimS sends random input vectors y j to FKDer. The simulator
for FKDer generates the corresponding view for S.

SimR((y j) j⇐[nR],(bi, j,%, x̂i, j,%)i⇐[nS], j⇐[nR],%⇐T): The view of R
comprises the view for FKDer and ciphertexts ci. First, SimR
runs Setup(1)), obtains pk and msk, and sends msk to FKDer

to generate the key derivation view for R. With access to msk,
SimR can also re-compute keys K for inputs y j.

Finally, to simulate the ciphertexts, recall Lemma 3. For
any Sim-WSS scheme, there exists a simulator Sim∈ that,
given input (pk, (y j) j⇐[nR], (fy j(xi))i⇐[nS], j⇐[nR], K), outputs
ciphertexts cS such that no adversary can distinguish with a

Experiment ExpPS
PE,A ,B())

((xi)i⇐[n],(y j) j⇐[n↘])
$′↔ B(1))

(x↘i)i⇐[n]
$′↔ A(1),(y j) j⇐[n↘],(fy j(xi)i⇐[n], j⇐[n↘]))

If (fy j(x
↘
i) = fy j(xi))i⇐[n], j⇐[n↘] output 1, else output 0

Figure 11: Preimage sampleability

non-negligible advantage (pk,K ,c ′ (Encpk(xi))i⇐[nS]) from
(pk,K ,cS). So, SimR employs Sim∈ to compute the cipher-
texts for R as follows.

For all combinations of i and j where there exists a % such
that bi, j,% = 1, SimR sends Encpk(x̂i, j,%) to R.

For all other combinations of i and j, SimR uses one of
the ciphertexts output by Sim∈ when run with input (pk,
(y j) j⇐[nR], (bi, j,0)i⇐[nS], j⇐[nR], K).

C Preimage Sampleability

Definition 5. Consider Experiment ExpPS
PE,A ,B()) in Fig-

ure 11. A predicate f is preimage sampleable iff there exists
a PPT algorithm A such that, for every PPT algorithm B , the
probability that ExpPS

PE,A ,B()) outputs 0 is negligible in).

Lemma 5. The inner-product predicate fy(x) = [⇒x,y⇑ ?
= 0]

with x,y ⇐ Zω
p is preimage sampleable.

Proof (Sketch, also see O’Neill [53], Proposition 5.1). For
each xi, A uses the inner-product predicate results to set up a
separate system of linear equations. Consider the equations
E0 for which the inner-product is 0 and E1 the equations
for which the inner-product is non-zero. A computes a
base (bk)k⇐[s] for E0’s kernel using Gaussian elimination.
The kernel’s dimension s is at least 1 because we already
know that at least one solution exists (i.e., x). A outputs
x
↘ = −s

k=1 rkbk, a random linear combination of the kernel’s
base vectors. By construction, x

↘ satisfies E0. It also satisfies
E1 with probability at least 1↔ n

p .

D Extension to (Weak) Fuzzy Labeled PSI

While not central to our contribution, we briefly outline a
simple extension of ∃FPSI for weak fuzzy labeled PSI. In
labeled PSI [18, 64], sender S inputs tuples (xi,Li), where
Li is a label. Given receiver inputs y j, the output is {Li |
↗(i, j) s.t. xi = y j}. Similarly, fuzzy labeled PSI outputs {Li |
↗(i, j) s.t. HD(xi,y j)< t}. By encrypting Li instead of xi in
∃FPSI, we can achieve this functionality with minor adjust-
ments to the security arguments. This approach yields a weak
fuzzy labeled PSI, as the receiver learns t when HD(xi,y j)< t,
but it might be useful in many real-world scenarios.

E Discussion: Other Metrics

We briefly note that structure-aware FPSI has also been
considered for additional metrics, including L1, L2, Ln, and
L! norms. Chongchitmate et al. [21] demonstrate that
their Approx-PSI for Hamming distance can be combined
with known low-distortion embeddings for Levenshtein dis-
tance [54], Euclidean distance [25], and angular distance [24]
to obtain Approx-PSI over these metrics. While these exten-
sions are outside our scope, our FPSI construction can sim-
ilarly operate on transformed inputs, although the resulting
functionality must be adapted.

In the Euclidean case, the functionality becomes: for pa-
rameters 0 < ∀0 < ∀1, the receiver learns all sender elements
within distance ∀0, learns nothing about elements at distance
at least ∀1, and the behavior for distances in (∀0,∀1) is un-
defined. To extend our FPSI, one might use the additive em-
bedding stated by Chongchitmate et al. [21, Thm. F.4], build-
ing on Dirksen and Mendelson [25]. For vectors in a ball
B(R)⇔ RN and any 0 < ∀ < (∀1 ↔∀0)/2, there exists a map
0 : RN ∝ {0,1}ω such that

∣∣1 ·HD(0(x),0(y))↔∋x↔ y∋2
∣∣↑ ∀

for all input pairs, where 1 > 0 is a scaling factor and ω =

O
(
/2(logn+)↘)/∀2) with / = O

(
R
√

log(R/∀)
)

and)↘ a
statistical security parameter. Selecting ∀ = 2(∀1 ↔∀0) yields
Hamming thresholds Dclose < % < Dfar such that ∋x↔ y∋2 ↑
∀0 implies H(0(x),0(y)) < %, while ∋x↔ y∋2 ↓ ∀1 implies
H(0(x),0(y)) > %. Running our FPSI on the embedded in-
puts with threshold % therefore enforces the Euclidean fuzzy
semantics. Since ω = Õ

(
(logn+)↘)/(∀1 ↔∀0)2), communi-

cation and computation grow by the same factor. A more
refined analysis of resulting constants is left for future work.

The embedding itself is computationally lightweight: it
samples random hyperplanes and maps each vector to a bit
indicating the side on which the vector lies.

Similar conclusions hold for other metrics. For exam-
ple, applying the Ostrovsky–Rabani embedding for edit dis-
tance [54] or the random-hyperplane embedding for angular
distance [24] yields analogous Hamming thresholds and thus
the same pattern of a guaranteed-reveal region, a guaranteed-
hide region, and an undefined gap determined by the embed-
ding’s distortion parameters.

	Introduction
	Our results in a nutshell
	Preliminaries

	Protocol Details
	Building Fuzzy PSI with FPEI
	Fuzzy PSI Protocol FPSI

	Realizing FPEI
	Predicate Encryption
	Security of Predicate Encryption
	Selective Security
	Weak Selective Security
	Game-Based Security
	Preimage Sampleability
	Simulation-based Security

	Two-Party distributed KDer
	Using 2PC
	Concretely practical construction for park

	PEI from Sim-WSS and KDer
	Discussion

	Evaluation
	Related Work
	Simplified Predicate Encryption
	Security Proofs
	Lemma 1
	Theorem 1
	Lemma 2
	Lemma 3
	Lemma 4
	Theorem 2

	Preimage Sampleability
	Extension to (Weak) Fuzzy Labeled PSI
	Discussion: Other Metrics

