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ABSTRACT
Although privacy compromises remain an issue among users and
advocacy groups, identi�cation of user location has emerged as
another point of concern. Techniques using GPS, Wi-Fi, NFC, Blue-
tooth tracking and cell tower triangulation are well known. �ese
can typically identify location accurately with meter resolution.
Another technique, inferring routes via sensor exploitation, may
place a user within a few hundred meters of a general location.
Acoustic beacons such as those placed in malls may have more
�nely grained resolution yet are limited by the sensitivity of the
device’s microphone to ultrasonic signals and directionality. In this
paper we are able to discern user location within commercial GPS
resolution by leveraging the ability of mobile device magnetometers
to detect externally generated signals in a permissionless a�ack.
We are able to achieve an aggregate location identi�cation success
rate of 86% with a bit error rate of 1.5% which is only ten times the
stationary error rate. We accomplish this with a signal that is a
fraction of the Earth’s magnetic �eld strength.

We designed, prototyped, and experimentally evaluated a system
where a location ID is transmi�ed via low power magnetic coil(s)
and received by permissionless apps. �e system can be located at
ingresses and kiosks situated in malls, stores, transportation hubs
and other public locations including crosswalks using a location ID
that is mapped to the GPS coordinates of the facility hosting the
system. We demonstrate that using Android phone magnetometers,
we can correctly detect and identify the when and the where of
a device when the victim walks at a comfortable pace while their
device has all the aforementioned services disabled. In order to
address the substantial signal fading e�ects due to mobility in a
very-low powermagnetic near �eld, we developed signal processing
and coding techniques and evaluated the prototype on six android
devices in an IRB-approved study with six participants.
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1 INTRODUCTION
Location tracking has achieved signi�cant a�ention in the research
community [14, 23, 25, 29, 30] and great notoriety in the news cycle.
In late 2017, �artz [7] reported that Android devices sent location
data to Google when they were within range of a new cell tower.
Although Google denied using this information for any malicious
purposes and that Android devices would henceforth no longer
transmit the data, it is yet another example of realizing the fear of
being tracked. Uber [4] recently removed a feature that tracked
riders for several minutes post ride termination. In an example of
an unintended consequences, Strava [5] identi�ed that US soldiers
might be tracked via GPS coordinates available through a �tness
app. �e U.S. judicial system is now involved in the discussion
as the Supreme Court agreed in 2017 to hear Carpenter v. United
States [19] where the government was using cell phone records to
identify locations where the phone had been, further demonstrating
that tracking data is available and an evolving legal concern. In
2018, the Wall Street Journal published an article explaining the
lucrative and expanding business of selling location data [22]. Each
of these represent the potential for tracking and abuse of location
information. Most disconcerting is the reluctance and / or slow
response to preventing these compromises.

�is paper presents a unique location compromise via a stealthy
location a�ack built upon a smartphone magnetometer’s ability to
detect small coded magnetic �eld �uctuations while the device is in
motion. �e a�acker generates location identi�cation information
which is transmi�ed from an innocuous physical source. A device
resident app, listens to the sensor output, performs noise removal
processing and decodes the resultant signal which represents the
transmi�er’s location with commercial GPS accuracy. Combined
with time, the a�acker knows the when and where of the victim’s
device despite her e�orts to be temporarily disconnected from ‘the
grid’ by disabling Wi-Fi, cellular, NFC, Bluetooth and GPS services.
Even within a building, its accuracy exceeds Wi-Fi and cellular
triangulation with these services enabled. One of the signi�cant
challenges to this a�ack is extracting the low-level signal from
system and motion induced noise. System noise results from the
magnetometer reporting scheme where the Hardware Abstraction
Layer in some cases generates reports in a quasi-return to zero
format. Motion noise induced from victim movement causes the
readings to shi� relative to its reference orientation. We evaluate
channel viability by reducing system noise and account for motion
noise stemming from carrying the device in typical manner i.e., a
belt or a shoulder bag. �is initial work addresses only these two
conveyance modalities.

�e a�ack is unique as it is an out-of-band, unilateral, non-
persistent communications pathway that is di�cult to detect. �is



permissionless a�ack is useful for commercial, law enforcement
and unfortunately, malicious purposes with outgoing communi-
cations occurring asynchronously post data capture. Mitigation
is challenging without modifying the Operating System to seek
permissions for sensor use, changing the sampling rate or changing
device sensitivity.

Our contributions to this Independent Review Board (IRB) ap-
proved research can be summarized as follows:

• To the best of our knowledge, we are the �rst to report
the use of magnetic �eld communications to compromise
a victim’s location privacy.

• We designed, built, and evaluated a system that is transfer-
able to real-world deployments and scalable to at least one
million locations.

• �e system is intended to identify location absent of Wi-Fi,
cellular, GPS, Bluetooth and NFC services and the a�ack
functions without the need for permissions, making detec-
tion di�cult.

• We developed signal processing and coding techniques
that address the substantial signal fading e�ects due to
mobility in a very-low power magnetic near �eld.

• We evaluated the prototype on six android devices, in an
IRB-approved study with six participants.

• We achieved an aggregate location identi�cation success
rate of 86% with a bit error rate of 1.5% which is only ten
times the stationary error rate.

• �e solution’s position accuracy is controlled by the at-
tacker rather than the mobile device’s capabilities.

�e remainder of this paper is constructed as follows. In Sections 2
and 3, we describe the background, motivation and threat model
for the a�ack. Section 4 details the system design and some of
the practical limitations for this a�ack type. Section 5 describes
the testing methodology and results of the two walking tests. Sec-
tion 6 describes mitigation options and we end with a related works
discussion and conclusion in Section 7 and Section 8 respectively.

Figure 1: System Design

2 BACKGROUND AND MOTIVATION
Location identi�cation as a means to compromise privacy is a signif-
icant concern. Deriving location via Wi-Fi, cell tower triangulation
and sensor exploitation is well researched, with typical accuracies
of a few hundred yards and at best, tens of feet. GPS, with be�er
accuracy, has limited functionality within buildings. Despite the ad-
vantages of location services and the economic bene�t that beacons

may provide, fear of actors such as law enforcement [18] engaging
in user tracking remains. Other permissionless forms of location
compromises may involve the gyroscope and the accelerometer.
However, absent the use of recorded dead reckoning data to infer
position, there is li�le research involving magnetometer speci�c
a�acks. Some directly related a�acks are:

Magnetic mapping, Gozick [10], is used to identify a physical
structure’s footprint by its magnetic �elds. Assuming each building
has a unique signature, the a�acker can determine where a particu-
lar device has been. �e limitations are the magnitude of collected
data (device and site) and how e�ectively it correlates to known
magnetic �ngerprints.

In a short-range communications example, Matyunin [20] identi-
�ed a communications channel using a PC’s disk drive as the source
and the magnetometer from a second device as the sink where both
devices are stationary. �ey achieved a bit rate of 4 bps at a distance
of 4 cm. Similarly, [31] uses radiation pa�erns to identify opening
and closing of applications resident on adjacent platforms.

Although the magnetometer is used in Narain’s [24] location
inference a�ack, it is not the primary contributing sensor. �e
accelerometer and the gyroscope were used primarily to determine
position using graph analysis referenced to the OpenStreetMap
database. Its accuracy is limited to half the distance between map
street junctions and cannot be applied in pedestrian, rail, ship or
air travel contexts.

iBeacon™, an Apple technology, uses Bluetooth low energy (BLE)
identi�ers that a smartphone app can listen to, enabling device lo-
cation and customer tracking etc. In this case, the user enables
tracking services, clearly willing to be tracked to enhance the shop-
ping experience.

An additional vector of recent interest involves facial recogni-
tion, Gunther [11], and presentation a�acks, Ramachandra [26].
However, identity matching remains problematic primarily due
to database completeness limitations. Unless access to law en-
forcement types of databases is available, the a�acks have limited
e�ectiveness unless the presentation a�ack involves scanning so-
cial media databases containing pictures and executing resource
intensive activities.

Each of these has limitations such as range, data size, resolution
or enabling of location services. Our motivation is to, absent of
such limitations, track the user despite her a�empts to prevent such
e�orts. �e solution is scalable, limited to the willingness of the
tracking entity to install a system to perform this type of privacy
invasion.
3 THREAT MODEL
�is section describes the threat model.
3.1 Vulnerability
A vulnerability exists in the Android space where direct reading of
sensor data is not restricted when using the SensorManager class
and access is not encumbered by declaring their use in the Android-
Manifest.XML �le. With this permissionless access control, the
user is not alerted to sensor use at installation time nor at run time.
�is allows magnetometer data to be accessed without security
limitations. Furthermore, the a�ack involves only one-way com-
munications with the magnetometer acting as a passive receiver
without the need for permission dependent transmi�ing resources.
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On the human side, we rely on social media and Google play
ratings to convince users to download the app. �e app must be
well rated which is achieved by procuring high ratings, seeding a
'like' in social media via Facebook and utilizing other social means.
�e la�er a result of a general willingness to try new apps based on
reviews from unknown and untrusted sources [27]. In this manner,
the illusion of app trust is established and propagated.
3.2 �reat
�e threat is in obtaining position information despite the victim's
e�orts to avoid leaking this information. It is assumed that she
disables Wi-Fi, NFC, GPS, Bluetooth and cellular services. �e
device however, remains powered on. �is condition is consistent
with placing the device in airplane mode in addition to disabling
location supporting services. �e victim installs a seemly innocuous
app that functions even when placed in the background. All that
remains is for the victim to move in proximity to the system.
3.3 Attack
�e a�ack is driven by a select group of potentially malicious and
benign actors. �ose bene�ting might include, governments, law
enforcement, marketing and sales analysts and the hosting entity.
Government and law enforcement interests are based on the desire
to track any number of individuals for location history purposes.
Noti�cation of their activities to third parties and data usage would
be subject to jurisdictional laws. Marketing and sales analysts
would seek to identify drive-by individuals for campaign targeting.
Supplemental means to contact the target(s) i.e., via text messaging
and email, might occur subsequent to a ‘hit’. Similarly, the hosting
entity might desire to use this in support of in-store sales activities
and broader campaigns.

�e a�ack is enabled by placing a transmi�er in high tra�c
locations. �e target(s) enters the transmi�er’s �eld of view and if
the malicious app is present, the a�ack should succeed.

�e transmi�er and the controller elements may be embedded
in the �oor, ceiling or a wall. �e installation would be minor for
new construction or store set-up and slightly more complicated for
existing structures. �e transmi�er may also be located in kiosks,
cross walks and bus, airplane and train terminals.

3.4 Exploit
�e innocuous app, masquerading as a legitimate function, i.e., a
tasker, �le explorer, calendar etc., is a registered sensor listener that
records magnetometer data. Upon synch frame detection, the data
is processed, stored and subsequently transmi�ed to an o�-board
colluding application when Wi-Fi or cellular services are enabled.

3.5 Trust
Trust is presumed in two cases. First, the victim believes that
her movements are not tracked when disabling location related
services. Second, she has downloaded an app that provides valuable
functionality and whose app store ratings meet her satisfaction.

4 SYSTEM DESIGN
4.1 Magnetometer Based Tracking System

Overview
�e system overview diagram is illustrated in Figure 1. We show
a victim, oblivious to the platform beneath her feet, as she walks

toward her destination. Alternatively, she is walking in proximity
to an innocent looking kiosk. She is unaware that each of these
structures house a subsystem that generates coded yet harmless
magnetic �elds strong enough for her smartphone’s magnetome-
ter to detect. She is also unaware that the ‘really cool’ app she
downloaded is also recording this data unbeknownst to her.

We envision that each of these system types is potentially lo-
cated in stores, malls, transportation hubs, cross-walks or in other
locations where victims would patronize or be in close proximity.
�e smartphone’s app functions include recording magnetometer
data and ex�ltrating semi-processed data.

�e nature of this app could support malicious or non-malicious
activities. In the former case, the app supports location exposure, vi-
olating user privacy. In the la�er case, the app can support targeted
shopping as a commerce-oriented beacon. It may also enhance law
enforcement activities such as persons of interest tracking.

In all cases, the system is placed in a predetermined location,
where each location is assigned a unique ID. Since this a�ack is
expected to scale to one million instances, the coding approach is
important. Code selection must also account for long continuous
equal-bit value sub-streams to avoid frequency content similar to
the victim's gait.

Each station issues its unique code in perpetuity, triggered by an
external event such as depressing a pressure switch on the �oor or
interrupting an optical loop. �is ensures that the victim’s phone
is within detection range of the coded electromagnetic (EM) �eld
emissions from the platform coil(s). Based on anthropomorphic
data [3], we set the transmission �eld strength at 37 to 41 inches
above the plane of the coil(s) to be less than 30µT. Although the
only platform limitations are size, this in�uences EM �eld strength.
�e former is driven by physical limitations of the deployment site
while the la�er is a function of current, turn count, coil dimensions
and the permi�ed power ceiling.

�emagnetometer data stream is �ltered to remove device anom-
alies, high frequencies and the e�ect of the human gait. Automated
Gain Control (AGC) is applied post �ltering to compensate for
uneven signal strength due to position within the magnetic �eld.
�e app either waits until it is within a Wi-Fi range and transmits
the individual identi�cation out to a participating server or data is
aggregated and transferred in batch. In either case, the locations
and times are now available from which further a�acks may be
launched.

Figure 2 illustrates the major transmit side elements: �e con-
troller, switching circuitry and the platform hosting the coils. �e
�rst two are described in Section 4.5 while the platform is addressed
in Section 4.4.

Switching Controller

Platform

Figure 2: System Building Blocks
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4.2 Magnetic Flux Determination
Due to the asymmetric nature or our platform, we derive the mag-
netic �ux density B at a point in space Px,y,z for a rectangular
coil, Figure 3, of N turns. �is vector consists of each of the ax-
ial �ux density contributions Bx,By,Bz at P as the target device
passes through the magnetic �eld. �is coordinate system is con-
sistent with the three axis Cartesian coordinate system found on
smartphones.

z

y

x

P(x,y,z).
r1

r2

r4

r3a

b

a

b

Figure 3: Point In Space Magnetic Flux
�e magnitude is given by equation 1.

B =
√
B2
x + B2

y + B2
z (1)

where Bx,Bx,Bx are x,y and z plane �ux contributions

Bx = N
µ0I
4π

4∑
α=1

[ −1α+1z)
rα [rα + dα ]

]
(2)

By = N
µ0I
4π

4∑
α=1

[ −1α+1z)
rα [rα + −1α+1Cα ]

]
(3)

Bz = N
µ0I
4π

4∑
α=1

[ −1α+1z
rα [rα + −1α+1Cα ]

−
Cα

rα [rα + dα ]
]

(4)

and α is a side (one of four), N, I, µ0 are the coil turn count, current
and permeability respectively and where:

C1, −C4 = a + x and C2, −C3 = a − x (5)

d1 = d2 = y + b and d3 = d4 = y − b (6)

r1 =
√
(a + x )2 + (y + b)2 + z2 (7)

r2 =
√
(a − x )2 + (y + b)2 + z2 (8)

r3 =
√
(a − x )2 + (y − b)2 + z2 (9)

r4 =
√
(a + x )2 + (y − b)2 + z2 (10)

a andb are half the length and half the width of the coil respectively
and Cα and dα are reference points enabling the derivation of rα ,
the Euclidean distance of each corner to P. �ese equations are the
foundation for the design/parametrization of our system prototype.

�e key point is that Bx,y,z is a�ected linearly with N and I and
inversely proportional with rα .

4.3 Challenges and Tradeo�s
�ere are seven factors that drive the system design.

• Platform Size: We are limited by the magnetic �eld size
which is a function of platform size. Hosts will want to limit
the system’s physical footprint and make it imperceptible.

• Magnetometer Sampling Rates: We are limited by the
device’s sensor sample rates. Low rates necessitate larger
signal pulsewidth, which in turn increases transmission
and in-the-�eld times.

• Speed: �e speed at which humans can walk a�ects a�ack
viability. If the velocity is too high, the code pa�ern may
not be received in toto as the device passes though the
magnetic �eld.

• Scale: �e system must scale to support a large set of
deployments which drives the payload length.

• Device Orientation: �e position ID must be resolvable
without regard to device orientation.
• Safety: �e system must not radiate magnetic �elds large

enough to cause harm.
• Stealth: �e system a�ack must be stealthy and function

without GPS, Wi-Fi, NFC, Bluetooth and cellular location
supporting capabilities during execution.

4.4 Design Decisions, Observations and
Parametrics
• Scope: Since we are in the initial stages of this e�ort, the

testing scope was limited to a belt and a shoulder bag.
Other transport modalities which are useful in completing
this e�ort include in-clothing pockets, in-hand and arm-
band modalities. In addition, the transmi�er was limited
for this current series of experiments to �oor operations,
whereas in-wall, in-ceiling, kiosk resident and security
tower-like structures are viable deployment alternatives.

• Sampling: �e largest sampling period of any evaluated
device tested was 18.9 msec. �is limits the lower bound
signaling pulsewidth to approximately 37.8 msec to avoid
aliasing e�ects. We utilize 45 msec to account for future
target devices within our prototype’s dimensions limits.

• Data Frame Sizing: We utilize a synchronization pream-
ble and a payload consisting of an ID information �eld and
a validation �eld. ID length must factor in the number of
unique locations and any necessary coding overhead.

n = t × 1/pw (11)
t = L/v (12)

We de�ne the longitudinal velocity of the human passing
through the magnetic �le, v; the length of the platform,
L; the time in �eld, t ; the pulsewidth, pw ; the number of
bits that can be detected while in the magnetic �eld, bitsr ;
the number of bits transmi�ed once triggered, bitst ; the
frame length, n; the number of deployed platforms p. Since
Equations 11 and 12 must be solved simultaneous and if
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bitst = bitsr = n, then using t , the maximum time in �eld
to solve for n, t = n × pw = L/v → n = 1/pw × L/v.

• Device Velocity: Velocity a�ects the time within the mag-
netic �eld. From Bohannon [6], the nominal comfortable
gait speed is ≈ 4.6 feet/sec.

• Physical Size: We assume platform dimensions of 8.7
feet x 36 inches. Since the magnetic �ux lines extend be-
yond the physical boundary of the coil and due to the test
environment’s physical constraints, we set the length as
slightly less than 4.6 × pw × n which represents a balance
of minimal intrusiveness, physical constraints and meeting
performance needs.

• Gait Amplitude Contribution: We found in our exper-
iments that the deviation in magnetometer readings a�rib-
utable to the gait was approximately equal to ±15µT. �is
amplitude is similar to that induced by the signal.

• Distinguishing Gait from Data: Long contiguous snip-
pets of equal valued data can be construed as a gait in-
duced contribution. For example, 8 bits at 45 msec per bit
is 360 msec, which in terms of frequency, is within the
gait frequency band. As a result, the data must be coded
to account for these occurrences. For this exercise, we
intentionally shortened the permi�ed identical contiguous
bit sub-streams and accepted the bit length penalty of a
longer ID �eld.

• Scale: �e key issue is determining the bit stream length
to accommodate the limited time within the magnetic �eld
and the sampling rate limitations while providing e�ective
signal discrimination. We selected 1 million possible plat-
forms, 20 bits uncoded, to provide a modest level of scaling.

• Safety: In a joint question and answer report [2], the U.S.
National Institutes of Environmental Health Sciences and
Health suggested that the levels associated with hair dryers
(nominally 300µT) and electric razors (nominally 100µT)
at operating distances are safe to humans in normal use. In
a static position measurement taken below the knee, our
maximum RMS �eld strength was approximately 44µT. At
range, our worst-case �eld strength is ≈ 20µT. Exposure
time in the appliance case is several minutes while less
than 5 seconds with ours.

• Stealth: �e a�ack is permissionless, making detection
di�cult. Ex�ltration to a third party, albeit needing per-
missions, is not the objective of this study.

4.5 Coil and Electronics Design
4.5.1 Coil Design. Table 1 highlights coil parametric informa-

tion for the hand wound, air-gapped coil using a wooden frame
as a bobbin and magnet wire as the conductor. �ese parameters
approximate a real-world deployment.

4.5.2 Electronics Design. �e electronic circuitry, Figure 4, con-
sists of an Arduino based Linkit Smart 7688 series controller, two
linear power supplies providing ±12.5V voltage rails, voltage sup-
pression / �y-back capability and solid-state switches, in a single
pole, double throw con�guration, which supplies current to the
coil(s). �e Arduino controller enables the switches on a per bit

Parameter Value
Dimensions (Inches) 67.5 x 24.5

Turns 65
Height (Inches) 1.25

Inductance (Henries) 0.024
Wire Length (Feet) 993

Wire Nominal Resistance (Ohms) 6
Wire Guage (AWG) 18

Relative Permeability (µ/µ0) 1.00000043
Table 1: Coil Parameters

basis where each bit has a duration of 45 msec. Individual bits
are coded in a non-return-to-zero (NRZ) format. We selected NRZ
since the magnetic �eld’s rise and fall time approached 10 msec
which potentially increases aliasing at the sensor sampling rates.
We switch between the voltage rails to support rapid charging and
discharging of the coil(s), L1, without the need for AC coupling.

V-

V+ R5

V-

V+ R1
1	Ohm

L11	Ohm 12	V

12	V
1	kOhm

Control
SPDT

Add	coils	t o
support
physical
distance

ID	Transmitter

Power	Supply	1

Power	Supply	2

Figure 4: Single Coil Circuit Design

4.6 Code Selection and Payload Design
Coding selection presents a challenge since we are limited to 32
bits for data and checking based on the previously described physi-
cal constraints. Concatenating Hamming codes [13] is insu�cient
since, for example, in an 8-4-4 Hamming scheme, one needs eight
bits to get four bits and the scale and payload conditions are vio-
lated. Gold codes [17] and Kasami codes [32] do not allow enough
preferred pairs to satisfy the scale objective while simultaneously
satisfying the number of bits available. Compounding this is the
situation when either a stream of 0s or 1s bits occurs since these
may be undi�erentiated from gait a�ributed frequencies. To avoid
this, we selected ID pa�erns that did not include identical bit se-
quences exceeding 3 bits. With a one million platforms target, we
would need 23 bits in our code to get 20.

For demonstration purposes, we used an 8-bit parity sequence
where each bit is the bit XOR of the corresponding bit derived
from the 23-bit code sliced into three 8-bit words. We initially
set the 24th bit to 0 in this calculation. Once completed, we set
the 24th bit to the parity value of the 8-bit parity sequence itself.
�is allows us to perform a rudimentary check on the la�er and
allows us to detect small error counts. Of note, we violated the
four identical bit rule for the 9-bit parity sequence, recognizing
that this would potentially increase error rates. Consequently,
the overall frame design consists of a synchronization header, the
aforementioned ID �eld and a footer containing parity information.
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For synchronization, we adopted a spreading technique leveraging
a Pseudo Noise (PN) sequence (MSEQ 15) in the header which
represents a balance in achieving short synchronization lengths,
signal gain and minimizing pa�ern duplication.

We could increase the frequency separation from the gait funda-
mental by limiting the number of contiguous identical bits to two.
�e number of such codewords follows a Fibonacci series with an
n of 29 yielding a k of 20. �ese testing results are discussed in
Section 5.2.5.

More aggressively, we could include error correction by changing
the header to a Barker 7 code, utilize a Hamming [31, 26, 3] code
correcting one bit, then break the 0/1 pa�ern by bit stu�ng while
including the two-bit limit. We leave the optimal coding scheme
for a future study.

4.7 Signal Processing
Android smartphone sensors such as the accelerometer and gyro-
scope are intended to respond to motion while the magnetometer
is intended to respond to orientation shi�s relative to a magnetic
reference position. �ese sensors may be sensitive to external non-
motion driven stimuli such as ultrasonic signals in the cases of the
accelerometer and gyroscope and in the case of the magnetometer,
indigenous �elds and external magnetic �eld manipulation. �ese,
plus motion induced responses, are seen in Figure 5a and Figure 5b.
�e former illustrates all testing movement including the returns to
the starting position while the la�er shows the visible signal on the
X and Y axes while the e�ect of the gait is visible predominately
in the Z and to a lesser extent, the Y and X axes. �is is expected
as the distance o� the platform plane varies within hip �exion and
extension ranges while underway. From a signal strength view, the
gait amplitude may reach twice that of the signal while its period
exceeds the bit’s pulsewidth. Figure 6 illustrates the process steps
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(b) Signal, Code and Gait from Single Walk
Figure 5: Magnetic Fields, Galaxy S6

used to extract payload data. �e sensor data is initially interpo-
lated in increments of 1 msec since sensor reporting is non-uniform.
In addition to the obvious sample rate di�erences, we found that
among the LG, Nexus and ZETA devices, the Hardware Abstraction
Layer reports a ‘zero’ post a scheduled sample. �is behavior is
observed in Figure 10 versus what is observed with the Galaxy
S6, see Figure 5. We apply a concept of last reported value when
this occurs in order to eliminate this condition. �is condition is
detected when the next sample changes by more than the mean
signal value over the entire run. Moving average or equivalent
�lters are not suitable as they smooth the signal. Once completed,
low frequency components sourced by the gait motion are identi-
�ed by an FFT. �ese are used to set the �lter cut-o� frequencies
which are typically below 2 Hz. A subsequent composite signal is
generated and passed through an AGC process which compensates
for signal strength variation due to di�erences in o�-angle posi-
tions relative to the center of a coil. �e AGC value at point s is
shown in equation 13 where τ is the selected threshold, ds is the
post noise-cancelled value at s and ϵs is the energy at s .

AGCs = f (ds ,τ , ϵs ) (13)

A synchronization preamble hunt occurs post AGC processing.
Using a matched �lter based on the MSEQ15 pa�ern, we slide the
�lter over the AGC output and correlate at each AGC point. Cor-
relation is computed using Equation (14), where l is the encoding
scheme length, x[i] is the sensor measurement at i within l and
EE[i] is the encoding scheme’s ith code value within l , e.g., -1 or 1
for each chip as needed.

syncstart = |
l∑
i=1
(|x[i]|) · EE[i]| (14)

ŝ = argmax
s ∈{s1,s2,s3, ...sn }

syncstart (15)

D =

∫ te

i=ts
AGCidt (16)

Bits =

{
1, if D ≥ τ
0 otherwise

(17)

Once the start of the synchronization preamble ŝ is determined,
the preamble is stripped away and the payload is extracted. We ap-
ply discrimination processing in 16 and 17 where we integrate the
AGC output over the interval ts to te and apply the result against
a threshold τ to get the bit value. Error processing is executed with
ID error rates and bit error rates subsequently determined.

Magnetometer
Data Interpolate

FFT

Filter Vector Gen Apply AGC

Discriminate Synchronize
Process
Errors Processed

Data

Figure 6: Signal Processing
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5 TESTING AND EVALUATION APPROACH
We successfully obtained IRB approval for human-in-the-loop ex-
periments, enabling the use of test assistants to transport the test
devices from di�ering manufacturers in proximity to the magnetic
�eld. �ese assistants encompassed three men and three women of
varying heights, weights and walking gait pa�erns.

5.1 Testing Methodology

Figure 7: Platform with Coil Exposed

We deployed an app in each device that recorded the magne-
tometer readings in each of the X, Y and Z directions. Each assistant
carried all devices simultaneously and were tested twice, once with
a tool belt and once with a shoulder bag. Orientation was not ex-
plicitly controlled although in the case of the tool belt, the general
orientation was vertical with the face pointing toward the partici-
pant’s torso. With the shoulder bag, the general orientation was
horizontal with the face pointed up. �ere was no intention for
any axis to be precisely parallel or perpendicular to the platform
surface. �ese positions were selected to re�ect commonly used
orientations.

A�er enabling sensor recording with the test app, each assistant
walks over the platform, Figure 7, 25 times while carrying all of
the devices concurrently. A new ID position code, Table 2, was
transmi�ed for each pass, yielding a total of 25 unique codes per
assistant per device per test. �e same position code sequences
were used for each test. Each walk pass consisted of a synchronous
series of events. Initially, the assistant would wait for a �xed period
of time (seconds) until visually cued with warning signals followed
by a ‘go’ signal. �e assistant would subsequently traverse the
platform, return to the starting position and wait for the next series
of cues. �is sequence is more stressing than with a real deploy-
ment since the emissions would be triggered by a pressure switch
/ optical sensor such that emissions would occur while the victim
was within the coil boundaries whereas in these tests, we relied on
reaction time. A�er all walk passes were complete, the data was
post processed to ascertain solution e�ectiveness.

We do not evaluate the e�ect of gender. Tests were performed
on both sexes independent of vehicle. Our focus was to identify
di�erences in performance with respect to noise where one noise
contributor might be gender related gait.

5.1.1 Magnetic Field Characteristics. Magnetic �eld strength
varies relative to position as devices move over the coil. Figure 8,
illustrates the X,Y and Z readings of the measured �eld values at

Table 2: Data Pattern
Pattern # Bit Pattern

0 00110111010001000100111100111101
1 00100010101001101010101000101110
2 00011011101010111001101100101010
3 00011000111010111001000001100011
4 10101000101011011100010111000001
5 11011001100100111011101011110000
6 11001001010011101101000101010111
7 01100011101000101001101101011011
8 11000111001011010101101110110000
9 01011000110011011101110101001001
10 11100010011100011010001100110001
11 01001010101000110001001111111011
12 11010100101100110111010100010011
13 10101010001101001011000000101110
14 10111011101101110101011001011010
15 10001100011100011010100001010101
16 01101001000100110110011100011100
17 10100111001010001010101100100101
18 11100011011011000111011011111001
19 11001101110001110010010000101110
20 10101011100011101000111110101011
21 00101010110110011001110001101111
22 11010100011010110110010011011011
23 10011001000101001000101100000111
24 00101110111001001001010101011110

16 inches above the center of coil moving from the edge closest
to the starting position, ‘Start’ to the ending position, ‘End’. Mea-
surements were taken by sliding the device along the parallel plane
while the coil is transmi�ing signals. Positions 1st Q, Mid and 2nd
Q denote the midpoints of the �rst half, overall platform and second
half of the platform respectively. �e measuring device was parallel
to the surface of the platform and rotated 90°. �e Z position was
�at with the face up. In general, the symmetry is clear with the
worst-case max-to-min ratio approaches 3 : 1.

Figure 8: Axial Static Position Readings

5.2 Testing Results
�is section describes our test results. Of the six devices evalu-
ated, four produced satisfactory results. �e two failures were the
Samsung Galaxy S7 and the Nexbit Robin.

5.2.1 Sampling Rates. Device sample rates are provided in Ta-
ble 3. Aliasing was not a concern except in the case of the Robin
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where the standard deviation equaled the pulsewidth. Otherwise,
the worst-case sample rates were greater than twice the 18.92 Hz
signaling bit rate (45 msec pulsewidth).

Table 3: Sampling Rate Statistics (Msec)
Mfr. Device Model Mean Max Min STD
LG 4 8.39 18.92 4.18 0.0724
ZTE Blade V8 Pro 5.01 6.84 4.92 0.0143
Nexus 5 4.93 9.86 3.88 0.216

Samsung S6 4.41 10.66 1.5 1.4217
Samsung S7 4.73 6.23 4.62 0.0087
Nexbit Robin 7.41 1009.8 4.92 45

5.2.2 Processing. We show in Figure 10, the magnetometer re-
sponse for a given pass of the ZETA Pro device, with and without
signaling. In the sequence times between 2000 and 8000 msec in
Figure 10a, the straight-line periodicity of the gait is observable
without signal emissions. �e deviations a�er this range are test
speci�c as the subjects were asked to return to the starting position.
�e presence of signal is shown in Figure 10b between 3000 and
5500 msec for a similar walk. Note that the la�er imposes a minor
amplitude deviation while underway and the signal rides on top of
the ambient (including gait) readings.

�e RZ signature is eliminated prior to interpolation which is
followed by the removal of gate related components and the turns
contributions as shown in Figure 11a using a multi-stage �ltering
scheme. �e gait frequency spectrum for each DUT for a sample
test assistant is provided in Figure 9. Although these frequencies are
less than 5Hz, the content is more noticeable at lower frequencies.
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Figure 9: FFT - Low Frequency Content

We transpose the resultant tri-axial data, Figure 11a, into the com-
posite signal, see Figure 11b in both Cartesian and Spherical coordi-
nate systems from the measured values associated with Section 4.2
as vector B, inclination arccos(Bz/B), and azimuth arctan(By/Bx),
representations and select the output with the most �delity prior to
the application of AGC to create the �nal data. Since the orientation
is neither controllable nor predictable and the axial sensor readings
vary with orientation and position within the magnetic �eld, com-
puting all three composite signals is needed. �is is evident from
Figure 5b where the Z axis has a strong gait and li�le signal, X and Y
have severe and moderate edge a�enuation respectively due to slow
fading of the near-�eld channel and each exhibits asymmetrical
yet opposing gait elements. Figure 11c illustrates an AGC output
example superimposed on the composite signal.
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(b) Walk with Signal
Figure 10: Single Walk Magnetometer Readings

Table 4: Static Error Rate Summary
Mfr. Device Model BER
LG 4 1.67 × 10−3

Nexus 5 6.25 × 10−3
Samsung S6 0
ZETA Blade V8 Pro 1.67 × 10−3

5.2.3 Stationary Testing. Table 4 summarizes device static error
rates for a 4800-bit test. �e worst-case error rate is 6.25 × 10−3.

5.2.4 Walking Results. Table 5 summarizes the testing results.
Columns IDE and BE indicate the number of errors for a given
device with respect to the 25 possible IDs (IDE) and 800 bits (BE).
�e worst-case ID error rate is 9 out of 25 which occurred on only
one device type. �is suggests a good con�dence level that we can
determine the precise location of a device that is in range of our
coil. �e S6 and Zeta are the best performers where the worst-case
correct identi�cation rate between the two is 88%. �e LG and
Nexus follow with worst-case values of 72% and 64% respectively.
Although gender breakout is intentionally hidden from the reader,
the results appear inconclusive with respect to gender orientation
and locomotion.

Initially, we thought that there might be a bias based on gender
due to physical and traditional conveyance modality. Although the
mean height for men moves device distances ≈ 5.5 inches further
away from the surface of the platform, pocket book / shoulder bag
use may o�set this gap as the bo�om of the book / bag is usually
several inches above the iliac crest, which itself is estimated to be 2
inches above the location of a belt carried device. �e use of high
heels further reduces the gap. Second, a bag provides additional
device tilt such that the data may show an increased contribution
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Figure 11: Signal Processing Chain

from previously non-dominant axes. One might a�empt to infer
gender from axial data but once ‘vectorized’, the belt vs. bag results
are indistinguishable. See Frimenko et.al, [9] for more information
on gender gait di�erences.

In some cases, there are low IDEs with large BEs. �ese typically
occur when synchronization fails. Some failures may be a�ributed
to the testing scheme which is dependent on visual cues to initiate a
walk. Any delays by the test assistant may cause a partial preamble
loss due to emissions starting prior to acceptable proximity to the
coils. In a true deployment which would rely on physical detec-
tion methods for presence within the anticipated �eld, proximity
induced synchronization failures would be mitigated.

�e results validate our approach to identifying location despite
the presence of static environmental magnetic �elds and system
noise sources such as those associated with actively carrying the
device. With one exception, the non-stationary error rates are an
order of magnitude worse than the corresponding stationary ones.
We have included two additional columns, single bit errors (SBE)
and double bit errors, DBE where we track the occurrence of each

Table 5: Error Summary
Test Subject Belt/Bag Device IDE BE SBE DBE

A Bag LG-D41521 5 8 4 0
A Bag Nexus522 4 6 3 0
A Bag SM-G920T23 5 36 2 1
A Bag Z97823 1 1 1 0
A Belt LG-D41521 2 2 2 0
A Belt Nexus522 9 15 5 2
A Belt SM-G920T23 2 2 2 0
A Belt Z97823 0 0 0 0
B Bag LG-D41521 1 1 1 0
B Bag Nexus522 7 9 6 0
B Bag SM-G920T23 5 57 1 0
B Bag Z97823 1 1 1 0
B Belt LG-D41521 4 46 1 0
B Belt Nexus522 4 6 3 0
B Belt SM-G920T23 1 2 0 1
B Belt Z97823 0 0 0 0
C Bag LG-D41521 2 4 1 0
C Bag Nexus522 6 9 5 0
C Bag SM-G920T23 3 32 1 0
C Bag Z97823 0 0 0 0
C Belt LG-D41521 1 1 1 0
C Belt Nexus522 6 8 4 2
C Belt SM-G920T23 2 2 2 0
C Belt Z97823 2 2 2 0
D Bag LG-D41521 7 8 6 1
D Bag Nexus522 7 12 4 2
D Bag SM-G920T23 2 3 1 1
D Bag Z97823 1 2 0 1
D Belt LG-D41521 5 53 2 0
D Belt Nexus522 9 12 6 3
D Belt SM-G920T23 1 1 1 0
D Belt Z97823 0 0 0 0
E Bag LG-D41521 5 7 3 2
E Bag Nexus522 6 56 3 0
E Bag SM-G920T23 2 3 1 1
E Bag Z97823 0 0 0 0
E Belt LG-D41521 7 9 5 2
E Belt Nexus522 8 11 5 3
E Belt SM-G920T23 3 34 1 0
E Belt Z97823 2 2 2 0
F Bag LG-D41521 2 2 2 0
F Bag Nexus522 9 14 5 3
F Bag SM-G920T23 5 48 1 1
F Bag Z97823 0 0 0 0
F Belt LG-D41521 5 8 3 1
F Belt Nexus522 4 6 3 0
F Belt SM-G920T23 4 33 2 0
F Belt Z97823 0 0 0 0

for a given test. �e ID success rate would exceed 94.8% if the
coding scheme selected supported single bit error correction and
97% for double bit error correction.

Although the Galaxy S7’s sample rates were well within our
operational parameters, it appears that the issue is poor sensitivity
as it did not exhibit the dynamic range seen in the four a�ack prone
devices. At this juncture we are unable to identify the sensor part
number to examine its speci�cations.

5.2.5 Contiguous Identical Bit Assessment. �e above results
re�ect data pa�erns prohibiting four or more contiguous identical
bits. Table 6 summarizes the results when reduced to two, provid-
ing greater separation from the gait fundamental frequency. �e
overall Bag result improves slightly versus the Belt which improves
substantially. In the la�er, errors are either non-existent or cor-
rectable with single bit correction schemes. We suspect that a belt
o�ers greater structural coupling to the body vs. a bag which �oats,
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anchored at one spot and may be susceptible to other noise sources.

Table 6: Two Bit Limit Summary
Test Subject Belt/Bag Device IDE BE SBE DBE

B Bag LG-D41521 2 4 1 0
B Bag Nexus522 5 6 4 1
B Bag SM-G920T23 6 93 0 0
B Bag Z97823 0 0 0 0
B Belt LG-D41521 0 0 0 0
B Belt Nexus522 3 3 3 0
B Belt SM-G920T23 0 0 0 0
B Belt Z97823 0 0 0 0

6 MITIGATION
Since Wi-Fi, GPS, Bluetooth, cellular and NFC are assumed to be
disabled, the a�ack surface is reduced to the magnetometer. In
the current Android security framework, the user is not noti�ed
of magnetometer usage. As such, the practical mitigation strategy
scope is limited, short of power cycling.

Other than removal of the magnetometer, sampling rate modi�-
cation may provide the most e�ective mitigation scheme. �e mean
sampling rates for the magnetometer were in the 150 Hz range.
Decreasing this rate still allows non-malicious functionality while
limiting the magnetometer as a covert or side channel medium due
to the e�ectively reduced Nyquist frequency. A less aggressive
approach is to randomize the sampling rate which increases the
ID and bit error rates in �xed length pulsewidths. To sustain this
type of channel, the a�acker would need to increase the pulsewidth,
causing either a reduction in payload length or migrating to a larger
physical footprint making the a�ack more challenging.

Adopting the overdamped scheme of analog compasses of the
prior century is interesting. �is provides low pass �ltering, exhibits
non-linear behavior and reduces the signal-to-noise ratio. What is
compelling is the di�culty in envisioning the need for a critically /
under damped sensor.

Another possibility is to eliminate the magnetometer altogether
although some would su�er as no alternative is available. �ose
who can communicate with the GPS constellation might not need
this feature. Placing the phone next to a permanent magnet would
limit the magnetometer's ability to act as a receiver and unfor-
tunately severely limit utility. A more practical solution is to re-
duce sensor sensitivity to approach 100µT/LSB or less rather than
1µT/LSB which signi�cantly degrades magnetometer resolution
while retaining functionality.

A�enuating magnetic �elds is challenging as it is a�ected pri-
marily by the shielding material. In a �rst order approximation
from [1], the a�enuation α equals permeability × (TS /DS ) where
TS /DS is the ratio of the shield thickness to the length of the diago-
nal sheet or diameter of the shield circle depending on geometries.
Since the la�er is less than one, the permeability of the material
must be very high to provide e�ective shielding as is the case with
materials such as ferromagnetic alloys containing high Nickel con-
centrations. Materials suitable for RFI shielding such as Aluminum
are ine�ective in magnetic shielding applications.

Monitoring sensor content is resource intensive. A defender
could monitor frequencies between 5 Hz and 50 Hz in ≈ 2 second

segments. However, mitigation in real-time is unlikely either in
identifying the participating app or disconnecting all registered
Listeners which is currently not a feature. Finally, querying the
user for permission to use the sensor is an option albeit unlikely
due to the lack of action taken historically when highlighted in
prior works.

7 RELATEDWORK
Jin [16], developed a �le sharing scheme which used the magne-
tometer to reduce the probability of proximate Man in the Middle
a�acks and limit eavesdropping from prospective a�ackers. Static
device EMF readings are exchanged as a seed for secure communi-
cations. �e operating range is less than 20 cm, far less than needed
in our a�ack and inappropriate for dynamically controlled signals.

In Jiang[15], the authors use Amplitude Shi� Keying (ASK) en-
coding for the ‘Pulse’ application intended for near �eld communi-
cations. �ey use multiple coils and ASK yet this channel fails to
operate at distances higher than 2 cm and stationary devices are
assumed. Although the �eld strength is similar, ASK is challenging
in our a�ack due to position driven non-linearity of coil emissions.

Son’s [28] work demonstrated the e�ect of radiating acoustic
energy at drones with power levels near 100 dBSPL, disrupting �ight
pa�erns by stimulating the gyroscope at its resonance frequency.
In addition to the concern for the unprotected victim, additional
power might be needed to penetrate clothing, leather pouches,
pocketbooks etc. which o�er signi�cantly greater acoustic shielding
at sensor resonant frequency(ies), making this a�ack implausible.

In Guri [12], data is transmi�ed via controlling a desktop com-
puter’s resources (i.e., memory bus) at GSM, UMTS and LTE fre-
quencies which are received by a smartphone at a distance in the 1
to 5.5-meter range. �is requires the use of cellular services which
we must avoid due to its location tracking capability.

Other sensor inter-device communications were demonstrated
by Farshteindiker [8] whose covert channel utilizes an ‘implant’ to
transmit ultrasonic waveforms, stimulating a smartphone’s gyro-
scope. Since the devices must be touching in a position-sensitive
location to function, this application is impracticable.

Michalevsky et al. [21], developed PowerSpy which used power
levels and Dynamic TimeWarping to yield 80% user route inference
accuracy. �ere are two issues with this approach. Since the a�ack
requires a-priori, known road structures overlaid with surveyed
power levels, the data collection is substantial. Most importantly,
active cellular services are needed which is prohibited in our a�ack.

8 CONCLUSION
We demonstrated a zero permission, location identi�cation a�ack
of an Android device. By constructing a low power transmi�er
that emits GPS mapped location data, we leverage the magnetome-
ter to bypass location privacy protection schemes. With motion
compensation, we can determine location 86% of the time with
a BER of 1.5% which is only ten times the stationary error rate.
Future work includes improving our understanding of this a�ack’s
potential by including other devices, improving coil switching time
for size reduction, experimentally evaluating suitable mitigation
techniques and extending the data-collection using other modalities
and transmi�er con�gurations.
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