Secure Logging with Crash Tolerance

Erik-Oliver Blass
Airbus Group Innovations
Munich, Germany
erik-oliver.blass @airbus.com

Abstract—Forward-secure logging protects old log entries
in a log file against an adversary compromising the log device.
However, we show that previous work on forward-secure logging
is prone to crash-attacks where the adversary removes log
entries and then crashes the log device. As the state of the log
after a crash-attack is indistinguishable from the state after a
real crash, e.g., power failure, the adversary can hide attack
traces. We present SLiC, a new logging protocol that achieves
forward-security against crash-attacks. OQur main idea is to
decouple the time of a log event with the position of its resulting
log entry in the log file. Each event is encrypted and written
to a pseudo-random position in the log file. Consequently,
the adversary can only remove random log events, but not
specific ones. Yet, during forensic analysis, the verifier can
replay pseudo-random positions. This allows to distinguish a
real crash (last events missing) from a crash-attack (random
events missing). Besides a formal analysis, we also present an
evaluation of SLiC as a syslog server to indicate its practicality.

I. INTRODUCTION

Virtually all modern computer systems, cell phones, and
even embedded devices use logging services to store important
information in a log file. Prominent examples for logging
services in the Unix world are syslogd or journald. Log files
are often used for system audits and during forensic analysis
to learn about malfunction, attacks, and to detect system com-
promise. However, in case an adversary fully compromises the
device running the logging service, they can also access and
modify any information on that device. Typically, “covert”
adversaries [1] modify logs to hide traces of their attacks and
to remain undetected. If the verifier of a log file does not
know whether entries in the log file have been tampered with,
the log itself becomes useless for (forensic) analysis.

Consequently, a significant amount of work has in-
vestigated log integrity in case of log device compromise.
Relying on hardware and trusted computing is often expensive
and difficult to deploy on legacy devices, so research has
mostly focused on software solutions. Their rationale is
to provide forward security or forward integrity for log
file entries [2, 4, 6, 10-14]. The main insight is that there
cannot be security for log entries starting from the time of
compromise ¢. By compromising the log device, the adversary
has access to all information, even cryptographic secrets, and
can fabricate log entries from then on. Yet, forward security
ensures that all log entries from before time ¢ are integrity
protected. That is, if the adversary tampers with entries logged
before time ¢, this will be detected by the verifier. This weak
form of security (tamper evidence) is especially helpful in
scenarios, where log entries before the time of compromise
reveal an ongoing attack and will be integrity protected.

Guevara Noubir
Northeastern University
Boston-MA, USA
noubir@ccs.neu.edu

However in practice, log devices crash. Besides operating
system crashes, log devices might operate in harsh environ-
ments and, e.g., experience power failure. Without strong
assumptions on the operating system, file system, and cache,
a crash can leave the log file in an inconsistent state. In the
specific context of logging, this turns out to be a security
challenge. In what we call a crash-attack, the adversary com-
promises the log device, modifies or removes log entries and
integrity tags, and then purposefully crashes the log device.
During forensic analysis, a verifier cannot decide whether a
crash and the inconsistent state and integrity information of
the log is due to a (regular) crash or a crash-attack. Again,
the adversary can hide traces of their previous attack. None
of the state of the art protocols for secure logging has been
designed to cope with crashes, and their application in many
real world scenarios is therefore risky.

A second challenge stems from the fact that either logging
devices are resource-constrained, e.g., micro-controller based,
or the amount of log entries per unit of time can become large.
This requires secure logging protocols to be very lightweight.

In this paper, we design a new, efficient protocol for
forward-secure logging that is “crash tolerant” and enables
the verifier to distinguish a regular crash from a crash-attack.
As a motivation, we start by showing how related work is
prone to crash-attacks. The adversary learns time relations of
log entries in the log, even if log entries are encrypted. That
is, the time of an event determines the position of its log entry
in the log file. This allows the adversary to, e.g., remove the
most recent ¢ log entries, their integrity information, and then
crash the log device.

In contrast, the idea of our new protocol SLiC is to
(pseudo-)randomize positions of log entries in the log file.
We design a new variation of Algorithm P by Knuth [7] to
iteratively shuffle an array of an increasing number of log
entries. Each of the n encrypted log entries will be at any
position in the array with probability % Thus, the adversary
can only tamper or remove random log entries in the log,
but not specific ones. The verifier, however, can reconstruct
(pseudo-)random positions of each log entry, so they know
which log entries can be lost in case of a device crash. Conse-
quently, the verifier can distinguish regular crashes (the latest
entries are lost) from crash-attacks (random entries are lost).

In summary, the technical highlights of this paper are:

e The first formal treatment of crash-attacks in the context
of forward-secure logging. We demonstrate insecurity of
recent work as soon as an adversary can deliberately crash
the logging device.

e A new crash tolerant forward-secure logging protocol
SLiC. To support either resource-constrained devices or
large amounts of high-frequency log data, SLiC is very
efficient and relies only on symmetric key cryptography.
To add a new log entry, SLiC’s time complexity is constant
O(1) in the total number of log entries. To recover a log
of n log entries after a crash, its worst case complexity
is O(n-logn). SLIiC is very general and does not require
strong assumptions on underlying operating and file systems
with respect to consistency.

e An optimistic version of our recovery technique for devices
with small cache. Here, the complexity to recover n log
entries is O(n), i.e., asymptotically optimal.

e Besides a formal analysis with security proofs, we also
implement and evaluate SLiC practically. Our Python
implementation realizes SLiC as a standard Syslogd server.
On a 2.3 GHz i5, SLiC processes 700 syslog messages per
second. This is a slowdown by only one order of magnitude
compared to just storing unprotected syslog messages.

II. BACKGROUND

Based on initial ideas by Schneier and Kelsey [13],
a significant amount of research has been conducted on
forward-security and its application to secure logging,
cf. [2, 4, 6, 10-12] and derivatives. These schemes focus on
a symmetric key setting, and their main idea can be roughly
summarized as follows.

Each event m;, simply a bit string, is stored in the log file
together with an authentication tag h; as a log entry. For ex-
ample for event m;, a log entry s; = (m;,h; = HMACk (m;))
would be added to the log file. To provide forward security,
it is important that key K changes over time. Otherwise, if
an adversary can compromise the device and learn key K,
they would be able to modify old log entries. The rationale is
therefore to change K for each log entry. If PRF is a pseudo-
random function, key K; can be computed as PRF g, _, () for
some constant . To log event m;, the logging device stores
entry (m;,h; =HMACkg, (m;)), computes K;1 =PRFgk,(x),
and then deletes K; from its memory. As the verifier knows
initial key Ky, they can reconstruct the chain of keys and
verify individual log entries.

To protect against “truncation attacks” [10] where the ad-
versary cuts the last ¢ entries from the log, related work adds
a single, aggregated authentication tag H; capturing the whole
log file. For example, in addition to storing (m;,h;), the log
device also stores H; =HMACkg, (H;_1,m;) and deletes H;_;
for each log event m;. If the adversary cuts entries from the
end of the log, they would have to restore an old H;,j < i.
Verification is straightforward: as the verifier can recompute
all K;, they can check the HMAC for each m;, respectively.
At the same time, they also iteratively compute the aggregated
HMACs H;. At the end of the log file, they check whether their
aggregated H, matches the one stored on the logging device.

Some work has targeted public verifiability using public-
key cryptography [14]. Similar to other work using HMACs,
they use signatures to protect log entries and signature
aggregation to protect the whole log file.

None of the above work has investigated implications of
(adversarial) log device crashes on log entry integrity.

Forward-Secure Logging and Crashes: Before formalizing
security in the presence of crashes in the next section, we
briefly demonstrate why the state of the art is insecure as soon
as the adversary can crash the logging device (crash-attack).

Looking at current solutions above, we can identify that at
least the following file system operations take place for each
log event m;.

1 store (m;,h;);
2 store H;;
3 delete H;_q;

Many modern log-structured or journaling file systems
such as YAFFS, EXT4, HFS or NTFS offer some guarantees
regarding consistency of these three operations. However in
this paper, we explicitly avoid strong assumptions on the
underlying storage (disk, operating and file system). Legacy
systems, notably in industrial environments, use older file
systems such as FAT32 or ext2. Some systems might even
implement their own file systems, file system caches, and
cache write-back strategies. The operating system, disk driver
or even the disk itself can re-order disk writes for improved
performance. A prominent example is the reordering of write
operations following an elevator movement to minimize hard
disk head seek times. If the three operations are reordered,
and a crash occurs, this can lead to inconsistencies.

While there is exists a rich theory on consistency and haz-
ards, we refrain from rigorous formalization at this point. The
following more intuitive definition is sufficient for our secu-
rity discussion: after logging event m;, we want that either all
operations 1 to 3 have been successfully performed, i.e., log
entry (m;,h;) and H; are stored on the disk, and H;_; has been
deleted, or none of the three operations has been performed.

This would allow the verifier to successfully verify the
log, potentially with a missing last log entry. However by
chance, it is possible that H;_; is deleted from the disk, but
H; has not been (successfully) written. That is, file system
operations 2 and 3 have been reordered by the operating
system, and the logging device crashed after performing
operation 3. Consequently, there is no valid H; anymore on
the disk, and log verification fails. Note that we are primarily
concerned about disk write operations (store, delete). Disk
reads are uncritical in our particular context.

A straightforward way to handle verification in case a log-
ging device has crashed would be to accept a log of a crashed
device even with H; missing. Yet, this would allow adversary
A compromising the log device to perform a crash-attack: A
would truncate the log file, delete H,,, and then deliberately
crash the device. Verifier V recovering the crashed log would
not be able to distinguish this “truncation&crash” crash-attack
from a regular crash. In conclusion, related work does not
cope with crash-attacks.

We stress that this paper focuses on scenarios with the
logging device being offline most of the time and no frequent
connectivity to the verifier. This is the case in environments
where network connectivity to the verifier is expensive or
impossible, such as in industrial environments with unattended
computer systems. Still, if an adversary can compromise the
logging device, e.g., by physical access, we require some
security guarantees. For completeness sake, we mention that

if frequent connectivity with the verifier is available, other
solutions become possible where the device can periodically
offload some of its state for security, see Bowers et al. [5].

III. SYSTEM AND ADVERSARY MODEL

We now present an overview over our system and adver-
sary model. We envision a general scenario with three parties:
1) a logging device L, 2) a verifier V, and 3) an adversary A.
Logging device L receives log events m,; € {0,1}* and writes
them somehow to its storage.

At some point in time, A compromises L. Informally
speaking, by compromise we mean that 4 gets full access to
log and internal state of the logging device. A can read out
secrets, change the program, and tamper with the storage. A
can even crash the logging device.

Finally, verifier V downloads the (crashed) log file from
the logging device and checks the log’s integrity. We consider
scenarios where £ logs autonomously and unattended. That
is, besides an initial exchange of system parameters and keys,
there is no communication channel between £ and V. Device
L logs unattended by V, and V gets access to L’s log only
after some time. If there would be a permanent communication
channel, £ could automatically forward all log events to V.

Our security goal will be, roughly, that A cannot modify
or remove log events from before the time of compromise
without being detected.

A. Logging Protocols

A logging protocol II is not required to be file-based and
to append a single log entry for each event as related work.
Very general, protocol II comprises three algorithms:

1) Gen(1*) : Algorithm Gen takes security parameter \ as
input and outputs Yo, L’s initial state.

L’s state comprises all information currently stored on L,
e.g., a log file (initially empty), cryptographic keys etc.
The initial state Y is shared by £ and verifier V.

2) Log(X;—1,m;): For new log event m; € {0,1}* and old state
Y1, Log either outputs an updated state >;, or a special
state X" We call a state X5 a crashed state, and non-
crashed states are simply valid states. With X" we model
a crashing £. After algorithm Log has output a crashed
state, it cannot be executed again; device £ has crashed.

3) Recover(X, Xy) : Receives as input either a valid state
¥ = (Log(Log(...Log(Xp,m1)...),my) or a crashed state
»Cr. A crashed 3¢ does not contain all n log events, but
only n’ < n. That is, (n —n’) events were lost due to a
crash and are impossible to recover (e.g., hard disk power
off during writing of some blocks).

Recover outputs a set of n’ < n index-event tuples
{(m1,m}),...,(Tns,m!,,) }. For tuple (7;,m}), 7; denotes the
original index (order) of event m/. For example, if 75 =5,
then m/ was the 5™ log event ms. We require Recover to
unambiguously recover an event for a specific index; all
indices 7 must be different (Vi#j:7; #7;).

In case of a crash, Recover’s contribution is to use ¥ and
simply recover some of the original log events m,;. For
correctness, we require that if > is a valid state, Recover
outputs {(1,my),...,(n,m,)}. If ¥ is a crashed state X",
Recover outputs only a subset of {(1,m1),...,(n,mn,)}.

Finally, if Recover detects that A has tampered with state
., it can also output special symbol L.

Algorithm Log is executed by device £ and Recover by
verifier V. Note that |%,,| €Q(n), i.e., the size of the state has
to be at least linear in the number of log events. Otherwise,
administrator ¥ would never be able to recover all log events
from a state. As a result, Recover’s time complexity must be
in Q(n), too. In conclusion, the idea behind Recover is that
it can recover log events out of a crashed state ¥". Based
on X it should output a subset of all log events.

Efficiency: To support high frequency logging or resource-
constrained hardware, we target Log’s computational
complexity to be constant in the number of log events n.

B. System Cache

A crash might not only involve a single log event not
being correctly added to the log. Depending on the frequency
of log events and the size and strategy of operating system
and disk caches, many disk operations (store,delete,...) can
reside in the device’s Cache. In case of a crash, only a random
subset of these operations is executed.

Thus, we introduce an important system parameter: cache
size cs. Depending on Cache (OS cache, filesytem cache, hard
disk cache, ...), and the expected frequency of log events,
you can roughly estimate an upper bound for the number cs
of lost log events. This is the maximum number of log events
that might not have been properly included in the log after a
crash, because their disk write operations were residing in a
cache. To support a broad range of real-world scenarios, we
assume that, in case of a crash, the resulting disk operations
of these cs events are executed 1) only partially, and 2) in a
random order. Typically, cs is a constant system parameter,
independent of the total number of log events n. Being a part
of the device’s state, we write CacheCX.

Depending on the concrete logging protocol II, each
invocation of Log(m;) creates multiple write operations.
These write operations write data on disk that is necessary to
later recover m;. However in addition, Log(m;) might also
imply disk writes affecting verification of other events m;.
This leads to the following two definitions.

Definition 1 (Disk Write Operations). Let m; be a log event.
A disk write operation o(m;) is a disk write of m;’s data
necessary to later verify m;. Let 11 = (Gen,Log,Recover)
be a logging protocol. For event m;, we define O-°8(%; 1,
m;)={0(my),...,0(my)} to be the set of disk write operations
implied by adding m; to the log with algorithm Log.

Basically, O'°¢ is the set of log events m; that is impacted
by adding m; to the log. If £ crashes during Log(3;_1,m;) and
m; € O°e(3;_1,m;), then my; is also affected by the crash,
as parts of its data might have been unsuccessfully written.

Therewith, we introduce the notion of expendable log
events. A log event is expendable, if it might have been lost
due to a crash.

Definition 2 (Expendable Log Event). Let X, be a valid
state comprising events {m1,...,m,} and Cache, = &, and
let Cache,s be the contents of the cache after L adds events

Crl
Exp.,élr,IrIIt,Crash (A) :

1 (my,....,mp,st4) < A(1*,Gen,Log,Recover,Crash);
o+ Gen(17);
for ;=1 to n do
i Log(Ei_l,mi)

end
(X a1 y..ey0) 4 A(st 4,2,,,Gen,Log,Crash);
R+ Recover(¥',3g) // Either

R=1 or R={(r,m}),....(1n,,;m})}
if R=_1 then output 1;
9 else if 3i <n':m!#m., then output forge;
10 else if Vo, :mg, €€, Amg, €{m},...,.m},}] then

output delete; end
Experiment 1: Crash Integrity

N QR W

o

(Mp+1, ..., My) with Log. An event m; is expendable in
state Y1, iff o(m;) € {O°8(2,,my, 1) U UOS8(X,, 4,
My)} Ao(m;) € Cache,,r T3,

The set of all expendable log entries in 3, is

E={m;|m; is expendable in ¥, }.

The rationale of how V detects a crash-attack will be based
on whether there are log entries missing that are not expend-
able at the time of the crash. As we will see, V can reconstruct
indices of log events in Cache at the time of the crash.

Crash Functionality: To allow adversary A to learn about
the implications of crashes on device states, we introduce
oracle functionality Crash(3,IT) which A can call. The output
of Crash(X,II) is a crashed state 3" which would be the
state of logging device £ running II and crashing at a time
where its internal state is Y. In practice, Crash reflects an
adversary running a logging device on their own and playing
with the effects of crashes.

C. Security Definition

The challenge for a security definition supporting crashes
is that a crash implies losing a set of log events based
on hardware and operating system properties. No security
protocol can protect against such crashes. Instead, it should
be difficult for A to delete specific events they choose
independent of the crash.

We present our new security model in Experiment 1. In a
first phase in Line 1, adversary A gets oracle access to Il =
(Gen,Log,Recover) and Crash functionalities. Oracle access
allows A to learn about the system and prepare their attack.

After learning, A must output a sequence of log events
m; which challenger £ will log. For each log event m;, Log
simply updates £’s internal state. Eventually at time n, A com-
promises L and receives state 3,,. Again, A gets oracle access,
but only to functionalities Gen,Log, and Crash (see discussion
below). Now, A outputs a tampered state ' together with a
sequence of positions «;. These «; are positions of log events
{Mays-yMa, } C{mi,...,m,} that A wants to remove from
the log. To avoid trivial attacks, the m,, must not be expend-
able log events such as the ones currently in the cache. Ex-
pendable log entries would be lost anyways in a regular crash,
so A could “legitimately” remove them just by crashing L.

Based on Y/, algorithm Recover outputs a sequence
of ' < n index-event tuples {(7;, m})}. If among events

{m},...,m!,} there is at least one m/ that differs from m.,,
then A has successfully forged (or modified) the 7' event.
If Recover outputs a sequence of events (mj,...,m/,) that
does not comprise {Mmqy; y.-yMa, } C{m1,...,m,}, then A has
successfully deleted log events. We stress that A specifies
which events to delete. Their goal is not to remove any
element, but instead those that reveal A’s attack.

Definition 3 (Crash Integrity). A logging protocol I1=(Gen,

Log,Recover) provides [f1(-),f2(-)]-crash integrity, iff for ail

PPT adversaries A there exist functions f1(-),f2(-) such that
Pr[Expg,llr][t,Crash(/\) :forge] < fl() A

Pr[Expg,llrl[tq,Crash()‘) :delete] < f2()

This very general security definition allows to upper-bound
adversarial success probabilities. Ideally, functions f; and f
become very (negligible) small depending on their concrete
input parameter, e.g., the number of events ¢ to delete or a se-
curity parameter \. We give concrete examples in Section IV.

Discussion: As you can see from this definition, we now dis-
tinguish between two classes of attacks, forgery and deletion.
We do this to allow for greater flexibility and support schemes
where, e.g., function f; is significantly smaller than f5, or
f1 uses different security parameters (as we will see later
with SLiC). Obviously, there can be schemes with f; = fs.
Also note that A cannot adaptively choose log events m;
in Expfj{]ﬁﬁoash. No scheme can be adaptively secure, as
observing an intermediate Y; would allow A to later “rewind”
Y, to 3;, by just presenting ¥, in Line 6 of ExpS{j{‘It’C,ash.
As ¥; has been a valid state, Recover would simply output a
sequence of events, and tampering would go unnoticed.

Finally, note that the set of expendable log entries &£
depends on a concrete protocol II. One might argue that
there could be trivial protocols which, e.g., would rewrite
the whole log file or database for each invocation of Log.
Roughly speaking, all log events would be expendable leading
to worthless security. However, we are interested in efficient
protocols, specifically where Log has O(1) computational
complexity and cs is constant, too. This leads to an asymptot-
ically constant number of expendable events which is small
in practice and therewith meaningful security.

Our adversary model is similar to covert adversaries by Au-
mann and Lindell [1]. Adversary A is fully malicious, but
wants to achieve a goal without being detected. You can imag-
ine various real-world scenarios where .4 wants to keep a com-
promise undetected. For example, A has extracted sensitive
information or wants to continuously spy on a system keeping
it as future asset (even after the crashed device is rebooted).

IV. CRASH RECOVERY WITH SLIC

Based on our presentation of related work in Section II, we
make two observations. First, using an aggregated tag (HMAC
or signature) over the whole log file is useless in the presence
of crashes. Due to potential write reordering, the aggregated
tag might be lost or not up to date after a crash. Second, with
related work, even if log events m; are encrypted, the adver-
sary can easily correlate which log event corresponds to which
log entry in the log file. Related work appends a new log entry
to the log file, so the most recent log events correspond to

the log entries at the end of the file. This helps the adversary
to remove specific log entries, i.e., events, of their liking.

We will now present SLiC, a new protocol for crash
integrity, and a modification of it that we call SLiCOPt.
Both SLiC and SLiC®P'share the same idea of initialization
and log algorithms, and they differ only in their recovery
algorithm. To recover all n’ log events from a (crashed)
log, SLiC’s Recover has O(n'-logn’) run time complexity,
but does not rely on any additional assumption. In contrast,
SLiCOPtis optimistic and assumes a log device £ with cache
or filesystem properties such that SLiC“P*has time complexity
O(n'); this is asymptotically optimal.

A. Overview

To generally achieve forward integrity for previous log
events, we can store for each log event m; a log entry s;
consisting of m; and h;. As with related work, h; is, e.g.,
HMACk, (m;). Again, key K; is evolved from K, ;, and
K;_; is thrown away. So, A cannot tamper and modify old
log entries without being detected. This holds even if A can
crash logging device L.

However, the challenge for crash recovery is that we cannot
rely on a protection mechanism securing integrity of the set
of all log entries, i.e., completeness of the log as a whole. As
shown before, using a simple fag would be prone to crashes
which in return can be exploited by the adversary performing
a truncation attack and rewinding the log to a previous version.
Thus, we abstain from whole-log tag protection. Instead, our
ideas is to randomize the mapping between log events and the
position of their corresponding log entries in the log file. If A
cannot determine which log entry corresponds to which event,
it becomes difficult for them to change the log to a proper
previous state where only expendable log entries are missing.
Random modifications to the log by A will be detected by
verifier V and allow to distinguish from real crashes.

Randomized Mappings: The mapping between an event m;
and a log entry s; will be based on a PRG. Informally, this
mapping will look like a “random” mapping to A, but is
deterministic to V as V knows the initial seed for the PRG.
Similarly to evolving keys in related work after each log
event, the PRG will be used in a forward-secure manner by
updating its seed after each invocation.

To randomize mappings, we devise a new array shuffling
technique based on Knuth’s “Algorithm P [7]. Instead of
Knuth’s random shuffle of a fixed-length array of n elements
in place, our technique gradually builds a random shuffle of an
array of increasing length. The idea is to swap a newly added
element with an element at a random position in the array.

We apply this idea to the generation of a log file. We first
compute the i log entry s; by authentically encrypting m;
and then add s; to the log by swapping it with a previous log
entry, randomly chosen from a position between 1 and i. We
show that for adversary A and a log file with n entries, the
position of any entry is uniformly distributed. That is, at all
times, a log entry in an array of current length n is at any
position with probability *.

Recovery: To be able to recover log events from their
random positions in the log, we augment the i log entry

Input: Security parameter A
Output: Initial state >o
1 Koﬁ{o,l}*;
2 seed()(i{(),l})‘;
// Let S be a dynamic
array, fill with random permutation
of {dummuy,....dummyx} using Log
3 S <\ randomly ordered dummy events;
4 output 3o = (Ko,seedo,S);
Algorithm 2: Gen(\)

by k; = PRFg,(i). During recovery, we then sort all n log
entries based on their ; values. To recover the it" event m;,
we search in the sorted list of log entries for k; = PRF, (7).
This is the main idea of SLiC’s Recover.

An alternative way to recover log entries relies on the fact
that verifier V knows the initial state of the PRG. Therefore, V
can re-compute the random coins used during swapping of en-
tries and is able to determine which log entry resides in which
position in the log. This is the idea of SLiCOP"’s Recover.

Security Rationale: The security rationale of this position
randomization is that .A’s probability to successfully remove ¢
log events from a log is hypergeometrically distributed. While
for very small /, it is easy to remove log events, a larger /
implies increasing difficulty for A to remove all m,,. Still, a
hypergeometric probability does not give much security, as 4
could also delete all but one log entry. We therefore require
a certain minimum number of events in a log by initially
adding dummy events. Moreover,)V checks whether the set of
recovered log events is plausible, i.e., all missing log events
could have been lost in a crash.

The idea of SLiC’s plausibility check is to verify whether
all missing log events are expendable. Missing events that are
not expendable can only be due to adversarial tampering with
the log: a crash-attack.

B. SLiC Details

First, to protect each log event against modifications
and forgery, we use standard authenticated encryption, e.g.,
encrypt-then-MAC. For log event m;, we prepare log entry
S; = (Ci,hi) with C; = EncKi(mi) and hl = HMACKI(CZ)
To achieve forward-integrity, we change key K after each
log entry to K;11 = PRFg,(x) for some constant x. Sim-
ilarly, after using a PRG with seed seed;, we update to
seedi_ﬂ = PRFseedi (X/).

Gen: Algorithm 2 shows SLiC’s initialization Gen. Key K
and seed seedy are chosen uniformly from random. Also, a
“dynamic” array S is created which will be used to store log
entries. Dynamic simply says that the length of S, i.e., the
number of log entries stored in S, can increase over time. Fol-
lowing standard notation, we write S[i] to point to the element
at position ¢ in §. We initialize S by storing A dummy events in
a random order in it. To add these dummy elements dummyy,
...,dummyy to S, we can use, e.g., the same idea than in our
Log mechanism that we describe next. The output of Gen is the
initial state ¥y comprising key Ky seed seedp, and array S.
State X is shared between £ and V. Actually, it is sufficient
to only share K and seedy with V' to reconstruct Y.

Input: Old state 3;_1, log event m;
Output: Updated state >;
// Let Ei_lz(Ki_hseedi_l,S), ‘S|=)\+i—1
cizEncKifl(mi); hiIHMACKiil(Ci); HiIPRFKiil(’L');
SiZ(Cz‘,hz‘,M);
pos<7$PRG(%8d“1> {1,.. ;A +i};
if pos=\+1t then

S=S5][(s:);
else

S=38||S[pos]; S[pos]=s;
en
K, =PRFg, ,(x); seed; =PRFscca, ,(X');
10 output 3; = (K;,seed;,S);

Algorithm 3: Log(X;_1,m;)

[

NI B SV T NN

Input: State 3 to check, initial state 3¢
Output: Recovered log events {m1,...,m}
// Let Xo=(Ko,seedy,So); parse X as
[/ (Kn,seed,, S =7'(sh,...,0,)); let s;=(c},hjK})
1 R=2; E=0;
// Evolve key, seed, m,m
for i=1to n'—cs—1 do
K;=PRFg, ,(x); seed; =PRFscea, , (x);
Update 7 and 7~ ';
end
// Compute expendable log indices
for i=n'—cs to n'+cs do
7 K;=PRFk, ,(x); seedi =PRFcea;, ,(x);
$PRG(seed;) .
8 pos———{1,...i};
9 Update 7 and 7~ ';
10 E=E&U{i,m pos]};
11 end
// Sort log entries based on kj
12 SearchTree =Sort(n'(s1,...,50,/));
13 for i=1 to n’+cs do
14 ki =PRFgk,(i);
15 (c},h;)=BinSearch(SearchTree,x;);
16 if HMACk, (c;)=h; then R=RU{(i,Deck, (c;))}; end
17 end
// Check plausibility
18 if (|R|<A—cs)V(Fie{l,...n —cs}:{(i,,) } ERAiZE) then
output | ; else output R end;

Algorithm 4: Recover(¥,%)

1

oA W N

=

Log: Algorithm 3 describes details of Log. First, we authen-
tically encrypt new log event m; and compute sorting key &;.
As the current length of array S is A+i—1, we then randomly
select a position pos between 1 and A+i. With PRG(seed;)
we denote that the random coins required to determine pos
are based on a PRG with seed seed;. Position pos is the
position where we store new log entry s; = (¢, hy, K;). If
pos # A+, we perform a swap: we do not append s; to S,
but append the old contents of S[pos] to S and write s; at
S[pos]. Finally, we evolve K;_; to K; and seed;_; to seed;
and output the updated state ;.

Recover: SLiC’s Recover technique is shown in Algorithm 4.
As input, this algorithm receives a possibly crashed state ¥
containing some permutation 7’ of log entries 7’(s},...,s/,,).
Being a potentially crashed state, some of the s might be
“broken”, i.e., not fully written to disk and contain junk.
Just the size of ¥ allows storing of up to n’ log entries. As
we know the size of a log entry, we can therefore parse n’

potentially broken log entries out of X.

First, we advance K, and seedy to the earliest possible
time of a valid state. If ¥ has n’ entries and cache size is

cs, then at least n’ —cs log events were properly added to the
log, and up to cs events might have been in the cache or only
partially written to the log. We then prepare the set of ex-
pendable log events £ (see more details later in Section IV-C).
Yet, to be able to compute £, we reconstruct the permutation
7 that determines where log entries should be located in a
valid S. Here, 7[i] = j denotes that log entry s; resides at
S[j]. Permutation 7~ ! is the inverse permutation to 7.

It is straightforward to compute m and 7! as V can
replay £’s random coins and therewith the swaps. ¥V knows
the initial seed seedy, and for each pos computed in Line 8
of Algorithm 4, 7 and 7! can be updated in constant time.
The updated 7 and 7! then allow adding the next two
expendable log entries to £. As we do not know when exactly
the crash occurred, we iterate over all possible times of the
crash, i.e., between the (n/ —cs)™ and (n’+cs)™ event.

We sort log entries s by their keys . and store them in a
binary search tree. This allows to search for individual entries
in logarithmic time. We iterate over all n’+cs possible log en-
tries that could have resided in a crashed state of length n’ (we
will see later why) and check their HMACs. If the HMACs
match, we add the individual log entry to set R. Finally, we
perform a plausibility check to distinguish a regular crash
from a crash-attack. The total number of log entries recovered
must be at least A —cs, i.e., the number of dummy elements
that were in the log initially minus the size of the cache. For
a potentially crashed state of length n/, we know that at least
entries m; — c¢s were once written into S. So, if we cannot
recover a log event m;,1 < n’—cs, it must be in the set of
expendable events &£. If not, we know that A has removed it.

Overwriting keys: State > contains all information currently
stored in £, in our case including cryptographic keys and
seeds. So far, we have ignored that when we overwrite K;
by K, in Algorithm 3, the disk operation is buffered in the
cache, too. One might argue that over time many old K; (and
seeds) remain in the cache before being evicted, allowing
A to successfully rewind. In practice, the situation is much
simpler. Caches typically replace a buffered write operation
by a new one to the same location. Thus, A would only be
able to recover the previous to the current key. Moreover, in
our case neither keys nor seeds need to be persistent. That
is, in contrast to aggregated authentication tags H of related
work, they are not required to be written to disk, but can
be lost in a crash. As a result, we can store them in main
memory, where overwrites are instantaneous.

C. Complexity Analysis

Efficiency: Adding a new log event with Log has O(1)
computational complexity. Writing the new s; to array S
requires only a constant number of disk operations (two),
even if S is realized as a simple file, and all m; have the same
length. If in practice the m; have different lengths, we can
simply pad them to a maximum size. Real-world log services
such as syslogD specify a maximum size, e.g., 1024 Byte [9].

To estimate the computational complexity of Recover,
we inspect the 3 for-loops, Sort, and BinSearch. The first
for-loop has asymptotic run time of O(n’), and the second
loop has constant O(1) complexity (cs is a system constant).
Sort runs in time complexity O(n'-logn’). As BinSearch has

complexity O(logn’) the third for-loop also has a complexity
of O(n'-logn’). The plausibility check has a run time of O(n’)
In total, Recover’s time complexity adds up to O(n-logn).

Computation of Expendable Log Events: Assume that £
crashes while its cache is full. From a log file consistency
perspective, this is the worst situation. So, there are cs
events that have not been successfully written to the log file.
Furthermore, assume that the size of S on disk at the time of
the crash is n’ events, some of them potentially broken. If we
look at the swap operation in Algorithm 3, lines 4 to 8, there
are two cases: either, s; is just appended to S (single disk
write operation, Definition 1), or an old s; is first read from
disk into the cache, and then s; and s; are written to disk.
Consequently, the cache might contain a mix of previous log
entries already written to S and new ones to be added.

In one extreme case, the cache only contains new entries,
i.e., (Sp/41,--,Sn/+cs)- Therefore, these entries are expendable
and belong to £. The other extreme case is where over time
all entries before s;,7 <n’ have been read from disk, and cs
new entries have been written to the old positions. That is,
the cache contains cs old entries that are determined by the
PRG. Consequently, also these old entries have to be in &.
Any other cache configuration will contain a mix of subsets
of cs old and cs new log entries. In conclusion, £ contains cs
old entries and cs new entries, |£|=2-cs.

D. Security Analysis

Lemma 1. Let X; be the random variable describing the
position of log entry s; in the log. If the output of PRG is
pseudo-random, then after adding n events to the log using
Algorithm 3: Vi,j1<i,j<n:Pr[X;=j]=1.
Proof: We prove by induction over n.

Basis: Let n=2. The log contains the two entries s; and ss.
When s, was added to the log, Algorithm 3 swapped s; with
so with probability % (if PRG is pseudo-random). So, both log

1

entries are at any of the two positions with probability %: 5-

Inductive step: Let the claim be true for a log of length n
entries. We now show that it also holds when adding the next
log entry n+1. To compute the probability that any log entry
s; 1s at any position j, we consider two cases.

First, Vi, 1 <i<n+1: Pr[X; =n+1] = %ﬂ That
is, the probability that any of the » + 1 log entries is at
position n 4 1 is ﬁ, because Algorithm 3 selects any of
them pseudo-randomly with equal probability. Second, we
compute the complementary probability that any of the n+1
log entries is at a position 7,1 <7 <n, left of n+41. For entry
Spi1, Vi <n:Pr[X, 1 =j]= n%rl, as Algorithm 3 selects
pseudo-randomly between 1 and n -+ 1. For the other entries,
we have Vi,j,1 <i,j <n:Pr[X;=j]=Pr[s; was at position j
before adding element (n+1) A Algorithm 3 does not swap

s; to position n+1] :%' 1— n_1H> = ”n'*;i_nl = n%‘_l The first

probability, s; was at position j before adding element n+1
(in Algorithm 3), is % by induction hypothesis.]

For simplicity, we assume that HMACk (¢) = PRF k (c,1)
in our analysis, where “)” is an unambiguous pairing of
inputs [3]. So, we use the same pseudo-random function to

evolve keys and compute authentication tags.

Lemma 2. Let A compromise L at time t when n events
have been added to the log. Let A get access to internal state
3, comprising S,|S| =n+ A If PRG is a pseudo-random
generator, PRF is a pseudo-random function, and Enc is
IND-CPA encryption, then the distribution of log entries
5,0 <n in S logged before time t is indistinguishable from a
random distribution for A.

Proof: 1If PRF is a pseudo-random function, then seed;
does not reveal details about seeds seed;, keys K;, and sort
keys k;,i < n to A. As moreover PRG is a pseudo-random
generator, this implies that .4 does not learn any information
about previous swap operations during Log. Finally, with
Enc being IND-CPA encryption, s; does not leak information
about m; (even though A specified the distribution of m;s).
In conclusion, for A the distribution of s; is pseudo-random.
A cannot determine which event m; (and entry s;) is stored
at which position in S.]

In the following, we come back to Definition 3 and state
our main security claim. Let epre(A),eprg(N),€enc(A) denote
the negligible adversarial success probabilities of PRF, PRG,
and Enc security when initialized with security parameter \.

Theorem 1. Let A know X, comprising S,|S|=n-+\, let £ be
the number of events A wants to delete, cs the system’s cache
size, and n' the number of entries output by A as part of their
malicious state X', Let e(\) =max(eprp(N),epra (A),€Enc(N)).

For security parameter)\, if PRG is a pseudo-random gen-
erator, PRF is a pseudo-random function, |mq| = ... = |my)|,
and Enc is IND-CPA encryption, then SLiC provides
[epre (), f(n,n' £ cs,\)]|-crash integrity, with

0 Jfn' <A—cs
f: n—[—n/+2-cs) 2-cs)
max(e(N), e ALY otherwise.
(n’) (2)
Proof: We focus on delete attacks and quickly ignore forge
attacks by stating that they are as likely as breaking HMAC
security, i.e., eprp(A).

First, if n’ < A —cs, then there are less entries in S than
theoretically possible. The initial size of S is A, and at most
cs entries of these can become expendable. So, V knows that
A has removed an entry from S.

In case, n’ > X\ —cs, probability f is hypergeometrically
distributed. Assume A compromises L at time t = n — A,
so there are a total of n events in S. To succeed in the
security experiment, 4 must present a subset of n’ out
of all n events such that none of the ¢ unwanted events
is in this subset. If the ¢ unwanted events would all
be expendable and A’s subset would contain all of the
(n’ —2-cs) non-expendable events, the probability computes

(6)-(w=3:2)- (o S0 Re) _ ()
to fo= 2 - = , .

n
n!

If we combine this with the probability that all £ unwanted

events are part of the 2 - cs expendable events, the success
2~cs) (nfl—n'+2~cs) (2«:5)

2-cs

probability is f- ((,’;) = @) : (ﬁ) .
14 n’ 4

Finally, the adversary might win by breaking cryptographic
tools used in SLiC. They can do that with probability e()),

nfifn/+2-cs) 2-(:5)
2-cs

such that f computes to f:max(e(/\),(@) : (ﬁ)). |

As mentioned in Section IV-C, we can pad different length
events m; to a maximum length, e.g., as standardized by an
actual logging service [9].

To understand implications of Theorem 1, particularly A’s
success probability for typical system parameters, we asymp-
totically bound f. Roughly speaking, the following Corollary 1
states that, as A <n, f decreases exponentially in both £ and \.

Corollary 1. 3ng,\g s.t. Vn>ng,VA> Ag:
n—f—n'42.cs\ (2-cs
(2.cs) ([))<max(—(£—2-cs) ()A 2-cs (%)2{5).

Gy @ n

(71—2771,/«#2-65) 2-cs nféfn,/+2-cs)
Proof: Let BIN = e (i) < (2:5) . We
n’ £ n!
further bound BIN using standard binomial inequalities
(E-(n—Z;:;’+2~cs))2~cs

(z)
function of n’, we first compute its derivative and obtain
!

g (n)= [(n—n’+2~cs—£)~(1+1nn—)—2-cs]-A

where A=e?(2)" (n—n'+2-cs—£)* 1 . Since, A is pos-
itive (¢ must be smaller than 2- cs, otherw1se A gets detected
with probability 1), we can focus on the first term of ¢’ to
identify maximum points and therefore bounds of g. If n' > 2,

then (1+ln%) is strictly positive, and therefore there exists

ng such that for n>ng, (n—n'+2-cs—£)(1+In"-) >2.cs.
Thus for n > ng, we get g’(n’) >0 and conclude that g will
be monotonically increasing in n’. Therefore, g, and conse-
quently BIN, is upper bounded at the highest legitimate value
n' that the adversary can select, i.e., n' =n—/. Alternatively,
for n’ <2, Ing such that n >ng, g’(n') <0. Therefore, g, is
monotonically decreasing and consequently BIN, has an upper
bound at the smallest legitimate value for n’, i.e., n’ =\—2-cs.
So, BIN < max(g(n' =n—¥£),g(n’ =X—2-cs)). We bound
gln' = n—) by g(n' = n— 1) = oy < o2,
Similarly, we bound g(n’=\—2-cs) by
(e-(n—f—A+4-cs))>=. (A=2.cs) A2
n/\72<cs,(2,cs)(2»cs)

A A—2-cs €N \2.cs

< () G

leading to BIN < g = . Considering g as a

g(n'=X—2.cs) <

Note that even if this is a loose bound, it can be made
as small as desired. For instance, if 6-cs < A < \/ﬁ then

g(A=2-cs)<n "1 -(3%)* is exponentially small in \.

Essentially, Theorem 1 and Corollary 1 state that SLiC
achieves negligible adversarial success probability in both
security parameter A and number of events ¢, matching
traditional security notions. Besides this formal result, we
will now also show that the adversarial advantage is low in
practice, too, i.e., for typical real-world parameters of SLiC.

Practical Implications: Cache size cs can easily be upper
bounded, if the maximum frequency of log events is known.
During our experiments with syslogD on a Debian Linux
laptop with 2.3 GHz i5, syslog UDP packets were dropped
as soon as the rate was more than 500 events per second.
In addition, a standard Linux kernel evicts a page cache
entry after at most 30 sec [8]. So, with maximum rate r
and eviction time ¢, cs < r - t. This back-of-an-envelope
computation assumes the amount of RAM available for the
page cache to be sufficient to hold r-¢ entries.

As of Corollary 1, f decreases exponentially with increas-
ing security parameter A\ and the number ¢ of elements A
wants to delete. To support our theoretical security results
with real-world parameters, we set the cache eviction time ¢ to
Linux’ standard value of 30 sec, rate r to 500, A= 215 =32768,
n=33000 (A dummy entries plus a few “real” entries), and n’
to the minimum of 215, Therewith, A can successfully delete
a single (/=1) unwanted entry with only probability ~2736,
Removing ¢=10 unwanted entries is possible with probability
27100 Even if A presents a state with n’ = n — 1 entries
and wants to remove ¢ = 1 unwanted entries, their success
probability in this configuration is quite low with ~271'%
If n increases, e.g., n = 2% 4219 (210 real entries), ¢ = 10,
n’ =n — £, success chances get very low with 27139, So in
general, an increasing number of entries strengthens security.
In practice, parameter A renders adversarial success very small.

Remark: As all related work on forward-secure logging, we
also assume that unwanted events m,, have been evicted from
the cache at the time of compromise. Otherwise, .4 could tam-
per with the operating system and remove the m,, from the
cache. Without changing standard cache write-back behavior,
no protocol for forward-secure logging can protect against
these attacks. Although out of scope for this paper, one could
imagine that, e.g., some small integrity information is allowed
to circumvent the page cache and is directly written to disk.

E. Evaluation

To demonstrate its real world applicability, we have
implemented and practically evaluated SLiC in Python. Our
implementation uses CTR-AES-256 and HMAC-SHA256
as underlying cryptographic primitives. Besides SLiC’s core
functionality, we have implemented a wrapper. This wrapper
allows SLiC’s logging with either a text file as a source for
log events, or register as a real syslog server. Other syslog
servers, either on the same physical machine or remotely, can
then send a copy of their syslog events to our secure logging
syslog server. Our implementation accepts any text string
received on its UDP port as a new log event, so it is trivially
compatible with current versions of syslog, syslog-ng, rsyslog
etc. While the UDP scenario with our protocol running as
part of a real world syslog environment is more realistic, we
also include the performance measurement on a file to avoid
potential network and network stack side effects.

Our benchmark hardware has been 1) a Windows laptop
with 2.6 GHz i5-2540M CPU, and 2) a Raspberry Pi B+ with
700 MHz ARM CPU running Linux. We set A=2'° for good
security. Computing A\ = 2'® dummy elements on the laptop
takes ~40 s (=770 elements/s) and ~1000 s on the Pi (=30
elements/s). Computation time of dummy elements is linear in
the number of elements (but their number has an exponential
effect on security, see Section IV-D). Note that dummy
elements need to be computed only initially and once per log.

File Benchmark: We prepare a file with 22° random “log

events”, each a text string of 160 characters. On our laptop, we
can log ~740 events/s. This represents a slowdown factor of 20
compared to simply storing plain, unprotected syslog events.
The Raspberry Pican log ~30 events/s, a slowdown factor of
60. As part of Recover, sorting all 220 log entries is fast and
takes only /=7 s on the laptop (=140000 entries/s). During sub-
sequent recovery, ~1000 log entries are processed/s. Finally,

security checks are required to see, e.g., whether missing en-
tries are expendable, cf. Algorithm 4. These plausibility checks
are also fast: the laptop performs them with ~12000 log en-
tries/s. On the Pi, sorting 22 entries for recovery takes ~1 min
(=16000 entries/s). During recovery, the Pi processes ~30 en-
tries/s and performs plausibility checks with ~320 entries/s.

UDP Benchmark: To measure UDP performance, we gen-
erated syslog events with a Python script on another machine
and sent them to our SLiC syslog servers on laptop and Pi.
In this setup, the laptop securely logs ~500 syslog events/s
and the Pi =10 syslog events/s. Compared to the laptop, we
conjecture the bad Pi performance to be caused by Python’s
poor I/O handling and writing to an SD card. On both Linux
and Windows, we experienced syslog UDP rate limitation
(ca. 500/s), and packets were dropped. In an environment
where actual delivery of a large amount of syslog events is
important, one might consider changing the regular syslog
communication protocol from UDP to TCP.

Although our prototypical Python implementation is not
optimized for performance and serves only as a proof of
concept, we conclude that SLiC is efficient. Being able to log
500 (or even 700) log events per second on simple hardware
demonstrates usability in larger systems and extensive amounts
of logging data. Even running on the resource-constrained
Pi as a remote logging server, SLiC can serve as a secure
logging device in environments with fewer log events.

F SLiCPPt

We briefly sketch a SLiC alternative which we call
SLiC%*and that has optimal computational complexity
O(n/). In many real-world scenarios, SLiCP'is expected to
run faster than SLiC, i.e., in scenarios where cs is smaller than
O(logn). This is especially the case for RAM-constrained
systems, frequent cache eviction or a low rate of log entries.

Overview: SLiC°Ptdoes not follow the approach of sorting log
entries using a sorting key « and subsequently searching for log
entries. Instead, the idea is to directly find all non-expendable
log entries at the positions in & where they are expected to re-
side. As V knows the initial keys and PRG seed, it can replay
all random coins and therewith all permutations 7. Given a po-
tentially crashed state S with n’ log entries, some of them may
be broken, V can compute the permutation 7 at the time of
the crash. Therewith,) can simply lookup all non-expendable
entries and check whether their HMAC matches. More pre-
cisely, as the crash might have occurred anywhere between
time (n'—cs) and (n' —cs), V iterates over all 2-cs possible
permutations and tries to find all non-expendable log entries.

Details: We keep Gen and Log from SLiC and only present
our modified Recover in Algorithm 5. The main difference
here is that V iterates over two nested loops. In the outer
loop, V tries to recover the maximum (n’+cs) of possible log
entries. In the inner loop, V iterates over the possible times of
a crash, i.e., between (n’—cs) and (n/+cs). In contrast to the
previous algorithm for recovery, V must now keep track of
expendable and recovered entries per possible crash time, i.e.,
&; and R;. During each iteration, V tries to directly find the
¢ following the current permutation 7. Permutations 7 are
updated as before. The plausibility check at the end verifies
whether there was a time of crash j such that entries in S at

Input: State > to check, initial state 3¢

Output: Recovered log events {my,...,my}

// Let Xo=(Ko,seedo,So), parse X as

1/ (Kpr,seedn S =7'(s1,..,8hi<n)), let si=(ci,h})
1 Rn’fcs:~-':7zn’+cs:®; gn’fcs:-'-: n’+cs:®;
// Evolve key, seed, mm !
for i=1to n'—cs—1 do

K;=PRFg, ,(x); seed; =PRFscea; , (x);
Update 7 and 7~ 1;
end
// Outer Loop
for i=1 to n'+cs do

7 Ki:PRFKi,l(X);

// Inner Loop
8 for j=n'—cs to n’+cs do
$PRG(seed;) .

9 poss——{1,....7}
10 Update 7w and L
u &=&U{jr [pos]};
12 if HMACk, () ;) =) then R;=R;U{Deck, (cy;)};
13 break Inner Loop; end
14 end
15 end

// Check plausibility
16 if 35 [(|R;|>A—cs)A(Vie{l,....5} : {(i,)} ER,; ®i€E;)]
then output L ; else output R;; end
Algorithm 5: Optimistic Recover®"*(2,%)

m oA W N

=)

time j match the plausibility check of Algorithm 4. That is, if
there is no such time of crash j that would pass the plausibility
check of Algorithm 4, then V has detected a crash-attack.

Run time of the outer loop is O(n'). As cs is a constant,
the inner loop has run time O(1). The plausibility check is
over a constant number of possible crash times with run time
O(n'). In total, Algorithm 5 has optimal complexity O(n').

REFERENCES

[1] Y. Aumann and Y. Lindell. Security against covert adver-
saries: Efficient protocols for realistic adversaries. Journal of
Cryptology, 23(2):281-343, 2010. ISSN 0933-2790.

[2] M. Backes, C. Cachin, and A. Oprea. Secure Key-Updating
for Lazy Revocation. In ESORICS, pages 327-346, 2006.

[3] M. Bellare. New Proofs for NMAC and HMAC: Security with-
out Collision Resistance. J. Cryptology, 28(4):844-878, 2015.

[4] M. Bellare and B.S. Yee. Forward-Security in Private-Key
Cryptography. In RSA Conference, pages 1-18, 2003.

[5] K.D. Bowers, C. Hart, A. Juels, and N. Triandopoulos.
PillarBox: Combating Next-Generation Malware with Fast
Forward-Secure Logging. In RAID, pages 4667, 2014.

[6] J.E. Holt. Logcrypt: forward security and public verification
for secure audit logs. In Australasian Symposium on Grid
Computing and e-Research, volume 54, pages 203-211, 2006.

[7]1 D.E. Knuth. The Art of Computer Programming, Seminumerical
Algorithms, volume 2, chapter 3.4.2, pages 139-140. Addison
Wesley, 2nd edition, 1981. ISBN 978-0201896848.

[8] Linux Kernel Documentation. /proc/sys/vm/—
dirty_expire_centisecs, 2015. Standard is 30 s on
kernel 3.16, https://kernel.org/doc/Documentation/sysctl/vm.txt.

[9] C. Lonvick. The BSD syslog Protocol. IETF, Request for
Comments: 3164, 2001. https://tools.ietf.org/html/rfc3164.

[10] D. Ma and G. Tsudik. A New Approach to Secure Logging.
ACM Transactions on Storage, 5(1), 2009. ISSN: 1553-3077.

[11] G.A. Marson and B. Poettering. Practical Secure Logging:
Seekable Sequential Key Generators. In ESORICS, pages
111-128, 2013.

[12] G.A. Marson and B. Poettering. Even More Practical Secure
Logging: Tree-Based Seekable Sequential Key Generators. In
ESORICS, pages 37-54, 2014.

[13] B. Schneier and J. Kelsey. Secure audit logs to support
computer forensics. ACM Transactions on Information and
System Security, 2(2):159-176, 1999.

[14] A.A Yavuz, P. Ning, and M.K. Reiter. BAF and FI-BAF: Effi-
cient and Publicly Verifiable Cryptographic Schemes for Secure
Logging in Resource-Constrained Systems. Transactions on
Information System Security, 15(2):9, 2012. ISSN 1094-9224.

