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Abstract. Automatic age and gender classification systems can play a
vital role in a number of applications including a variety of recommenda-
tion systems, face recognition across age progression, and security appli-
cations. Current age and gender classifiers, are lacking crucial accuracy
and reliability in order to be used in real world applications since most
real-time systems have zero fault tolerant. This paper develops an end-
to-end, deep architecture aiming to improve the accuracy and reliability
of the age estimation task.

We designed and trained a deep convolutional neural network (CNN)
architecture for age estimation that builds upon a gender classification
model. The system leverages a gender classifier to improve the accuracy
of the age estimator. We investigate several architectures and techniques
for the age estimator model with cross-modal learning, including an end-
to-end model, using gender embedding of the input image, which leads to
an increased accuracy. We evaluated our system on the Adience bench-
mark, which consists of real-world in-the-wild pictures of faces. We have
shown that our system outperforms state-of-the-art age classifiers, such
as [1] by 9%, by training a cross-modal age classifier.
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1 Introduction

Age and gender classification plays an important role in numerous applications,
from a variety of computer vision-based recommendation and human-computer
interaction systems. In these systems, age is considered an essential factor, from
improving face recognition across age progression, to understanding relations
between individuals, and making further inferences towards grasping social in-
teractions. Security systems can also benefit from a better understanding of the
age, gender, and capabilities of actors.

Recent developments in deep learning enabled the improvement of a variety
of tasks. For instance, in computer vision, it is possible to achieve very high
accuracy for applications, such as face detection, and face recognition [2]. This
progress benefited from the confluence of new techniques in deep neural net
(DNN) architectures, the presence of highly parallel low-cost computing infras-
tructure, such as GPGPU, and the availability of feature rich large datasets.
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Despite this phenomenal progress, the performance of age classifiers is still lack-
ing reliability and accuracy [1]. Age classification is an intrinsically challenging
problem, as it is hard for humans to achieve with high accuracy. Furthermore, it
is difficult to obtain massive accurately-labeled datasets for pictures in-the-wild,
unlike other computer vision tasks, such as object classification.

In this paper, we propose and investigate an approach to improve the accu-
racy of age classification with cross-modal learning by using a pre-trained gender
classifier. In addition to training the age classifier with the same deep model as
we have used for gender classification, we also feed the model with the gender
embedding as the gender classifier extracts useful features from the gender. This
approach is motivated by the fact that the aging process is not identical in men
versus women, due to biological and behavioral differences. For instance, skin
thikness, collagen density, rate of collagen loss at different stages of life, texture,
and level of tissue hydration [3].

Beyond a straightforward integration of the gender classifier output, we ex-
plored several techniques to improve the system accuracy, by feeding the em-
bedding of an improved model of each task to the other task. The aim being
that the deep model is able to find more essential features at each round. We
considered choosing the gender embedding from different fully connected (FC)
layers by integrating it into different layers of the age classification model. We
also considered an end-to-end model of a more general integration of the two
classifier networks. We evaluated our model on the Adience dataset, a thorough
benchmark for age and gender classification [4]. The Adience dataset consists
of in-the-wild unfiltered face images, that present the typical variations in ap-
pearance, noise, pose, and lighting expected of images taken without careful
preparation or posing. We selected the Adience dataset because of its realism,
although it creates additional challenges. Our evaluation results demonstrate
that our techniques outperform state-of-the-art approaches in age classification.

To summarize our contributions, we designed a simple architecture, used
as the underlying model for both age and gender classification. We designed,
trained, and evaluated several cross-modal learning models for age classification
built upon gender classification model. In addition, we proposed an end-to-end
model which automates the cross-modal learning process during the training.
We also iteratively refined both models, in order to improve accuracies of both
tasks.

2 Related works

Before describing our approach, detailed design, and performance, we briefly
summarize the related work, both for DNNs, as well as age and gender classifi-
cation.

2.1 Age and Gender Classification

Gender Classification. The problem of gender classification from facial images
received significant attention in recent years and many approaches have been
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developed for this purpose. A survey of gender classification can be found in [5]
and more recently in [6]. Below, we briefly survey relevant methods.

Early methods for gender classification used a neural network on a small set
of near-frontal face images [7]. Later work used the 3D structure of the head
for classifying gender [8]. SVM classifiers were investigated in [9]. Other works
used AdaBoost for gender classification [10]. Finally, viewpoint-invariant age and
gender classification were introduced in [11].

More recently, Webers Local texture Descriptor [12] were used in [13] for gen-
der recognition on The Face Recognition Technology (FERET) benchmark [14].
In [15], intensity, shape and texture features were used again on the FERET
benchmark.

FERET benchmark [14] developed by the DoD to facilitate face recogni-
tion has been a popular performance evaluation method. It worth noting that
the FERET dataset was developed under highly controlled conditions. Hence,
FERET images are less challenging than in-the-wild face images. Furthermore,
due to its extensive use for gender classification evaluation, the FERET bench-
mark is saturated. Therefore, realistic comparison of these techniques became
a difficult task. Recent work started evaluating using newer datasets. In [16], a
combination of LBP with an Adaboost classifier approach, experimented on the
popular Labeled Faces in the Wild (LFW) [17] benchmark. However, the main
usage of LFW is face recognition.

Due to recent advances in deep models, several methods have been proposed
with significant improvement for age prediction. For instance, [18–20] developed
deep models for classification. [21] proposed a network for both gender and smile
prediction.

Age Classification. The problem of age classification from facial attributes,
also recently attracted significant attention, due to its usefulness in real-world
applications. A detailed survey of age classification can be found in [22], and [23],
and more recently in [24].

Early methods used extraction of ratios [25], given the facial landmarks for
each image. To this end, [26] used a similar method for age progression. Since
all these methods need an accurate localization, the benchmark being used is
highly controlled for constrained images.

In another line of work, few methods represent the aging process as a sub-
space [27] or a manifold [28]. Since these methods require to have a near-frontal
faces, therefore, these methods are developed on constrained datasets with near-
frontal faces (e.g UIUC-IFP-Y [29, 28], FG-NET [30], and MORPH [31]). Similar
to early approaches, these methods are also inadequate for in-the-wild datasets.

Aside from the approaches described above, some methods used local features
for representing face images. In [32], Gaussian Mixture Models (GMM) [33] were
used for representing the distribution of local patches. In [34], GMM were used,
but instead of pixel patches, robust descriptors were used. On the other hand,
instead of GMM, Hidden-Markov-Model, super-vectors [35], were used in [36]
for representing face patch distributions.
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As an alternative to previous methods, [37] used Gabor image descrip-
tors [38]. In [39], a combination of Biologically-Inspired Features (BIF) [40] and
various manifold-learning methods were used for age estimation. The Gabor im-
age descriptor [38], and local binary patterns (LBP) [41] were used in [42] with
a hierarchical age classifier based on SVM [43].

Moreover, [44] proposed the improved versions of relevant component analysis
[45] and locally preserving projections [46], which are used for dimensionality
reduction with Active Appearance Models (AAP) [47] as an image feature. Up
to this point, the best performing methods were demonstrated on the Group
Photos benchmark [48]. All of these methods have proven effective on small
and/or constrained benchmarks for age estimation.

Aside from datasets that are taken under highly controlled condition, AgeBD [49],
is the first manually collected in-the-wild age database. However, in this paper,
similar to [1], we focus on the more challenging, in-the-wild Adience benchmark,
for instance in comparison to LFW [17]. We train and report our system perfor-
mance on this challenging dataset as well.

Finally, researchers leveraged deep neural networks to achieve better results
on facial age classification tasks. In [50], a deep model for real and apparent
age prediction was proposed using the VGG-16 architecture, and was trained
on ImageNet [51]. In addition, [52–55] achieved significant improvement in age
prediction by using deep architectures. The work by [1] leveraged recent devel-
opments in DNNs, and outperformed all previous methods by training a simple,
and independent deep network for both age and gender classification on Adience
dataset. However, these methods are still far behind the human accuracy, due to
their intrinsic simple architecture, and the fact that age and gender are trained
separately. In this work, we show that our proposed method which leverages deep
CNN, with a cross-modal learning approach, outperforms all previous methods
for age classification.

2.2 Deep Neural Networks

A detailed survey of recent advances in CNNs can be found in [56]. LeNet-5
network described by [57] for optical character recognition is considered as one
of the first applications of CNNs. However, the network was relatively modest
due to the limited computational resources in comparison with more modern
deep networks. AlexNet was introduced [58] and significantly improved the
classification accuracy in the ImageNet competition.

To name a few applications, human pose estimation [59], face parsing [60],
facial key-point detection [61–63], face analysis [64, 65], speech recognition [66],
and action classification [67], all benefited from recent advances in the design
of deep CNNs.

More recently, beyond single deep architecture methods, the emergence of
cross-modal deep architectures [68], and [24], resulted in improvements where
models for one task can built upon another task model.
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3 Background

In this section, we first present how age and gender are associated, and can
provide useful information for each other in classification task, and then we
discuss our high-level designs, and the underlying architecture.

3.1 Age and Gender Association

In our context, age and gender classification are associated in the sense that the
output of each potentially contain valuable information for the other task. To
illustrate, the skin on a man versus that on a woman is significantly different.
Aside from the ability to grow a beard, which is one obvious example, from a
structural point of view, some of the differences include skin thickness, collagen
density, loss of collagen as we age, texture and hydration. Thickness of the skin
varies with the location, age and sex of the individual. In addition, androgens
(i.e. testosterone), which cause an increase in skin thickness, accounts for why a
man’s skin is about 25 percent thicker than that of a woman’s [3]. Consequently,
knowing that an individual is male in advance, can help the network better
identify age category due to specific attributes that are common in specific gender
at each age.

3.2 Age Classification Approach

Our proposed architecture is based on the work by [1], which a simple CNN
architecture was used to independently classify age and gender, given the input
image. The model consists of three convolutional layers and two FC layers. De-
spite its simplicity, it improved the state-of-the-art age and gender classifiers on
the challenging newly released Adience dataset by 5%.

We propose to extend this prior work by cross-modal learning, training an
age estimation model based upon a pre-trained gender classifier. We feed the
extracted embedding of the pre-trained gender classifier to our age classification
model during the training phase. In other words, we help our model to extract
better features for age classification during the training phase, given the gender
embedding from a pre-trained model. In addition, the opposite is true, since
knowing the age can provide helpful information to detect the gender. We con-
sidered several variants of the embedding and feeding in our system, and finally
proposed a deep end-to-end model which automatically chooses the best variant.

In this work, first we re-train a gender classifier following [1] with the same
architecture. Afterwards, we train our age classification model, given the image
and gender embedding from the pre-trained gender classifier. Finally, we test our
model following the same steps in [1] and other works, to compare our results
and accuracy with proposed systems under the same conditions. We explain
the detailed architecture, as well as our proposed designs in the next section.
Figure 1 illustrate the cross-modal learning idea in CNNs.



6 Ali Aminian et al.

Fig. 1. Cross-modal learning. This shows how the cross-modal learning works in
general. We consider the model as a black box, with any arbitrary design. We have
a pre-trained model for task one. After obtaining the embedding of the input from
pre-trained model, we can concatenate the embedding at some layer in our primary
model, aiming to obtain better results in the training task

4 Technical Approach

In this section, we first present our model architecture along with possible designs
and architectures, discuss the training and testing process, and then the iterative
model refinement technique and its improvement in regard to accuracy.

It worth mentioning that since access to personal information on the subjects
in the images is limited, we have available datasets limited in size compared to
face and object detection datasets. Therefore, we are exposed to the risk of
over-fitting. As a consequence, we avoid over-fitting by having fewer layers and
neurons, as well as having dropout layers.

4.1 Model Architecture

We use the CNN network architecture introduced in [1] as the basis for our
work. This underlying architecture is illustrated in Figure 2 and it follows the
conventions in AlexNet [58] architecture. It consists of three convolutional layers,
followed by two FC layers, with a small number of neurons. By comparing this
simple network to other architectures, it is clear that the proposed network has
fewer layers and neurons. The choice of a network with a smaller number of
neurons and layers is motivated by the desire to avoid over-fitting, as well as the
nature of the problem. That is because the output is of size eight, which is fairly
small compared to other classification problems such as object detection, which
consists of tens of thousands of output categories. Since we follow the AlexNet
architecture conventions, we use the same parameters and hyper parameters for
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the first three convolutional layers. For the last two FC layers, we choose 512 as
the number of neurons, in order to avoid over-fitting.

Fig. 2. Illustration of our underlying CNN architecture. The model contains
three convolutional layers, each followed by a rectified linear operation and pooling
layer. The first two layers also follow normalization using local response normalization
[58]. The first convolutional layer contains 96 filters of 7×7 pixels, the second convolu-
tional layer contains 256 filters of 5 × 5 pixels, The third and final convolutional layer
contains 384 filters of 3 × 3 pixels. Finally, two FC layers are added, each containing
512 neurons

All three color channels are considered and processed through the network.
Each input image is first re-scaled to 256 × 256, and then a crop of 227 × 227
is fed to the network depends on the proper cropping method. Below are the
details of three convolutional layers.

Layer 1: 96 filters of size 3× 7× 7 pixels applied to the input image, and
then followed by a rectified linear operator (ReLU). Then, a max pooling
layer, which takes maximum value of each 3× 3 region, with 2 pixels strides
(this is the distance between the receptive field centers of neighboring neu-
rons in a kernel map), followed by a local response normalization layer. On
the first convolutional layer, we used neurons with receptive field size F = 11,
stride S = 4 and no zero padding P = 0. Since (227 − 11)/4 + 1 = 55, and
because we have 96 filters (K = 96), the convolutional layer output volume
has the size 96×55×55. Each of the 96×55×55 neurons in this volume was
connected to a region of size 3 × 11 × 11 in the input volume. Furthermore,
all 96 neurons in each depth column are connected to the same 3 × 11 × 11
region of the input, but with different weights. Since max pooling layer re-
gion is 3 × 3, with S = 2, then we have (55 + 1)/2 = 28 for both W and H.
Therefore, we have an output of size 96 × 28 × 28 due to 96 filters that we
applied.
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Layer 2: From the previous convolutional layer, we have 96 × 28 × 28
output, which would be considered as the input of this layer. This layer
contains 256 filters of size 96× 5× 5 pixels, with stride one (S = 1), and the
same padding, which is followed by ReLU, max pooling layer, and then again
local response normalization, with the same hyper parameters as before.
Hence, we have 256× 28× 28 as the output of convolutional layer, and since
S = 2, we have 256 × 14 × 14 as this step’s output.
Layer 3: Finally, last convolutional layer operates on a 256×14×14 blob.

This layer contains 384 filters of size 256×3×3 pixels (3×3 filters), followed
by ReLU and a max pooling layer, again, with the same hyper parameters
as before. It worth noting that, again, we have stride of size one (S = 1),
and the same padding as the previous convolutional layer. As a consequence,
the output is of size 384 × 6 × 6.
Then, the FC layers are defined as below.
Layer 4: This layer receives the output of the third convolutional layer

(384 × 6 × 6), and contains 512 neurons, which is followed by a ReLU and
dropout layer. We point out that the output of the last convolutional layer
would be reshaped to a single array of size 13824.
Layer 5: This layer receives the output of first FC layer which has 512

dimensions, and similarly contains 512 neurons followed by a ReLU and
dropout layer.

4.2 Prediction Head and Cross-modal learning

Potentially, we can feed a softmax classifier by the output of the last FC layer,
and consider each number as the probability of the corresponding category. How-
ever, in this work, for our prediction head, given the input image, we use the
last FC layer and the gender embedding from the pre-trained gender classifier.

There are several variants for choosing gender embedding since the last few
layers in the gender classification model is encoding the image at different levels.
Intuitively, the first FC layer has extracted less abstract features; however, the
second FC layer contains more complex features embedded. In this design, we
use three separate architectures, which we discuss below.

FC Layer Embedding of Gender into Age Classifier (Manual Embed-
ding). The age classifier network architecture remains the same, and one FC
layer and a softmax layer are added to let the network learn domain-specific
features.

Layer 6: This layer has 512 neurons, and is fully connected to both the
last FC layer in the model, which has 512 dimensions, and gender embedding
of that particular image, followed by a ReLU and dropout layer.
Layer 7: This layer is a softmax layer considered as our classifier output,

and contains eight neurons (classes) for the age classifier connected to the
last FC layer. Due to technical details of softmax function, we can consider
the output vector of this layer as the probability of each class being true.
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There are a few variants in regard to choosing the proper gender embed-
ding for each image (each of last two FC layers in gender classification model).
In addition, we proposed two architectures for age classification to incorporate
the gender embedding in our cross-learning. In our experiments, we tried both
architectures, to evaluate the prediction accuracy.

A schematic of this architecture can be seen in Figure 3 and Figure 4.

Fig. 3. Illustration of our first architecture (Manual 1). We use the FC layer of
our pre-trained gender classifier as the embedding of the input, and fed it into FC3 of
our prediction head along with FC2 of our underlying model

End-to-End (E2E) Architecture. Following the work of [69] by Google,
we also followed the inception model, in order to give the model flexibility to
combine all variants, and choose the embedding and concatenation layer which
works best in the age classifier (out of four possibilities here). To this end, we
design an architecture in which the network considers all variations, and the
last FC layer sets proper weights for each variation, and outputs the predicted
label. From the performance perspective, most computations remain shared, and
all convolutional layers remain unchanged. Therefore, the number of parameters
does not grow significantly. The detailed structure could be observed in Figure 5.
The rest is the same as the architecture explained formerly.

4.3 Training

For re-training the gender classifier, weights are initialized randomly from a
Gaussian distribution with zero mean and standard variation 0.01 at all lay-
ers. Then, for the age classification model, weights are initialized from the pre-
trained gender classifier, since the purpose of prediction head is to make the
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Fig. 4. Illustration of our second architecture (Manual 2). We use the FC layer
of our pre-trained gender classifier as the embedding of the input, and fed it into
softmax layer of our prediction head along with FC3 of our underlying model. This
design gives less room to the model to fine-tune

model domain-specific. Also, we use cross-entropy as our loss function. We train
the model without using any data outside of the dataset. Target values are rep-
resented as sparse binary vectors corresponding to the ground truth classes, in
which the correct class is represented as one, and elsewhere is zero. For each
task, the target vector is of size eight (for age classification) or two (for gender
classification).

We deploy two methods to limit the risk of over-fitting. First, we use dropout.
Based on the architecture, we have two dropout layers, each with a dropout ratio
of 0.5 (50% chance of setting a neuron to zero). Second, we use data augmen-
tation, by taking a random crop of 227 × 227 from the image, and randomly
mirroring it in each forward-backward training pass.

Training is performed using stochastic gradient descent with batch size of 50
images, and learning rate of e−3, reduced to e−4 after 10, 000 iterations.

4.4 Testing

We experiment with two methods for cropping the input image of size 256×256
as below. Figure 6, shows the cropping approaches.

– Center-Crop: Cropping 227×227 pixels from the center around the face, and
then feeding the network.

– Over-Sampling: Input image is cropped five times. Four 227 × 227 pixels
from each corner, and one 227× 227 from the center is cropped, and all five
227 × 227 cropped images along with their horizontal reflections are fed to
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Fig. 5. Illustration of the E2E system. This diagram represents how automation
works in our design. We are assuming the gender classifier has two FC layers followed
by each other. We call them 1 and 2 and use the colors green and yellow, respectively.
In the age classifier, after having output of the convolutional layers, we split it into
four copies with regard to different variations

the network, and the final prediction would be the average prediction for all
the variations.

In fact, small misalignments due to challenging nature of Adience dataset can
negatively impact the final results. However, the second over-sampling method
is designed to compensate for these small misalignments by feeding the network
with multiple translated versions of the same face.

4.5 Iterative Model Refinement

So far, we have kept the gender classifier unchanged as it was proposed by
[1]. To this end, we have achieved an improvement in the age classifier, which
outperforms the current state-of-the-art methods.

Similarly, we can build the gender classifier with the same approach upon the
newly trained age classifier. Therefore, we achieve a better gender classification
compared to what we have currently had. In our age classification approach,
the accuracy of the system highly depends on the embedding of the gender,
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Fig. 6. Two cropping methods. Left design, shows over-sampling method. For a
random image (256×256), we crop five squares of size 227×227. This method improves
alignment qualities. Right design, shows center-crop method, which for any random
image (256 × 256), it crops the center of size 227 × 227 around the face

and consequently the accuracy of the gender classifier. Therefore, having a more
accurate gender classifier helps to re-train the age model more reliably.

As a result, we can keep repeating the last two steps, which basically provides
better classifiers. Essentially, each time we re-train age (gender) from scratch,
since we have more accurate gender (age) classifier by now, we are expecting
to train a better age (gender) classifier. Ultimately, at some point, the system
improvement stops. Intuitively, this indicates the system cannot infer more useful
information from the embeddings. However, due to the limited size of dataset,
and limited variations among the pictures, we have not been able to achieve
promising results with this technique, but we strongly believe that having a
richer dataset would provide better results for both age and gender classifiers.
This approach can be seen in Figure 7.

5 System and Evaluation

Our system is implemented in Tensorflow [70], an open-source framework sup-
ported by Google, due to its advantages in parallelism, simplicity, and rich re-
sources. We trained the network on a GeForce GTX 1060 GPU with 6 GBs of
memory.

Our gender classifier takes roughly five hours to be trained. Also, our age
classification model takes about 10 hours to be trained. There are two reasons
why it takes longer than the gender classification architecture. First, we have
one more layer, which leads to more parameters to be trained at each step.
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Fig. 7. Iterative Model Refinement Approach. This diagram represents the idea
of iterative model refinement, when we have two tasks, which improvement in one can
also improve the other task’s accuracy. We have initially the gender classifier one pre-
trained, hence we can build age classifier one upon that, and have improvement over
first age classifier accuracy, and then we can repeat this as long as we have improvement
over one or both tasks

Table 1. Adience dataset breakdown by gender category

0-2 4-6 8-13 15-20 25-32 38-43 48-53 60- Total

Male 745 928 934 734 2308 1294 392 442 8192
Female 682 1234 1360 919 2589 1056 433 427 9411
Both 1427 2162 2294 1653 4897 2350 825 869 19487

In addition, for each image batch, we need to first pass it through the gender
classifier in order to get the embedding of each image first, and then use the
embedding to feed to the FC layer during each step of training. At test time,
each image takes 300ms on average to be processed and the system outputs
predicted label.

5.1 Adience Benchmark

We train and test the accuracy of our deep model on the newly released Adi-
ence benchmark [71]. The Adience dataset mostly contains images which auto-
matically were uploaded to Flickr. Since these images were uploaded by mobile
devices with no filters, viewing images are highly unconstrained. It is worth men-
tioning that as opposed to other datasets like LFW collection [17], which images
are taken with filters on media web pages or social websites, Adience dataset
images are challenging in their nature, due to their extreme variations in pose,
occlusion, lighting condition, and other factors.

Adience dataset contains roughly 26K images of 2, 284 subjects. The break-
down of each category can be seen in table 1. Testing for both age and gender
classification is performed using a standard five-fold, subject-exclusive, cross
validation protocol defined in [71]. In the next section, we are comparing the
previously reported results with the new results our design has produced.



14 Ali Aminian et al.

5.2 Results

In table 2, we compare the results of our gender classifier which is the same as
the results by [1] since we followed their architecture. Moreover, in table 3, our
results for different designs can be observed. In addition, in table 4, our iterative
model refinement approach results can be seen, which is not as expected due to
limited variation in dataset for genders. For our age classifier, we measure the
accuracy of the system both when the design predicts the exact age group, and
when the system prediction is different from the correct category by at most
one (correct category, or two adjacent categories) which we call it ”1-off”. This
follows others who have done this in the past.

Table 2. Gender classification methods and accuracies

Method Accuracy

Best from [71] 77.8 ± 1.3
Best from [72] 79.3 ± 0.0
Best from [1] single-crop 85.9 ± 1.4
Best from [1] over-sample 86.8 ± 1.4

Both proposed age and gender classifiers have been compared with methods
described in [71], and [1], since Adience dataset is the benchmark which we
tested our systems. Also, the proposed gender classifier has been compared to
results by [72], which uses the same gender classification pipeline of [71] applied
to more effective alignment of the faces.

Table 3. Age classification methods and accuracies (over-sampling)

Method Exact 1-off

Best from [71] 45.1 ± 2.6 79.5 ± 1.4
single-crop[1] 49.5 ± 4.4 84.6 ± 1.7
over-sample[1] 50.7 ± 5.1 84.7 ± 2.2

Manual 1 Architecture 53.3 ± 3.2 85.9 ± 2.5
Manual 2 Architecture 55.1 ± 2.6 88.5 ± 2.9
E2E System 60.2 ± 1.8 92.5 ± 1.8

Based on our results which can be seen in table 3, we outperform the most
accurate age classifiers with considerable gaps on Adience benchmark. We point
out that we use over-sampling method in all of our experiments, since it performs
better compared to the center crop method.
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Table 4. Model refinement iterations and accuracies

Classifier Step Accuracy

Gender 1 86.8 ± 1.4
Age 1 55.1 ± 2.6
Gender 2 84.8 ± 1.2

6 Conclusions

Age and gender classifiers still lack accuracy. In this work, we developed a set
of techniques that leverage a gender classifier, to improve the accuracy of age
classification. We evaluated several variants on the Adience dataset, achieving
an improvement of over 9% compared to the current techniques. In future work,
we plan to investigate further optimization of the gender, age, and other cross-
model learning, for instance, iteratively refining the models from one embedding
to another.
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