

Guevara Noubir College of Computer and Information Science Northeastern University <u>noubir@ccs.neu.edu</u>

Wireless Lectures Outline

- Overview of Wireless Systems
 - Terminology, types of systems, issues, etc.
 - Wireless LANs
 - IEEE802.11, Hiperlan1/2
 - Personal Area Networks
 - Bluetooth
 - Cellular Telecommunication Systems
 - GSM, CDMA (e.g., IS-95)
 - Ad Hoc Networks

CSU610 - SWARM

Wireless Communication Systems

- Target Information Systems: "Anytime, Anywhere, Anyform"
- Applications: Ubiquitous Computing/Information Access
- Market in continuous growth:
 - 35-60% annual growth of PCS
 - Number of subscribers:
 - 2001: over700M wireless subscribers
 - 2003: 1.160 billion wireless subscribers
 - 2006: over 2 billion wireless subscribers (source <u>www.wirelessintelligence.com</u>, <u>www.gsmworld.com</u>)
- Large diversity of standards and products!!!
- Confusing terminology

CSU610 - SWARM

Number of Connections, Total

September 2005: over 2B ; GSM family (inc. WCDMA): 1.6B Source:

- EMC World Cellular Database (<u>www.emc-database.com</u>)
- GSM World Association <u>http://www.gsmworld.com/membership/ass_sub_stats.html</u>
- Wireless Intelligence (<u>www.wirelessintelligence.com</u>) CSU610 - SWARM Wireless Networks

Wireless Communication

Types of wireless communications?

- ISM: Industrial, Scientific and Medical frequency bands
- Wireless versus Mobile:
 - Can we have wired-mobile node or wireless-fixed node?

Attributes of Wireless & Mobile Communication Systems

Wireless:

- limited bandwidth: frequencies have to be coordinated, useful frequencies are almost all occupied
- broadcast medium: requires efficient access mechanisms
- variable link quality (noise, disconnection, interference)
- high latency, higher jitter (cellular):
 - connection setup time: several hundred milliseconds ; Packet/bit interleaving
- heterogeneous air interfaces
- security: easier snooping
- Mobility:
 - user and terminal location is a dynamic system variable
 - speed of mobile impact wireless bandwidth
 - Security: easier spoofing
- Portability:
 - limited battery capacity
 - limited computing and memory
 - small dimensions (limited user interfaces)

Classification of Wireless Personal Communication

- Mobility scale:
 - within a house or building: cordless telephone, WLAN
 - within a campus, city: (cellular radio, WLAN, wide area wireless data, radio paging, extended cordless)
 - throughout the world: cellular radio, paging, satellite-based wireless
- Communication modes:
 - two-way voice
 - data a multimedia
 - messaging
- Convergence through all-IP networks and voice-over-IP with multiple physical layer interfaces

CSU610 - SWARM

Evolution of Some Wireless

Cordless Telephones (1970s-)

- Evolved from analog to digital:
 - Low transmission power: ≤10mW (limited radio range)
 - Low transmission delay: ≤10ms
 - Dynamic Channel Allocation
- Products
 - Europe-Asia:
 - CT-2 (864-868MHz, bitrate 72Kpbs), DECT (1880-1990MHz, 1.2MBps)
 - USA: several products based on spread-spectrum or very low power transmission systems over the ISM frequency bands (900MHz, 2.4GHz)
 - Japan: PHS (1895-1907MHz, upto 384KBps)
- New services on cordless phones:
 - PhonePoint (CT-2, PHS), WPABX (DECT)
 - Limitations: reduced coverage, inefficient handoffs
 - Combination with cellular phones: GSM-DECT dual mode

Cellular Mobile Radio Systems (Past/Present)

- Characteristics:
 - Two-way voice service
 - High mobility
 - Higher coverage, vehicular speed handoffs
 - Messaging
 - Mobile transmission power: ~2W
 - Low data rate: <10KBps</p>
 - Higher RTT: ~200ms (due to interleaving, FEC etc.)
- Standards/Products:
 - Global Standard for Mobile (GSM):
 - ~825M subscribers (Europe, Asia, USA)
 - Extensions: HSCSD (in practice 28Kbps UL/28Kbps), GPRS (50Kbps)
 - Japanese of Personal Digital Cellular (JDC or PDC)
 - USA: IS-54/IS-136/DAMPS, GSM/GPRS (TDMA), IS-95/1x/1xEV-DO (CDMA) CSU610 - SWARM Wireless Networks

Cellular Mobile Radio Systems Today?

- Third Generation PCS initiated by ITU's call for proposals (IMT2000)
 - Convergence of wireless PCS into a unique system
 - Efficient coverage
 - High data rates: 144Kbps (high mobility), 384Kbps (low mobility), and up-to 2Mbps for indoor
 - Multi-QoS connections (data-rate, delay, FER)
- Most likely: three standards
 - WCDMA:
 - ETSI proposal (FRAMES European project) [www.3GPP.org]
 - ARIB proposal (Japan)
 - CDMA2000 1xRTT 1xEvDo is an enhancement of Qualcomm's IS-95 [www.3GPP2.org]
 - EDGE (2.5G): convergence of 2nd generation PCS (TDMA)
 - GSM, D-AMPS, IS-54, IS-136

Wide-Area Wireless Data Systems

Characteristics:

- High mobility (vehicular/pedestrian speed)
- Wide range coverage
- Products:
 - ARDIS (USA: Motorola), RAM (Ericsson): low data rate <8Kbps</p>
 - Metricom (76Kbps):
 - large number of inexpensive base stations,
 - connected through wireless links
 - each base stations has small coverage
 - Deployed in San Francisco Bay area, Washington D.C.
 - Slow frequency hopping, Pwr <1W over 902-928MHz ISM band</p>
 - WiMax IEEE802.16 (the wireless DSL)
- Past wide area wireless data systems did not succeed to attract enough users! WiMax future seems brighter.

CSU610 - SWARM

Wireless Local Area Networks

Characteristics:

- Iow-mobility
- high data-rate: 1Mbps-54Mbps
- campus/building coverage
- Products/standards:
 - IEEE802.11, Hiperlan 1/2, Bluetooth, HomeRF,
 - Altair Plus, AirLan, Freeport, Intersect, LAWN, WILAN, RadioPort, ArLAN, Radio Link, Range LAN 1-2, Netware, FreeLink
- Operate over ISM frequency Band:
 - 2.4GHz, 900MHz, 5GHz

Other Wireless Systems

- Paging/Messaging:
 - Evolution: from 1 bits info, to two-way
 - Combined with CT-2 (Phone point), GSM (Short Message Service: SMS)
- Blackberry (RIM):
 - Initially proprietary basic email services now over GSM
- Satellite-Based Mobile Systems:
 - Large coverage
 - Constellation of satellites (LEO)
 - Products: *stopped*
 - Iridium (Motorola):
 - Globalstar
 - Teledesic (Lockheed Martin, Microsoft, Motorola)

Summary

- WLAN/PAN
 - Designed for high bit-rate data transmission
 - Low-scale mobility, small area coverage
 - Use unlicensed ISM frequency bands
- PCS
- Originally (2nd generation) designed for voice communication
- Limited bit-rate data transmission
- Large scale mobility and coverage (high-speed, big cells)
- Operate over licensed frequency bands
- Wireless Metropolitan Area Networks
- Sensor Networks
 - Low data rate
 - Low power consumption
 - Low mobility
 - Over ISM

Common Components of Wireless Systems

- Antenna:
 - transducer that transforms an electric signal into an electromagnetic signal and reciprocally
- Radio-Frequency Front-End:
 - Filters
 - Power-Amplifier
 - Mixers
 - PLLs
- Base-Band:
 - Demodulation, Forward Error Correction
- Multiple-Access Scheme
 - FDMA, TDMA, CDMA, etc.

EE view vs. CS view

Electrical Engineer view:

• Ignores issues of routing, reliable transport, various applications requirements

CSU610 - SWARM

ISO view vs. IETF view

OSI stack

Lack of coordination between higher layers and physical layer

CSU610 - SWARM

WLAN Architectures

Terminology:

- Mobile Terminal (MT) or Mobile Station (MS) to denote and mobile node
- Access Point (AP) or Base-Station (BS) to denote the central entity that coordinates and wirelessly connects the mobiles to the wired network
- Types of WLAN:
 - Infrastructure WLAN
 - Ad Hoc WLAN:
 - Single: peer-to-peer communication
 - Multi-hop: nodes act both as terminals and routers

Issues in WLAN

- Physical Layer
 - How to resist to the wireless link limitations? → multiple error control coding schemes
- Medium Access Layer
 - Coordination of nodes
 - Dealing with wireless limitations (medium sensing and collisions detections)
- Network Layer
 - How to maintain the routing tables in the context of highly mobile nodes (multi-hop routing)?
- Transport Layer
 - TCP is optimized for congestion avoidance how to extend to error control
- Application Layer
 - How to satisfy the application requirements (delay, throughput)?
 - How can the application adapt to the channel?
- Resource conservation:
 - Power-consumption, bandwidth optimization
 - Planning for infrastructure networks (location identification, tele-traffic analysis)
 - Self-configuration for multi-hop ad hoc networks CSU610 - SWARM
 Wireless Networks

PCS Architectures

Issues in PCS

- Planning
 - Infrastructure planning:
 - Location of base stations
 - Resources planning and management:
 - Frequency, timeslots, codes
 - Fixed (FCA), Dynamic (DCA), Hybrid, etc.
- Mobility:
 - Handover (or handoff) types:
 - Soft/hard/seamless (data flow), backward/forward (control flow)
 - Mobile controlled (DECT, PACS), network controlled (AMPS, CT-2), mobile assisted (GSM, IS-95)
 - Intra-system handover, inter-system handover
 - Admission Control
 - Roaming

Summary: Main Wireless Systems

- Wireless Local Area Networks:
 - WiFi: IEEE802.11
- Cellular:
 - Today: GSM (= DCS1800, PCS1900, GPRS), CDMA (= IS-95), DAMPS (= TDMA, IS-136, IS-54)
 - Being deployed: WCDMA (UMTS = 3GPP, HSDPA), Cdma2000 (=3GPP2: 1xEV-DO)
- Wireless Metropolitan Area Networks:
 - WiMax: IEEE802.16
- Wireless Personal Area Networks
 - Bluetooth = IEEE802.15.1, UWB = IEEE802.15.4a
- Sensor Networks:
 - ZigBee = IEEE802.15.4, UWB

Some Trends in Wireless Networks

- Service architectures:
 - IEEE802.11b/a/g leading to hotspots
 - Cellular for full coverage, voice, data, and mobility
 - Hybrid wireless networks: multihop and infrastructure
- Recent hot physical layer technologies research:
 - Ultra Wide Band (UWB) derived from radar technology for low interference-low power communication
- All IP cellular networks:
 - Flarion/Qualcomm, Airvana (CDMA 2000 1xEV-DO), etc.
- Coexistence of technologies:
 - Software Defined Radio, single chip multiple radio technologies (Qualcomm)