
Authentication Protocols

Guevara Noubir
College of Computer and Information Science

Northeastern University
noubir@ccs.neu.edu

“Network Security”, C. Kaufman, R. Perlman, M. Speciner, Second
Edition, Addison-Wesley, 2002.

mailto:noubir@ccs.neu.edu

CSU610: SWARM Authentication Protocols 2

Outline

Overview of Authentication Systems
[Chapter 9]

Authentication of People
[Chapter 10]

Security Handshake Pitfalls
[Chapter 11]

Strong Password Protocols
[Chapter 12]

CSU610: SWARM Authentication Protocols 3

Who Is Authenticated?
Human:

Limited in terms of computation power and memory

Machine:
More powerful: long secrets, complex computation

Hybrid:
User is only authorized to execute some actions from a
restricted set of machines
Users equipped with computation devices

CSU610: SWARM Authentication Protocols 4

Password-Based Authentication

Node A has a secret (password): e.g., “lisa”
To authenticate itself A states the password
No cryptographic operation because:

Difficult to achieve by humans when connecting from dumb
terminals (less true today with authentication tokens)
Crypto could be overly expensive in implementation time or
processing resources
Export or legal issues

Problems:
Eavesdropping, cloning, etc.

Should not be used in networked applications

CSU610: SWARM Authentication Protocols 5

Offline vs. Online Password Guessing

Online attack:
How? try passwords until accepted
Protection:

Limit number of trials and lock account: e.g., ATM machine
DoS problem: lock all accounts

Increase minimum time between trials
Prevent automated trials: from a keyboard, Turing tests
Long passwords: pass phrases, initials of sentences, reject easy passwords
What is the protection used by Yahoo? Hotmail? Gmail?

Offline attack:
How?

Attacker captures X = f(password)
Dictionary attack: try to guess the password value offline
Obtaining X in a unix system: “ypcat passwd”
Unix system: using the salt

Protection:
If offline attacks are possible then the secret space should be large

CSU610: SWARM Authentication Protocols 6

L0pht Statistics (old)

L0phtCrack against LM (LanMan – Microsoft)
On 400 MHz quad-Xeon machine
Alpha-numeric: 5.5 hours
Alpha-numeric some symbols: 45 hours
Alpha-numeric-all symbols: 480 hours

LM is weak but was still used by MS for compatibility
reasons up to Windows XP, … NTLM, …
Side Note on choosing good passwords:
http://www.atstake.com/products/lc/best_practices.html

Best practice from: SANS, MS, Red-Hat, etc.

CSU610: SWARM Authentication Protocols 7

Password Length
Online attacks:

Can 4/6 digits be sufficient if a user is given only three trials?

Offline attacks:
Need: 64 random bits = 20 digits

Too long to remember by a human!
Or 11 characters from a-z, A-Z, 0-9, and punctuation marks

Too long to remember by a human
Or 16 characters pronounceable password (a vowel every two
characters)
Conclusion:

A secret a person is willing to remember and type will not be as good as
a 64-bit random number

CSU610: SWARM Authentication Protocols 8

Storing User Passwords
Alternatives:

Each user’s secret information is stored in every server
The users secrets are stored in an authentication
storage node

Need to trust/authenticate/secure session with the ASN
Use an authentication facilitator node. Alice’s
information is forwarded to the authentication
facilitator who does the actual authentication

Need to trust/authenticate/secure session with the AFN

Authentication information database:
Encryption
Hashed as in UNIX (allows offline attacks)

CSU610: SWARM Authentication Protocols 9

Other Issues Related to
Passwords

Using a password in multiple places:
Cascade break-in vs. writing the list of passwords

Requiring frequent changes
How do users go around this?

A login Trojan horse to capture passwords
Prevent programs from being able to mimic the login:
X11 (take the whole screen), read keyboard has “?”,
“Ctrl-Alt-Del”
What happens after getting the password?

Exit => alarm the user, freeze, login the user

CSU610: SWARM Authentication Protocols 10

Initial Password Distribution
Physical contact:

How: go to the system admin, show proof of identity,
and set password
Drawback: inconvenient, security treats when giving
the user access to the system admin session to set the
password

Choose a random strong initial password (pre-
expired password) that can only be used for the
first connection

CSU610: SWARM Authentication Protocols 11

Authentication Tokens
Authentication through what you have:

Primitive forms: credit cards, physical key
Smartcards: embedded CPU (tamper proof)

PIN protected memory card:
Locks itself after few wrong trials

Cryptographic challenge/response cards
Crypto key inside the card and not revealed even if given the PIN
PIN authenticates the user (to the card), the reader authenticates
the card

Cryptographic calculator
Similar to the previous card but has a display (or speaker)

CSU610: SWARM Authentication Protocols 12

Address-Based Authentication
Trust network address information
Access right is based on users@address
Techniques:

Equivalent machines: smith@machine1 ≡ john@machine2
Mappings: <address, remote username, local username>

Examples:
Unix: /etc/host.equiv, and .rhost files
VMS: centrally managed proxy database for each <computer,
account> => file permissions

Threats:
Breaking into an account on one machine leads to breaking into
other machines accounts
Network address impersonation can be easy in some cases. How?

CSU610: SWARM Authentication Protocols 13

Cryptographic Authentication Protocols

Advantages:
Much more secure than previously mentioned
authentication techniques

Techniques:
Secret key cryptography, public key crypto, encryption,
hashing, etc.

CSU610: SWARM Authentication Protocols 14

Other Types of Human Authentication

Physical Access

Biometrics:
Retinal scanner
Fingerprint readers
Face recognition
Iris scanner
Handprint readers
Voiceprints
Keystroke timing
Signature

CSU610: SWARM Authentication Protocols 15

Passwords as Crypto Keys
Symmetric key systems:

Hash the password to derive a 56/64/128 bits key
Public key systems:

Difficult to generate an RSA private key from a password
Jeff Schiller proposal:

Password => seed for random number generator
Optimized by requesting the user to remember two numbers

E.g. (857, 533): p prime number was found after 857 trials, and q after
533 trials

Known public key makes it sensitive to offline attacks
Usual solution:

Encrypt the private key with the users password and store the
encrypted result (e.g., using a directory service)

CSU610: SWARM Authentication Protocols 16

Eavesdropping &
Server Database Reading

Example of basic authentication using public keys:
Bob challenges Alice to decrypt a message encrypted with its public
key

If public key crypto is not available protection against both
eavesdropping and server database reading is difficult:

Hash => subject to eavesdropping
Challenge requires Bob to store Alice’s secret in a database

One solution:
Lamport’s scheme allows a finite number of authentications

CSU610: SWARM Authentication Protocols 17

Key Distribution Center

Solve the scalability problem of a set of n nodes using secret key
n*(n-1)/2 keys

New nodes are configured with a key to the KDC
e.g., KA for node A

If node A wants to communicate with node B
A sends a request to the KDC
The KDC securely sends to A: EKA(RAB) and EKB(RAB, A)

Advantage:
Single location for updates, single key to be remembered

Drawbacks:
If the KDC is compromised!
Single point of failure/performance bottleneck => multiple KDC?

CSU610: SWARM Authentication Protocols 18

Multiple Trusted Intermediaries

Problem:
Difficult to find a single entity that everybody trusts

Solution: Divide the world into domains
Multiple KDC domains interconnected through shared
keys

Multiple CA domains: certificates hierarchy

CSU610: SWARM Authentication Protocols 19

Certification Authorities
How do you know the public key of a node?
Typical solution:

Use a trusted node as a certification authority (CA)
The CA generates certificates: Signed(A, public-key, validity information)
Everybody needs to know the CA public key
Certificates can be stored in a directory service or exchanged during the
authentication process

Advantages:
The CA doesn’t have to be online => more physical protection
Not a performance bottleneck, not a single point of failure
Certificates are not security sensitive: only threat is DoS
A compromised CA cannot decrypt conversation but can lead to
impersonation
A certification hierarchy can be used: e.g., X.509

CSU610: SWARM Authentication Protocols 20

Certificate Revocation

What if:
Employer left/fired
Private key is compromised

Solution: similar to credit cards
Validity time interval
Use a Certificate Revocation List (CRL): X.509

For example: lists all revoked and unexpired certificates

CSU610: SWARM Authentication Protocols 21

Session Key Establishment

Authentication is not everything
What could happen after authentication?

E.g., connection hijacking, message modification, replay, etc.
Solution use crypto => need a share key between communicating
entities because public encryption/decryption is expensive
Practically authentication leads to the establishment of a shared key for
the session

A new key for each session:
The more data an attacker has on a key the easier to break
Replay between sessions
Give a relatively “untrusted” software the session key but not the long-term key
Good authentication protocol can establish session keys that provide forward
secrecy

CSU610: SWARM Authentication Protocols 22

Delegation

Give a limited right to some third entity:
Example: printserver to access your files, batch process

How?
Give your password?
ACL
Delegation

CSU610: SWARM Authentication Protocols 23

Security Handshake Pitfalls
Developing a new encryption algorithm is believed to be
an “art” and not a “science”
Security protocols build on top of these algorithms and
have to be developed into various types of systems

Several Cryptographic Authentication Protocols exist
however:

Several protocols were proven to have flaws
Minor modifications may lead to flaws
Use in a different context may uncover flaws or transform a non-
serious flaw into a serious one

CSU610: SWARM Authentication Protocols 24

Login Only: Shared Secrets

Sending the password on the clear is not safe: use shared secrets
Challenge response: B sends R and A has to reply f(KAB, R). Weaknesses:

Authentication is not mutual
If the subsequent communication is not protected: hijacking treat
Offline attack by an eavesdropper using R and f(KAB, R)
An attacker who successfully reads B’s database can impersonate A

Cascade effect if the same password is used on multiple servers
Variants:

B sends: KAB{R}, and A replies R
Requires reversible cryptography which may be limited by export legislation
Dictionary attacks if R is a recognizable value (padded 32 bits) don’t need eavesdropping

A sends KAB{timestamp} (a single message)
Requires: clock synchronization
Problems with impersonation:

within the clock skew: remember timestamp
at another server: include B in message

CSU610: SWARM Authentication Protocols 25

Login Only: One-Way Public Key

Shared secrets are vulnerable if B’s database is compromised
Public key protocols:

A send the signature of R using its public key: [R]A

Advantage:
B’s database is no longer security sensitive to unauthorized disclosure

Variant: B sends {R}public-A, A has to recover R and send it back
Problem:

You can trick A into signing a message or decrypting a message

General solution: never use the same key for two purposes

CSU610: SWARM Authentication Protocols 26

Mutual Authentication: Shared Secret

Basic protocol: 5 messages,
Optimized into 3 rounds but becomes subject to the Reflection attack:

C impersonates A by initiating two sessions to B [both single/multiple servers]
Solutions:

Use different keys for A -> B authentication and B->A authentication
For example: KB-A = KA-B +1

Use different challenges:
For example: challenge from the initiator be an odd number, while challenge from the
responder be an even number, concatenate the name of the challenge creator to the
challenge

Another problem: password guessing without eavesdropping
Solution: 4 messages protocol where the initiator proves its identity first
Alternative two messages protocol using timestamp and timestamp+1 for R1
and R2

CSU610: SWARM Authentication Protocols 27

Mutual Authentication: Public Keys

Three messages protocol:
A -> B: A, {R2}B

B -> A: R2, {R1}A

A -> B: R1

Problems:
Knowing the public keys

Solutions:
Store Bob’s public key encrypted with Alice’s password in some
directory
Store a certificate of Bob’s public key signed by Alice’s private key

CSU610: SWARM Authentication Protocols 28

Integrity/Encryption for Data
Key establishment during authentication

Use f(KA-B){R} as the session key where R is made out of
R1 and R2

Example: f(KA-B) = KA-B +1
Why not use KA-B{R+1} instead of f(KA-B)?

Rules for the session key:
Different for each session
Unguessable by an eavesdropper
Not KA-B{X}

CSU610: SWARM Authentication Protocols 29

Two-Way Public Key Based
Authentication + Key Setup

First attempt:
A sends a random number encrypted with the public key of B
Flaw: T can hijack the connection using her own R

Second attempt:
A sends [{R}B]A: encrypt using public key of B and then private key of A
If someone records the conversation and then gets access to B key it can
recover R

Third attempt:
Both A and B participate through R1 and R2 shares: session key R1 ⊕ R2

Fourth alternative:
Use Diffie-Hellman key establishment protocol and each entity signs its
contribution

CSU610: SWARM Authentication Protocols 30

One-Way Public Key Based
Authentication

Context:
Only one of the parties has a public key (e.g., SSL server)
First the server is authenticated
If needed the user is authenticated (e.g., using a password)

First solution:
A sends a random number encrypted with B’s public key
The random number is used as a session key
Problem: if an attacker records the communication and later on
breaks into A it can decode the whole communication

Second solution:
Use Diffie-Hellman with B signing his contribution

CSU610: SWARM Authentication Protocols 31

Privacy and Integrity
Privacy:

Use a secret key algorithm to encrypt the data
Integrity:

Generate a Message Authentication Code (MAC)
No clean solution for merged privacy and integrity:

Use two keys (may be one derived from the other)
Use a weak checksum then encrypt
Use two different algorithms for encryption/integrity (e.g., AES) and MAC (e.g.,
HMAC/SHA1)

Replays:
Use sequence number to avoid replays, or
Include info about previous message

Reflection: replay the message in a different direction
Different range for each direction
Use a direction bit
Use a direction dependent integrity algorithm

Key rollover: change keys periodically during the communication

CSU610: SWARM Authentication Protocols 32

Needham-Schroeder
Authentication 1978
Basis for Kerberos and many other authentication
protocols
Uses NONCE (Number ONCE):

1. A → KDC: N1, A, B
2. KDC → A: KA{N1, B, KAB, ticket-to-B}; ticket-to-B=KB{KAB, A}
3. A → B: ticket-to-B, KAB{N2}
4. B → A: KAB{N2-1, N3}
5. A → B: KAB{N3-1}

– Why N1? T has stolen the old key of B and previous
request from A to KDC requesting to communicate with B

– Why B in second message?
– Reflection attack?

CSU610: SWARM Authentication Protocols 33

Expanded Needham-Schroeder

Vulnerability of basic protocol:
T steals A’s key and can impersonate A even after A
changes it’s key (ticket stays valid)

Proposed solution [Need87]
Before talking to the KDC B gives A a nonce that has to
be included in the ticket => 7 messages protocol

CSU610: SWARM Authentication Protocols 34

Otway-Rees Authentication 1987

1. A → B: NC, A, B, KA{NA, NC, A, B}
2. B → KDC: KA{NA, NC, A, B}, KB{NB, NC, A, B}
3. KDC → B: NC, KA{NA, KAB}, KB{NB, KAB}
4. B → A: KA{NA, KAB}
5. A → B: KAB{ anything recognizable}

CSU610: SWARM Authentication Protocols 35

NONCES
Potential properties:

Non-repeated, unpredictable, time dependent
Context dependent

A nonce may have to be unpredictable for some
challenge response protocols (with no session key
establishment)

Sequence number doesn’t work for challenge response:
KAB{R}

One solution is to use cryptographic random
number generators

CSU610: SWARM Authentication Protocols 36

Random Numbers

If the random number generation process is weak
the whole security system can be broken
Pure randomness is very difficult to define
Usually we differentiate:

Random: specialized hardware (e.g., radioactive particle
counter)
Pseudorandom: a deterministic process determined by
its initial state

For testing purpose: hashing a seed using a good hashing
function can work
For security purpose: long seed, good hashing function
(FIPS186)

CSU610: SWARM Authentication Protocols 37

Performance Considerations

Metrics:
Number of cryptographic operations using a private key
Number of cryptographic operations using a public key
Number of bytes encrypted/decrypted using a secret key
Number of bytes to be cryptographically hashed
Number of messages transmitted

Notes:
Private key operations are usually much more expensive than
public key operations

Some optimization techniques:
Caching information such as tickets

CSU610: SWARM Authentication Protocols 38

Authentication Protocols Checklist
Eavesdrop:

Learn the content, learn info to impersonate A/B later or to another replica, offline
password guessing

Initiating a conversation pretending to be A:
Impersonate A, offline password guessing, delayed impersonation, trick B to
sign/decrypt messages

Lie in wait at B’s network address and accept connections from A:
Immediate/delayed impersonation of B or A, offline password guessing, trick A to
sign/decrypt messages

Read A/B’s database:
Sit actively/passively on the net between A and B (router):

Offline password guessing, learn the content of messages, hijack connections,
modify/rearrange/replay/reverse direction of message

Combinations:
Even after reading both A and B databases T shouldn’t be able to decrypt recorded
conversations
Even after reading B’s database and eavesdropping on an authentication exchange it
shouldn’t be possible to impersonate A to B

CSU610: SWARM Authentication Protocols 39

STRONG PASSWORD PROTOCOLS

CSU610: SWARM Authentication Protocols 40

Context & Solutions
Context:

A wants to use any workstation to log into a server B
A has only a password
The workstation doesn’t have any user-specific information (e.g., users’s
trusted CAs, or private keys)
The software on the workstation is trustworthy

Potential solutions:
Transmit the password in the clear
Use Diffie-Hellman key establishment (vulnerable to B impersonation)
Use SSL (relies on trust anchors: trusts configuration and certificates)
Challenge response authentication using a hash of the password as a
key (vulnerable to dictionary attacks)
Use Lamport’s hash or S/KEY
Use a strong password protocol (secure even if the shared secret could
be broken by an offline dictionary attack

CSU610: SWARM Authentication Protocols 41

Lamport’s Hash: One Time Password

Allows authentication
Resistant to eavesdropping and reading Bob’s database
Doesn’t use public key cryptography

B’s database:
Username (e.g., A),
n (integer decremented at each authentication)
hashn(password)

Initialization:
Set n to a reasonably large number (e.g., 1000)
The user registration software computes: xn = hashn(password)
and sends xn and n to B

CSU610: SWARM Authentication Protocols 42

Lamport’s Hash (Cont’d)
Authentication:

A connects to a workstation and gives her username and password
The workstation sends A’s username to B
B sends back n
The workstation computes hashn-1(password) and sends it to B
B computes the hash of the received value and compares it with the
stored value of hashn(password)
If equal: decrement n and store the last received value
When n gets to 1, A needs to reset its password (in a secure way)

Enhancement: Salt
x1 = hash(password | salt)
Advantage:

Use the same password on multiple servers
Makes dictionary attacks harder (similar to Unix)
Do not have to change the password when n reaches 1 (just change the salt)

CSU610: SWARM Authentication Protocols 43

Pros and Cons
Advantages:

Not sensitive to eavesdropping, or reading B’s database
Disadvantages:

Limited number of logins
No mutual authentication, difficulty to establish a common key, or prevent man-in-
the-middle

One can use this scheme followed by a Diffie-Hellman key establishment: but this is
vulnerable to connection hijacking

Small n attack:
T impersonates B’s address and sends back a small value of n (e.g., 50)
If the real value of n at B is 100 => T can impersonate A 50 times

Use in the “human and paper” environment:
Print the list and give it to A (the user won’t go back on the list)
Use 64 bits out of 128 MD5 hash function
Resiliency to small n attack
What if you lose the list!

Deployed in S/Key (Phil Karn) RFC 1938

CSU610: SWARM Authentication Protocols 44

Strong Password Protocols
Goal:

Prevent off-line attacks
Even if eavesdropping or impersonating addresses

Basic Form: Encrypted Key Exchange (EKE) [Bellovin &
Merritt]

A and B share a weak secret W (derived from A’s password)
A and B encrypt their DH contributions using W
Why is it secure? because W{ga mod p} is just a random number
and for any password W their could exist a r = ga such that W{r}

Variants:
Simple Password Exponential Key Exchange (SPEKE): use g = W
Password Derived Moduli (PDM): Use p = f(W)

CSU610: SWARM Authentication Protocols 45

Subtle Details
A simple implementation may lead to flaws
EKE:

If p is a little more that a power of 2
ga has to be less than p
The attacker can try a password and if GUESS{W{ga mod
p}} is higher that p then discard guess
A password from a space of 50’000 can be guessed after
about 20 exchanges
Solution?

SPEKE:
Small problem if W is not a perfect square mod p

CSU610: SWARM Authentication Protocols 46

Augmented Strong Password Protocol

Goal:
If an attacker steals B‘s database but doesn’t succeed with an
offline attack he cannot impersonate A

How:
avoid storing W in B’s database but only something derived from
W

Augmented PDM:
B stores “A”, p, 2W mod p
A sends 2a mod p
B sends: 2b mod p, hash(2ab mod p, 2bW mod p)
A sends hash’(2ab mod p, 2bW mod p)

CSU610: SWARM Authentication Protocols 47

Augmented Strong Password Protocol

RSA variant:
B stores: “A”, W, A’s public key, Y = W’{A’s private
key}
A sends: A, W{ga mod p}
B sends: W{gb mod p}, (gab mod p){Y}, c
A replies: [hash(gab mod p, c)]sign-A

CSU610: SWARM Authentication Protocols 48

Secure Remote Protocol (SRP)

Invented by Tom Wu 1998, RFC2945
B stores gW mod p
A choose a and sends: “A”, ga mod p
B choose b, c1, 32-bit number u, and sends gb+gw mod
p, u, c1

=> Share key is: K = gb(a+uW) mod p
A sends: K{c1}, c2

B sends: K{c2}

How is the common key computed on both ends?

CSU610: SWARM Authentication Protocols 49

Credentials Download Protocols

Goal:
A can only remember a short password
When using a workstation A needs its environment
(user specific information)
The user specific information could be downloaded from
a directory if A knew its private key
Strong Password protocols can help

Protocol based on EKE:
B stores: “A”, W, Y = W’{A’s public key}
A sends: “A”, W{ga mod p}
B sends: gb mod p, (gab mod p){Y}

	Authentication Protocols
	Outline
	Who Is Authenticated?
	Password-Based Authentication
	Offline vs. Online Password Guessing
	L0pht Statistics (old)
	Password Length
	Storing User Passwords
	Other Issues Related to Passwords
	Initial Password Distribution
	Authentication Tokens
	Address-Based Authentication
	Cryptographic Authentication Protocols
	Other Types of Human Authentication
	Passwords as Crypto Keys
	Eavesdropping & �Server Database Reading
	Key Distribution Center
	Multiple Trusted Intermediaries
	Certification Authorities
	Certificate Revocation
	Session Key Establishment
	Delegation
	Security Handshake Pitfalls
	Login Only: Shared Secrets
	Login Only: One-Way Public Key
	Mutual Authentication: Shared Secret
	Mutual Authentication: Public Keys
	Integrity/Encryption for Data
	Two-Way Public Key Based Authentication + Key Setup
	One-Way Public Key Based Authentication
	Privacy and Integrity
	Needham-Schroeder Authentication 1978
	Expanded Needham-Schroeder
	Otway-Rees Authentication 1987
	NONCES
	Random Numbers
	Performance Considerations
	Authentication Protocols Checklist
	Context & Solutions
	Lamport’s Hash: One Time Password
	Lamport’s Hash (Cont’d)
	Pros and Cons
	Strong Password Protocols
	Subtle Details
	Augmented Strong Password Protocol
	Augmented Strong Password Protocol
	Secure Remote Protocol (SRP)
	Credentials Download Protocols

