Fundamentals of Cryptography: Algorithms, and Security Services

Professor Guevara Noubir Northeastern University noubir@ccs.neu.edu

Cryptography: Theory and Practice, Douglas Stinson, Chapman & Hall/CRC

Network Security: Private Communication in a Public World [Chap. 2-8] Charles Kaufman, Mike Speciner, Radia Perlman, Prentice-Hall

Cryptography and Network Security, William Stallings, Prentice Hall

Outline

- Introduction to security/cryptography
- Secret Key Cryptography
 - n DES, IDEA, AES
- n Modes of Operation
 - _n ECB, CBC, OFB, CFB, CTR
 - Message Authentication Code (MAC)
- n Hashes and Message Digest
- n Public Key Algorithms

Why security?

Internet, E-commerce, Digi-Cash, disclosure of private information

Security services:

Authentication, Confidentiality, Integrity, Access control, Non-repudiation, availability

n Cryptographic algorithms:

- Symmetric encryption (DES, IDEA, AES)
- Hashing functions
- Symmetric MAC (HMAC)
- Asymmetric (RSA, El-Gamal)

Terminology

Security services:

Authentication, confidentiality, integrity, access control, non-repudiation, availability, key management

Security attacks:

Passive, active

Cryptography models:

Symmetric (secret key), asymmetric (public key)

n Cryptanalysis:

Ciphertext only, known plaintext, chosen plaintext, chosen ciphertext, chosen text

Security services

Authentication:

n assures the recipient of a message the authenticity of the claimed source

Access control:

n limits the access to authorized users

Confidentiality:

n protects against unauthorized release of message content

Integrity:

n guarantees that a message is received as sent

Non-repudiation:

n protects against sender/receiver denying sending/receiving a message

n Availability:

n guarantees that the system services are always available when needed

Security audit:

keeps track of transactions for later use (diagnostic, alarms...)

Key management:

n allows to negotiate, setup and maintain keys between communicating entities

Security Attacks

- Security attacks:
 - Interception (confidentiality)
 - Interruption (availability)
 - Modification (integrity)
 - Fabrication (authenticity)
- Kent's classification
 - Passive attacks:
 - n Release of message content
 - Traffic analysis
 - Active attacks:
 - n Masquerade
 - n Replay
 - m Modification of message
 - Denial of service

Kerchoff's Principle

- The cipher should be secure when the intruder knows all the details of the encryption process except for the secret key
- "No security by obscurity"
 - Examples of system that did not follow this rule and failed?

Attacks on Encrypted Messages

Ciphertext only:

encryption algorithm, ciphertext to be decoded

Known plaintext:

encryption algorithm, ciphertext to be decoded, pairs of (plaintext, ciphertext)

Chosen plaintext:

encryption algorithm, ciphertext to be decoded, plaintext (chosen by cryptanalyst) + corresponding ciphertext

n Chosen ciphertext:

encryption algorithm, ciphertext to be decoded, ciphertext (chosen by cryptanalyst) + corresponding plaintext

Chosen text:

encryption algorithm, ciphertext to be decoded, plaintext + corresponding ciphertext (both can be chosen by attacker)

Encryption Models

- Symmetric encryption (conventional encryption)
 - Encryption Key = Decryption Key
 - _n E.g., AES, DES, FEAL, IDEA, BLOWFISH
- Asymmetric encryption
 - Encryption Key ≠ Decryption key
 - E.g., RSA, Diffie-Hellman, ElGamal

CSU610: SWARM

Encryption Models

CSU610: SWARM Cryptography 10

Some Building Blocks of Cryptography/Security

- Encryption algorithms
- One-way hashing functions (= message digest, cryptographic checksum, message integrity check, etc.)
 - Input: variable length string
 - Output: fixed length (generally smaller) string
 - Desired properties:
 - Hard to generate a pre-image (input) string that hashes to a given string, second preimage, and collisions
- One-way functions
 - y = f(x): easy to compute
 - $x = f^{1}(y)$: much harder to reverse (it would take millions of years)
 - Example:
 - multiplication of 2 large prime number versus factoring
 - discrete exponentiation/discrete logarithms
- n Protocols
 - authentication, key management, etc.

Securing Networks

- Where to put the security in a protocol stack?
- Practical considerations:
 - End to end security
 - No modification to OS

Applications Layer (configuration) telnet/ftp, http: shttp, mail: PGP (SSL/TLS, ssh) Transport Layer (TCP) Control/Management (IPSec, IKE) Network Layer (IP) Link Layer (IEEE802.1x/IEEE802.10) Physical Layer (spread-Spectrum, quantum crypto, etc.)

Network Security Tools:

Monitoring/Logging/Intrusion Detection

Secret Key Cryptography

Symmetric Cryptography

Conventional Cryptography

CSU610: SWARM Cryptography 13

Symmetric cryptosystems (conventional cryptosystems)

Substitution techniques:

- Caesar cipher
 - Replace each letter with the letter standing x places further
 - Example: (x = 3)
 - plain: meet me after the toga party
 - n cipher: phhw ph diwhu wkh wrjd sduwb
 - _n Key space: 25
 - Brut force attack: try 25 possibilities
- Monoalphabetic ciphers
 - Arbitrary substitution of alphabet letters
 - ⁿ Key space: $26! > 4x10^{26} > \text{key-space(DES)}$
 - Attack if the nature of the plaintext is known (e.g., English text):
 - compute the relative frequency of letters and compare it to standard distribution for English (e.g., E:12.7, T:9, etc.)
 - compute the relative frequency of 2-letter combinations (e.g., TH)

English Letters Frequencies

Symmetric cryptosystems (Continued)

- Multiple-Letter Encryption (Playfair cipher)
 - Plaintext is encrypted two-letters at a time
 - Based on a 5x5 matrix
 - Identification of individual diagraphs is more difficult (26x26 possibilities)
 - A few hundred letters of ciphertext allow to recover the structure of plaintext (and break the system)
 - Used during World War I & II
- Polyalphabetic Ciphers (Vigenère cipher)
 - 26 Caesar ciphers, each one denoted by a key letter
 - key: deceptivedeceptive
 - plain: wearediscoveredsaveyourself
 - n cipher: ZICVTWQNGRZGVTWAVZHCQYGLMGJ
 - n Enhancement: auto-key (key = initial||plaintext)
- Rotor machines: multi-round monoalphabetic substitution
 - Used during WWII by Germany (ENIGMA) and Japan (Purple)

One-Time Pad

- Introduced by G. Vernam (AT&T, 1918), improved by J. Mauborgne Scheme:
 - ⁿ Encryption: $c_i = p_i \oplus k_i$
 - $c_i: f^h$ binary digit of plaintext, p_i : plaintext, k_i : key
 - ⁿ Decryption: $p_i = c_i \oplus k_i$
 - Key is a random sequence of bits as long as the plaintext
- One-Time Pad is unbreakable
 - No statistical relationship between ciphertext and plaintext
 - Example (Vigenère One-Time Pad):
 - n Cipher: ANKYODKYUREPFJBYOJDSPLREYIUN
 - Plain-1 (with k1): MR MUSTARD WITH THE CANDLE
 - Plain-2 (with k2): MISS SCARLET WITH THE KNIFE
- Share the same long key between the sender & receiver

Transposition/Permutation Techniques

- Based on permuting the plaintext letters
- Example: rail fence technique

mematrhtgpry

etefeteoaat

n A more complex transposition scheme

Key: 4312567

n Plain: attackp

ostpone

duntilt

woamxyz

Cipher: TTNAAPTMTSUOAODWCOIXKNLYPETZ

Attack: letter/diagraph frequency

Improvement: multiple-stage transposition

Today's Block Encryption Algorithms

- n Key size:
 - n Too short => easy to guess
- Block size:
 - Too short easy to build a table by the attacker: (plaintext, ciphertext)
 - Minimal size: 64 bits
- Properties:
 - One-to-one mapping
 - Mapping should look random to someone who doesn't have the key
 - Efficient to compute/reverse
- n How:
 - Substitution (small chunks) & permutation (long chunks)
 - Multiple rounds
 - ⇒ SPN (Substitution and Permutation Networks) and variants

Data Encryption Standard (DES)

- Developed by IBM for the US government
- Based on Lucifer (64-bits, 128-bits key in 1971)
- To respond to the National Bureau of Standards CFP
 - Modified characteristics (with help of the NSA):
 - ⁿ 64-bits block size, 56 bits key length
 - Concerns about trapdoors, key size, sbox structure
- Adopted in 1977 as the DES (FIPS PUB 46, ANSI X3.92) and reaffirmed in 1994 for 5 more years
- n Replaced by AES

Plaintext: 64 32, L_0 R_0 48_{-} K_{1} $L_1 = R_0$ $R_1 = L_0 \oplus f(R_0, K_1)$ $L_2 = R_1$ $R_2 = L_1 \oplus f(R_1, K_2)$ $L_{15} = R_{14}$ $R_{15} = L_{14} \oplus f(R_{14}, K_{15})$ K_{16} $L_{16} = R_{15}$ $R_{16} = L_{15} \oplus f(R_{15}, K_{16})$ **Ciphertext**

DES is based on Feistel Structure

$$L_i = R_{i-1}$$

 $R_i = L_{i-1} \oplus f(R_{i-1}, K_i)$

One DES Round

CSU610: SWARM Cryptography

22

S-Box Substitution

- S-Box heart of DES security
- S-Box: 4x16 entry table
 - Input 6 bits:
 - 2 bits: determine the table (1/4)
 - 4 bits: determine the table entry
 - Output: 4 bits
- S-Boxes are optimized against Differential cryptanalysis

Double/Triple DES

n Double DES

Nulnerable to Meet-inthe-Middle Attack[DH77]

n Triple DES

- Used two keys K₁ and K₂
- Compatible with simple DES (K1=K2)
- Used in ISO 8732, PEM, ANS X9.17

Linear/Differential Cryptanalysis

- Differential cryptanalysis
 - "Rediscovered" by E. Biham & A. Shamir in 1990
 - Based on a chosen-plaintext attack:
 - Analyze the difference between the ciphertexts of two plaintexts which have a known fixed difference
 - The analysis provides information on the key
 - 8-round DES broken with 2¹⁴ chosen plaintext
 - ⁿ 16-round DES requires 2⁴⁷ chosen plaintext
- DES design took into account this kind of attacks
- Linear cryptanalysis
 - Uses linear approximations of the DES cipher (M. Matsui 1993)
- IDEA first proposal (PES) was modified to resist to this kind of attacks
- n GSM A3 algorithm is sensitive to this kind of attacks
 - SIM card secret key can be recoverd => GSM cloning

Breaking DES

- Electronic Frontier Foundation built a "DES Cracking Machine" [1998]
 - Attack: brute force
 - Inputs: two ciphertext
 - Architecture:
 - n PC
 - array of custom chips that can compute DES 24 search units/chip x 64chips/board x 27 boards
 - Power:
 - searches 92 billion keys per second
 - takes 4.5 days for half the key space
 - n Cost:
 - \$130'000 (all the material: chips, boards, cooling, PC etc.)
 - \$80'000 (development from scratch)

International Data Encryption Algorithm (IDEA)

- Developed by Xu Lai & James Massey (ETH Zurich, Switzerland)
- Characteristics:
 - 64-bits block cipher
 - _n 128-bits key length
 - Uses three algebraic groups: XOR, + mod 2^{16} , \times mod $2^{16}+1$
 - _n 17 rounds (or 8 rounds according to the description)
- Speed: software: 2 times faster than DES
- Used in PGP
- Patented (expires in 2011)

The Advanced Encryption Standard (AES) Cipher - Rijndael

- n' Designed by Rijmen-Daemen (Belgium)
- n Key size: 128/192/256 bit
- _n Block size: 128 bit data
- Properties: iterative rather than Feistel cipher
 - Treats data in 4 groups of 4 bytes
 - Operates on an entire block in every round
- Designed to be:
 - Resistant against known attacks
 - Speed and code compactness on many CPUs
 - Design simplicity

State: 16 bytes structured in a array

S _{0,0}	S _{0,1}	S _{0,2}	S _{0,3}
S _{1,0}	l	S _{1,2}	S _{1,3}
S _{2,0}		S _{2,2}	S _{2,3}
S _{3,0}	S _{3,1}	S _{3,2}	S _{3,3}

- Each byte is seen as an element of \mathbf{F}_{2^8} =GF(2⁸)
 - **F**₂₈ finite field of 256 elements
 - _n Operations
 - Elements of \mathbf{F}_{2^8} are viewed as polynomials of degree 7 with coefficients $\{0, 1\}$
 - $_{\mathtt{n}}$ Addition: polynomials addition \Rightarrow XOR
 - Multiplication: polynomials multiplication modulo $x^8 + x^4 + x^3 + x + 1$

AES Outline

- 1. Initialize State $\leftarrow x \oplus$ RoundKey;
- 2. For each of the Nr-1 rounds:
 - SubBytes(State);
 - 2. ShiftRows(State);
 - MixColumns(State);
 - AddRoundKey(State);
- 3. Last round:
 - SubBytes(State);
 - ShiftRows(State);
 - AddRoundKey(State);
- **4.** Output $y \leftarrow$ State

Implementation Aspects

- Can be efficiently implemented on 8-bit CPU
 - byte substitution works on bytes using a table of 256 entries
 - shift rows is a simple byte shifting
 - add round key works on byte XORs
 - mix columns requires matrix multiply in GF(28) which works on byte values, can be simplified to use a table lookup

Implementation Aspects

- ⁿ Can be efficiently implemented on 32-bit CPU
 - redefine steps to use 32-bit words
 - can pre-compute 4 tables of 256-words
 - then each column in each round can be computed using 4 table lookups + 4 XORs
 - n at a cost of 16Kb to store tables
- Designers believe this very efficient implementation was a key factor in its selection as the AES cipher

CSU610: SWARM

Encryption Modes: Electronic Codebook (ECB)

Encryption Modes: Cipher Block Chaining (CBC)

Encryption Modes: Cipher Feedback (CFB)

Encryption Modes: Output Feedback (OFB)

Counter (CTR)

- Similar to OFB but encrypts counter value rather than any feedback value
- Must have a different key & counter value for every plaintext block (never reused)

$$C_i = P_i XOR O_i$$

 $O_i = DES_{K1}(i)$

Uses: high-speed network encryptions, random access to files

Inside vs. Outside CBC-3DES

Mhat is the impact of using 3DES with CBC on the outside vs. inside?

Message Authentication Code (MAC) Using an Encryption Algorithm

- Also called Message Integrity Code (MIC)
- n Goal:
 - Detect any modification of the content by an attacker
- Some techniques:
 - Use CBC mode, send only the last block (residue) along with the plaintext message
 - For confidentiality + integrity:
 - Use two keys (one for CBC encryption and one for CBC residue computation)
 - Append a cryptographic hash to the message before CBC encryption
 - New technique: use a Nested MAC technique such as HMAC

Hashes and Message Digests

Goal:

- Input: long message
- Output: short block (called hash or message digest)
- Property: given a hash h it is computationally infeasible to find a message that produces h
- Examples: http://www.slavasoft.com/quickhash/links.htm
 - Secure Hash Algorithm (SHA-1, SHA-2) by NIST
 - MD2, MD4, and MD5 by Ron Rivest [RFC1319, 1320, 1321]
 - _n SHA-1: output 160 bits
 - SHA-2: output 256-384-512 believed to be more secure than others

n Uses:

- MAC: How? Problems? ... HMAC
- Authentication: how?
- Encryption: how?

ⁿ $HMAC_K(x) = SHA-1((K \oplus opad) \mid SHA-1((K \oplus ipad)|x))$

ipad = 3636...36; opad = 5C5C...5C

Assumption:

SHA-1 restricted to one application is a secure MAC

Message Digest 5 (MD5) by R. Rivest [RFC1321]

- Input: message of arbitrary length
- n Output: 128-bit hash
- Message is processed in blocks of 512 bits (padding if necessary)
- Security:
 - Designed to resist to the Birthday attack
 - Collisions where found in MD5, SHA-0, and almost found for SHA-1
 - Near-Collisions of SHA-0, Eli Biham, Rafi Chen, Proceedings of Crypto 2004
 - http://www.cs.technion.ac.il/~biham/publications.html
 - Collisions for Hash Functions MD4, MD5, HAVAL-128 and RIPEMD
 - Xiaoyun Wang and Dengguo Feng and Xuejia Lai and Hongbo Yu
 - http://eprint.iacr.org/2004/199.pdf

Birthday Attacks

- _n Is a 64-bit hash secure?
 - Brute force: 1ns per hash $=> 10^{13}$ seconds over 300 thousand years
- But by Birthday Paradox it is not
- Example: what is the probability that at least two people out of 23 have the same birthday? P > 0.5

Birthday attack technique

- opponent generates 2^{m/2} variations of a valid message all with essentially the same meaning
- opponent also generates 2^{m/2} variations of a desired fraudulent message
- two sets of messages are compared to find pair with same hash (probability > 0.5 by birthday paradox)
- have user sign the valid message, then substitute the forgery which will have a valid signature
- Need to use larger MACs

Public Key Systems

- Invented by Diffie and Hellman [DH76]
 - When DES was proposed for standardization
- Asymmetric systems are much slower than the symmetric ones (~1000 times)
- n Advantages:
 - does not require a shared key
 - simpler security architecture (no-need to a trusted third party)

Modular Arithmetic

- Modular addition:
 - $_{n}$ E.g., $3 + 5 = 1 \mod 7$
- n Modular multiplication:
 - _n E.g., $3 * 4 = 5 \mod 7$
- n Modular exponentiation:
 - _n E.g., $3^3 = 6 \mod 7$
- n Group, Rings, Finite/Galois Fields ...

CSU610: SWARM

RSA Cryptosystem [RSA78]

n
$$E(M) = M^e \mod n = C$$
 (Encryption)
n $D(C) = C^d \mod n = M$ (Decryption)

n RSA parameters:

$$_{n}$$
 p_{r} q_{r} two big prime numbers

$$n = pq_r \phi(n) = (p-1)(q-1)$$

ⁿ
$$e_r$$
 with $gcd(\phi(n), e) = 1, 1 < e < \phi(n)$ (public, chosen)

$$_{n} d = e^{-1} \bmod \phi(n)$$

n
$$D(E(M)) = M^{ed} \mod n = M^{k\phi(n)+1} = M$$

(private, chosen)(public, calculated)(public, chosen)(private, calculated)

(Euler's theorem)

Prime Numbers Generation

- Density of primes (prime number theorem):
 - $_{n}$ $\pi(x) \sim x/\ln(x)$
- Sieve of Erathostène
 - Try if any number less than SQRT(n) divides n
- Fermat's Little Theorem does not detect Carmichael numbers
 - $b^{n-1} = 1 \mod n$
- Solovay-Strassen primality test
 - If n is not prime at least 50% of b fail to satisfy the following:
 - $_{n}$ $b^{(n-1)/2} = J(b, n) \mod n$
- n Rabin-Miller primality test
 - If n is not prime then it is not pseudoprime to at least 75% of b < n:
 - Pseudoprime: $n-1 = 2^s t$, $b^t = \pm 1 \mod n$ **OR** $b^{t2^r} = -1 \mod n$ for some r<r
 - n Probabilistic test, deterministic if the Generalized Riemann Hypothesis is true
- Deterministic polynomial time primality test [Agrawal, Kayal, Saxena'2002]

Use of RSA

- Encryption (A wants to send a message to B):
 - ⁿ A uses the public key of B and encrypts M (i.e., $E_B(M)$)
 - Since only B has the private key, only B can decrypt M (i.e., $M = D_B(M)$
- Digital signature (A want to send a signed message to B):
 - Based on the fact that $E_A(D_A(M)) = D_A(E_A(M))$
 - ⁿ A encrypts M using its private key (i.e., $D_A(M)$) and sends it to B
 - ⁿ B can check that $E_A(D_A(M)) = M$
 - Since only A has the decryption key, only can generate this message

Diffie-Hellman Key Exchange

Private: A	Public	Private: B
X	p: prime number,a: primitive element of GF(p)	${f y}$
compute:		compute:
a ^x mod p		a ^y mod p
receive:		receive:
ay mod p		a ^x mod p
Compute shared key: (a ^y) ^x mod p		Compute shared key: (a ^x) ^y mod p

Based on the difficulty of computing discrete logarithms

50

Morks also in extension Galois fields: GF(pq)

Attack on Diffie-Hellman Scheme: Public Key Integrity

Message encrypted using K_{AI}

 $\begin{array}{c} \textbf{Decrypt using } K_{AI} + \textbf{Decrypt using} \\ K_{\overline{BI}} \end{array} \rightarrow$

- Need for a mean to verify the public information: certification
- Another solution: the Interlock Protocol (Rivest & Shamir 1984)

El Gamal Scheme

Parameters:

- p: prime number
- n *g<p:* random number
- n *x*<*p*: random number
- $y = g^x \mod p$

(public, chosen)
(public, chosen)
(private, chosen)
(public, computed)

- Encryption of message M:
 - n choose random k < p-1
 - $a = g^k \mod p$
 - $_{n}$ $b = y^{k} M \mod p$
- Decryption:
 - $_{n}$ $M = b/y^{k}$ mod $p = b/g^{xk}$ mod $p = b/a^{x}$
- _n Message signature
 - ⁿ choose random k relatively prime with p-1
 - find b: $M = (xa + kb) \mod (p-1)$ (extended Euclid algorithm)
 - $_{n}$ signature(M) = (a, b)
 - verify signature: $y^a a^b \mod p = g^M \mod p$

Knapsack

- Introduced by R. Merkle
- Based on the difficulty of solving the Knapsack problem in polynomial time (Knapsack is an NP-complete problem)

n cargo vector:
$$a = (a_1, a_2, ..., a_n)$$
 (seq. Int)

plaintext msg:
$$x = (x_1, x_2, ..., x_n)$$
 (seq. Bits)

n ciphertext:
$$S = a_1 x_1 + a_2 x_2 + ... + a_n x_n$$

$$a_i = wa_i'$$
 such that $a_i' > a_1' + ... + a_{i1}'$, $m > a_1' + ... + a_n'$

- $_{n}$ w is relatively prime with m
- n One-round Knapsack was broken by A. Shamir in 1982
- Several variations of Knapsack were broken

Elliptic Curve Cryptography (ECC)

n Zero Knowledge Proof Systems

Security Services

- Confidentiality:
 - Use an encryption algorithm
 - Generally a symmetric algorithm
- n Integrity:
 - MAC algorithm
- n Access control:
 - Use access control tables
- Authentication
 - Use authentication protocols
- Non-repudiation

Questions

- How many keys are derived in DES?
- n How do rounds relate to the key size in AES?
- Is the decryption process exactly the same as the encryption process for DES? AES?
- If a bit error occurs in the transmission of a ciphertext character in 8-bit CFB mode how far does it propagate?