Signatures Schemes

Guevara Nouibi

http://www.cs.rutgers.edu/~nouibi/Courses/CS251/04

Reading: Chapter 7.1-7.3

Outline

- Introduction to Signatures Schemes
 - RSA digital signature
 - Security characteristics
 - El Gamal digital signature

Digital Signatures

- Goal:
 - Specify the entity (e.g., person) responsible for a message
 - Differences with conventional signatures
 - Not physically attached to the physical document
 - Need a way to bind it
 - Verification by comparison cannot be used
 - Digital signatures can be verified using a publicly known verification algorithm
 - Copies of conventional signatures can be physically detected
 - Need a way to detect replay and limit use (e.g., date)
 - Signature Scheme:
 - Signing Algorithm + Verification Algorithm
Formal Definition

Signature Scheme is a 5-tuple \((P, A, K, S, V)\):
1. \(P\) is finite set of possible messages
2. \(A\) is a finite set of possible signatures
3. \(K\) the keyspace is a finite set of possible keys
4. For each \(k \in K\) there is a signing algorithm \(\text{sig}_k \in S\) and a corresponding verification algorithm \(\text{ver}_k \in S\).
 - \(\text{sig}_k: P \rightarrow A\) [Private]
 - \(\text{ver}_k: P \times A \rightarrow \{\text{true, false}\}\) [Public]
 - \(\text{ver}_k(x, y) = \text{true} \iff y = \text{sig}_k(x)\)
 - \(\text{sig}_k, \text{ver}_k\) polynomial time functions

RSA Signature Scheme

- Let \(n = pq\), where \(p\) and \(q\) are primes
- \(P = C = \mathbb{Z}_n^*\)
- \(K = \{(n, p, q, a, b) : ab = 1 \pmod{\varphi(n)}\}\)

- Signature:
 - \(\text{sig}_k(x) = y^x \mod n\)

- Verification:
 - \(\text{ver}_k(x, y) = \text{true} \iff x = y^x \mod n\)

- Public key: \(n\) and \(b\)
- Private key: \(p, q, a\)

Simple Example of Using Signatures

- Two possibilities:
 - Send \(e_{pub}(x, y)\), where \(y = \text{sig}_k(x)\), or
 - Send \(z = e_{pub}(x)\), and \(\text{sig}_k(z)\)
 - Problem authenticating the origin
Security Requirements for Signatures

Schemes

- Attack model, goal of adversary, type of security
 - Attack Models:
 - Key-only attack:
 - Only the public key is available to the adversary
 - Known message attack:
 - Adversary possesses a list of messages previously signed by Alice: \(\langle x, y \rangle, \ldots \)
 - Chosen message attack:
 - Adversary can request Alice’s signature on a list of messages
 - Goals:
 - Total break: determine private key
 - Selective forgery: with non-negligible probability, the adversary is capable of creating a valid signature on a message chosen by someone else
 - Existential forgery: the adversary should be able to create a signature for at least one message (not previously known)
 - Notes:
 - Unconditional security cannot be provided
 - Existential forgery against RSA? Two ways?

Signatures and Hash Functions

- Signatures are almost always used in conjunction with hash functions
 - Scheme:
 - Required properties:
 - To prevent existential forgery the hash function should be second pre-image resistant, collision resistant, and pre-image resistant

El Gamal Signature Scheme

- Let \(p \) be a prime s.t. discrete log in \(\mathbb{Z}_p^* \) is intractable
- Let \(\alpha \in \mathbb{Z}_p^* \) be a primitive element
- \(\mathbb{G} = \mathbb{Z}_p^* \times \mathbb{Z}_p^* \)
- \(K = \{ (p, a, (\alpha, \beta)) : \alpha^a = \beta \ (\text{mod} \ p) \} \)
 - \(p, a, \beta : \text{public} \) ; \(\alpha : \text{private} \)
- For a secret random number \(k \in \mathbb{Z}_p^* \):
 - \(\text{sig}(x, k) = (y, \delta) \)
 - \(y = (x \oplus \alpha k) \ (\text{mod} \ p) \)
 - \(\delta = (x \oplus \alpha k \delta) \ (\text{mod} \ p) \)
- For \(x, y, \delta \in \mathbb{Z}_p^* \) and \(\delta \in \mathbb{Z}_p^* \):
 - \(\text{ver}(x, (y, \delta)) = \text{true} \iff y^\delta = \alpha^x \ (\text{mod} \ p) \)
Example

Parameters:
- \(p = 467 \), \(a = 2 \), \(a = 127 \)
- \(\beta = 2^{127} \mod 467 = 132 \)

Signing \(x = 100 \)
- Choose random \(k = 213 \) s.t. \(\gcd(213, 466) = 1 \)
- \(k^2 \mod 466 = 431 \)
- \(\gamma = 2^{127} \mod 467 = 29 \)
- \(\delta = (100-2\times 29)431 \mod 466 = 51 \)

Public Verification:
- \(132^{2981} \equiv 189 \mod 467 \), and
- \(2^{132} \equiv 189 \mod 467 \)

Security of El Gamal Scheme

Forging a signature (without knowing \(a \)): alternatives for attacker

1. Choose \(\gamma \) and tries to find a corresponding \(\delta \)
 - \(\Rightarrow \) Need to solve a discrete log problem: \(\delta = \log_{a^n}\gamma \)
2. Chooses \(\delta \) and tries to find a corresponding \(\gamma \)
 - \(\Rightarrow \) Another problem for which no solution is known

1. Choose \(\gamma \), and \(\delta \), and try to solve for \(x \)
 - \(\Rightarrow \) Discrete log problem

2. Existential forgery (key-only attack assuming no hash function is used):
 - Generate \(\gamma = \gamma_{\phi} \), \(\delta \), and \(x \) s.t. \(x = \gamma_{\phi} \mod p \) and \(x = \delta + \gamma \mod p \)
 - Given \(\gamma \) and \(\delta \), we can solve these two equations for \(x \) and \(\delta \)

Example:
- \(p = 467 \), \(a = 2 \), \(\beta = 132 \);
- \(x = 58 \mod 467 = 58 \);
- \(\gamma = 2^{179} \mod 466 = 151 \);
- \(\delta = 137 \mod 466 = 41 \);
- \(x = 3\times 41 \mod 466 = 331 \)