Public Key Cryptosystems

Guevara Noubir
http://www.cs.nec.edu/home/noubir/Courses/CIS223/FP
Reading: Chapter 5 upto section 5.7

Outline

- Concepts behind public key crypto
 - Some number theory
 - RSA cryptosystem
 - Primality testing
 - Factoring numbers and other attacks

Encryption Models

Message source: Plaintext → Encryption Algorithm → Ciphertext → Decryption Algorithm → Plaintext → Message Destination

Symmetric encryption:

Asymmetric encryption:
- Early 70’s
- Published in 76
- Cannot provide unconditional securities

CIS223 Classical Cryptography 3
Applications

- Symmetric algorithms vs. asymmetric algorithms (public-key crypto systems)
 - About 1000 times faster!
 - However, require a shared key!
- Practice:
 - Use public key crypto to establish a shared key
 - Examples
 - Choose a key for the symmetric algorithm K encrypt it with the public key of the destination
 - Use the key K to encrypt the message and integrity protect it
 - IPSec (IKE): establish a session key (using either public-key cryptosystem or shared secrets)
 - IPSec uses the session key to provide confidentiality and integrity

Number Theory

- \mathbb{Z}_n^*: abelian group of numbers $< n$, relatively prime to n
- Euclidean Algorithm (a, b):
 - Computes the $\text{gcd}(a, b)$
- Extended Euclidean Algorithm (a, b):
 - Computes r, s, t, s.t. $sa + tb = r = \text{gcd}(a, b)$
 - If $r = 1 \Rightarrow s = a \mod b$
 - If $r = 1 \Rightarrow t$?
- Time complexity less than $O(\ell^2)$ if a and b are encoded in less than ℓ bits.

Chinese Remainder Theorem

- Assume that m_1, \ldots, m_n are pairwise relatively prime positive integers
- Chinese Remainder Theorem (CRT):
 - Suppose a_1, \ldots, a_n are integers s.t.
 - $x = a_1 \mod m_1$
 - $x = a_2 \mod m_2$
 - \ldots
 - $x = a_n \mod m_n$
 - There exists a unique $x \mod m_1 m_2 \ldots m_n$ that satisfies all previous equations
 - $x = \sum a_i M_i y_i \mod M$ \hspace{1cm} $M_i = M / m_i$, $y_i = M_i^{-1}$
Other Known Results

- If G is a multiplicative group of order n then the order of any element of G divides n
 - Order of \mathbb{Z}_n^* = $\phi(n)$

- If $b \in \mathbb{Z}_n^*$, then $b^{\phi(n)} = 1 \pmod{n}$
 - How about when n is prime?

- If p is prime then \mathbb{Z}_p^* is a cyclic group

RSA Cryptosystem

- Due to Rivest-Shamir-Adleman in 1977
 - Let $n = pq$, where p and q are primes
 - $G = \mathbb{Z}_n^*$
 - $K = \{(k, p, q, a, b) : ab = 1 \pmod{\phi(n)}\}$

 Encryption:
 - $c_2(x) = x^e \pmod{n}$
 - Description:
 - $e_2(y) = y^e \pmod{n}$

 Public key: n and b
 - Private key: p, q, a

Example

- $p = 101; q = 113 \Rightarrow n = 11413$
 - $\phi(n) = 11200 = 2^5 \cdot 5^2$

- Let $b = 3533 \Rightarrow b^d = 6597$
 - How is b chosen?

 Encrypt plaintext: 9726
 - Ciphertext: $9726^{11413} \pmod{11413} = 5761$
 - Decryption ciphertext: 5761
 - Plaintext: $5761^{11413} \pmod{11413} = 9726$
Use of RSA

- Encryption (A wants to send a message M to B):
 - A uses the public key of B and encrypts M (i.e., \(e_B(M) \))
 - Since only B has the private key, only B can decrypt M (i.e., \(M = d_B(e_B(M)) \))

- Digital signature (A wants to send a signed message to B):
 - Based on the fact that \(e_B(d_B(M)) = d_B(e_B(M)) \)
 - A encrypts M using its private key (i.e., \(d_B(M) \)) and sends it to B
 - B can check that \(e_B(d_B(M)) = M \)
 - Since only A has the decryption key, only him can generate this message.

Security of RSA

- Security of RSA is based on the belief that:
 - \(x^e \mod n \) is a one-way function

- The trapdoor is the knowledge of the factorization of \(n \) into \(pq \)

- Conjecture:
 - RSA is as difficult as factoring numbers

RSA Implementation

- RSA Parameters Generation
 - Generate two large primes: \(p \) and \(q \)
 - \(n = pq \) and \(\phi(n) = (p-1)(q-1) \)
 - Choose a random \(e \in \{1, 2, \ldots, \phi(n) - 1\} \) s.t. \(\gcd(\phi(n), e) = 1 \)
 - \(d \equiv e^{-1} \mod \phi(n) \)
 - Public key is \((n, e)\) and private key is \((n, d)\)

- \(p \) and \(q \) should be at least 512 bits long each
 - \(n \) is at least 1024 bits long

- Computation Complexity:
 - Exponentiation cost: SQUARE-AND-Multiply
 - Modular inverse: Extended Euclidean Alg.
 - Modular Multiplication:
Prime Numbers Generation

- Density of primes (prime number theorem):
 - $\pi(x) \sim x/\ln(x)$
 - E.g., a random number of 512 bits has probability: $1/\ln(512) = 1/355$ to be prime
- Sieve of Eratosthenes
 - Try if any number less than \sqrt{n} divides n
- Fermat’s Little Theorem does not detect Carmichael numbers
 - $b^{n-1} \equiv 1 \mod n$
 - E.g., 561 is the smallest Carmichael number
- Solovay-Strassen primality test
 - If n is not prime at least 50% of b fail to satisfy the following:
 - $\text{Jacobi symbol can be computed in less than } O(\log n^2)$
 - Jacobi symbol is a non-degenerate elliptic Lenstra symbol.

Computing Jacobi Symbol

- Definition: $\left(\frac{a}{n}\right) = \left(\frac{a}{p_1^{e_1}}\right) \cdot \left(\frac{a}{p_2^{e_2}}\right) \cdots \left(\frac{a}{p_k^{e_k}}\right)$
- No need to factor n to compute the Jacobi symbol
- Use the following rules [n is positive odd]:
 - $a \equiv b \mod n$ $\Rightarrow \left(\frac{a}{n}\right) = \left(\frac{b}{n}\right)$
 - $\left(\frac{2}{n}\right) = 1$ if $n \equiv \pm 1 \mod 8$
 - $\left(\frac{2}{n}\right) = -1$ if $n \equiv \pm 3 \mod 8$
 - $\left(\frac{a}{n}\right) = \left(\frac{a}{p_1}\right) \cdot \left(\frac{a}{p_2}\right) \cdots \left(\frac{a}{p_k}\right)$
 - $\left(\frac{a}{n}\right) = \left(\frac{a}{p}\right)^{\frac{\phi(p)}{2}}$ if $a \equiv \pm 1 \mod p$ and $p = \pm 4 \mod 8$

Rabin-Miller primality test

- If n is not prime then it is not pseudoprime to at least 75% of random $a < n$
 - $a \equiv 1 \mod n$
 - $a \equiv n - 1 \mod n$
 - If $a^k \equiv 1 \mod n$ then return(n prime)
 - For $i = 0$ to $d - 1$
 - If $a^k \equiv -1 \mod n$ then return(n prime)
 - Else $b = a^k$
 - return(n composite)
- Probabilistic test, deterministic if the Generalized Riemann Hypothesis is true
- Deterministic polynomial time primality test [Agrawal, Kayal, Saxena 2002]
Attacks on RSA

- Factoring
 - Many factoring algorithms were proposed: quadratic sieve, elliptic curve factoring, number field sieve, Pollard’s rho-method
 - Capable of factoring a 512 bits modulus ~ 155 digits in 1999 using 8400 MIPS-years

- Other attacks:
 - Computing $\phi(n)$
 - Decryption exponent: if e is known
 - Las Vegas algorithm (3.10) that will factor n with probability $\frac{1}{2}$

- Semantic Security

Rabin Cryptosystem

- Motivation:
 - The difficulty of factoring does not necessarily prove RSA security
 - Hardness of factoring leads to security proof of Rabin’s cryptosystem against chosen-plaintext attack

- Scheme:
 - $n = pq$ (p and q are two primes and $p \equiv q \equiv 3 \mod 4$)
 - $P = C \in \mathbb{Z}_n^*$; $K = ((n, p, q), e)$
 - $e(x) = x^e \mod n$
 - $d(x) = y^e \mod n$

- Note:
 - Conditions: $p \equiv q \equiv 3 \mod 4$ and \mathbb{Z}_n^* is for simplification of decryption and security proof purpose

Rabin Cryptosystem

- Observation:
 - Is the encryption function injective?
 - Solution?
 - How can we decrypt?
 - Solution: CRT
 - Consider $x \equiv y^{(p-1)/4} \mod p$
 - $x \equiv y^{(p-1)/4} \mod q$
 - When can we use this technique of decoding?
 - Example:
 - $n = 7 \times 11$
 - Decrypt $y = 23$
Security of Rabin Cryptosystem

- If Rabin cryptosystem can be broken then we can build a Las Vegas probabilistic algorithm with success probability 1/2
 - Rabin Oracle Factoring(n)
 - External RabinDecryp
 - Choose a random r;
 - Let y← r^e mod n
 - x← RabinDecryp(y);
 - If x = ar mod n return(failure)
 - Else return(p= gcd(x+r, n) ; q=n/p);
 - Conclusion:
 - Rabin cryptosystem is secure against a chosen plaintext attack
 - Additional security results:
 - Rabin cryptosystem is insecure against a chosen ciphertext attack