





|      | Review of Basics of Modular Arithmetic                                                   |
|------|------------------------------------------------------------------------------------------|
|      | Congruence:  a. a, b. integers; m. positive integer                                      |
|      | $a = b \mod m$ iff $m$ divides $a - b$                                                   |
|      | <ul> <li>a is said to be congruent to b mod m</li> <li>Example: 101 = 3 mod 7</li> </ul> |
| n    | Arithmetic modulo m:                                                                     |
|      | Z_={0, 1,, m-1}; +, x operations                                                         |
|      | Addition is closed                                                                       |
|      | Addition is commutative                                                                  |
|      | Addition is associative     In a additive identity                                       |
|      | 5. Additive inverse of a is m-a                                                          |
|      | 6. Multiplication is closed                                                              |
|      | 7. Multiplication is commutative                                                         |
|      | Multiplication is associative     1 is a multiplicative identity                         |
|      | 10. The distributive property is satisfied                                               |
| n    | $1-5 \Rightarrow Z_m$ is an abelian group                                                |
| n    | $1-10 \Rightarrow Z_m$ is a ring                                                         |
| n    | Other examples of rings:                                                                 |
|      |                                                                                          |
| G252 | Classical Cryptography 4                                                                 |

|     |      |   | Sh | if   | t (  | Ci   | pł         | ne | r   |      |    |      |       |       |       |     |    |    |    |    |    |    |    |    |    |
|-----|------|---|----|------|------|------|------------|----|-----|------|----|------|-------|-------|-------|-----|----|----|----|----|----|----|----|----|----|
|     |      | n | De | efii | niti | on   | :          |    |     |      |    |      |       |       |       |     |    |    |    |    |    |    |    |    |    |
|     |      |   |    |      |      |      | K<br>(x+   |    |     | od 2 | 26 |      |       |       |       |     |    |    |    |    |    |    |    |    |    |
|     |      |   |    |      |      |      | ( <i>x</i> |    |     |      |    |      |       |       |       |     |    |    |    |    |    |    |    |    |    |
|     |      | n | E  | (ar  | npl  | le:  |            |    |     |      |    |      |       |       |       |     |    |    |    |    |    |    |    |    |    |
|     |      |   | n  | k    | = 3  | 3 is | oft        | en | cal | led  | Cā | esa  | ar C  | ìph   | er    |     |    |    |    |    |    |    |    |    |    |
|     |      | n | Αl | ph   | ab   | et   | en         | CO | din | g:   |    |      |       |       |       |     |    |    |    |    |    |    |    |    |    |
|     |      |   |    |      |      |      |            |    |     |      |    |      |       |       |       |     |    |    |    |    |    |    |    |    |    |
| Α   | В    | С | D  | Е    | F    | G    | Н          | I  | J   | K    | L  | М    | N     | 0     | Р     | Q   | R  | S  | Т  | U  | ٧  | W  | Х  | Υ  | Z  |
| 0   | 1    | 2 | 3  | 4    | 5    | 6    | 7          | 8  | 9   | 10   | 11 | 12   | 13    | 14    | 15    | 16  | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
|     |      |   |    |      |      |      |            |    |     |      |    |      |       |       |       |     |    |    |    |    |    |    |    |    |    |
| CSG | 3252 |   |    |      |      |      |            |    |     |      | C  | assi | cal C | rypto | ograp | ohy |    |    |    |    |    |    |    |    | 5  |

| 4      | Desired Properties of Cryptosystems                                                                                                                                                                         |   |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 7      | Encryption and Decryption function can be efficiently computed  Given a ciphertext <i>y</i> , it should be "difficult" for an opponent to identify the encryption key <i>k</i> , and the plaintext <i>x</i> |   |
|        | <ul><li>How about the security of the shift cipher?</li><li>Example:</li></ul>                                                                                                                              |   |
|        | Average time to identify the encryption key? Conclusion about the key space?                                                                                                                                |   |
| CSG252 | Classical Cryptography                                                                                                                                                                                      | 6 |
|        |                                                                                                                                                                                                             |   |

|    |      | n | n<br>n | efin P K: | itio<br>= (<br>se<br>(x) | n:<br>C=<br>t of | $Z_{26}$ all $a(x)$ | pos |   |   | _ | he<br>uta |       | s of  | f the | e <i>P</i> |   |   |   |   |   |   |   |   |   |
|----|------|---|--------|-----------|--------------------------|------------------|---------------------|-----|---|---|---|-----------|-------|-------|-------|------------|---|---|---|---|---|---|---|---|---|
|    |      | n | Ex     | am        | ple                      | :                |                     |     |   |   |   |           |       |       |       |            |   |   |   |   |   |   |   |   |   |
| а  | b    | С | d      | е         | f                        | g                | h                   | i   | j | k | 1 | m         | n     | 0     | р     | q          | r | s | t | u | ٧ | w | х | у | z |
| Р  | Υ    | F | R      | Z         | Α                        | L                | ٧                   | Е   | М | В | Q | Н         | U     | С     | 0     | S          | G | W | Ι | Ν | D | Т | K | J | Χ |
|    |      | n | Ke     |           | ра<br>(  =               |                  |                     |     |   |   |   |           |       |       |       |            |   |   |   |   |   |   |   |   |   |
| cs | G252 |   |        |           |                          |                  |                     |     |   |   | С | lassio    | cal C | rypto | ograj | ohy        |   |   |   |   |   |   |   |   | 7 |

# n Enci

## Affine Cipher

- Encryption function of the form:
  - $e(x) = (ax + b) \mod 26$
- n Conditions on (a, b)?
- <sub>n</sub> Examples:
  - (a, b) = (2, 5)
  - $_{n}$  (a, b) = (3, 5)

CSG252

Classical Cryptography



### Affine Cipher



### Theorem:

- The congruence  $ax \equiv b \pmod{m}$  has a unique solution  $x \in Z_m$  iff gcd(a, m) = 1
- <sub>n</sub> Definition:
  - For a>1,  $m \ge 2$ , if gcd(a, m) = 1 then a and m are said to be relatively prime (co-prime).
  - The number of integers in  $Z_m$  that are relatively prime to m is denoted by  $\phi(m)$ : Euler phi-function (a.k.a totient function).

CSG252

| Affine Cipher                                                                                                                                                                           |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                                                                                                         |   |
| Theorem:  If $m = p_1^{e1} p_2^{e2} - p_n^{en} \Rightarrow \phi(m) = (p_1^{e1} - p_1^{e1} - 1) (p_n^{en} - p_n^{en} - 1)$                                                               |   |
| where $p_{i}$ 's are distinct primes and the $e_{i}$ 's are strictly positive integers                                                                                                  |   |
| Corollary: The key space of affine ciphers is: mφ(m)                                                                                                                                    |   |
| n Definition:                                                                                                                                                                           |   |
| For a $\in$ Z <sub>m</sub> , we denote by a $^{\cdot 1}$ the multiplicative inverse of a s.t. $a^{\cdot 1} \in$ Z <sub>m</sub> and a $a^{\cdot 1} \equiv a^{\cdot 1} a \equiv 1 \mod m$ |   |
| n Theorem:                                                                                                                                                                              |   |
| a has an inverse iff $gcd(a, m) = 1$<br>If m is prime every element of $Z_m$ has an inverse and $Z_m$ is called a field                                                                 |   |
|                                                                                                                                                                                         |   |
|                                                                                                                                                                                         | - |
| CSG252 Classical Cryptography 10                                                                                                                                                        |   |
|                                                                                                                                                                                         |   |
|                                                                                                                                                                                         |   |
|                                                                                                                                                                                         |   |
|                                                                                                                                                                                         |   |
|                                                                                                                                                                                         | ] |
| Affine Cipher                                                                                                                                                                           |   |
| Affilie Cipilei                                                                                                                                                                         |   |
| n Definition:                                                                                                                                                                           |   |
| $_{n}$ P = C = $Z_{26}$                                                                                                                                                                 |   |
| <sub>n</sub> $K = \{(a, b) \in Z_{26} \times Z_{26} : gcd(a, 26) = 1\}$                                                                                                                 |   |
| For $k = (a, b) \in K$                                                                                                                                                                  |   |
| $e_k(x) = (ax+b) \mod m$ $d_k(y) = ?$                                                                                                                                                   |   |
|                                                                                                                                                                                         |   |
| n Example:                                                                                                                                                                              |   |
| n k = (7, 3)                                                                                                                                                                            |   |
|                                                                                                                                                                                         |   |
| create                                                                                                                                                                                  |   |
| CSG252 Classical Cryptography 11                                                                                                                                                        |   |
|                                                                                                                                                                                         |   |
|                                                                                                                                                                                         |   |
|                                                                                                                                                                                         |   |
|                                                                                                                                                                                         | 1 |
|                                                                                                                                                                                         |   |
| Vigenère Cipher                                                                                                                                                                         |   |
|                                                                                                                                                                                         |   |
| <ul> <li>m Monoalphabetic cryptosystems:</li> <li> For a given key: each alphabetic character is mapped to a</li> </ul>                                                                 |   |
| unique alphabetic Character                                                                                                                                                             |   |
| E.g., shift cipher, substitution cipher, affine cipher                                                                                                                                  |   |
| n Polyalphabetic crypotosystems n Vigenere cipher                                                                                                                                       |   |
| m: positive integer; $P = C = K = (Z_{26})^m$                                                                                                                                           |   |
| For $k = (k_1, k_2,, k_m)$ :                                                                                                                                                            |   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                    |   |
| n Key space:                                                                                                                                                                            |   |
|                                                                                                                                                                                         |   |
| CSG252 Classical Cryptography 12                                                                                                                                                        |   |
|                                                                                                                                                                                         |   |

### Hill Cipher

- $m \ge 2$  positive integer; P = C =  $(Z_{26})^m$
- Idea: take m linear combinations of the m alphabetic characters of the plaintext
- <sub>n</sub> Example:

$$k = \begin{pmatrix} 11 & 8 \\ 3 & 7 \end{pmatrix}$$

<sub>n</sub> Condition?

CSG252

Classical Cryptography



## Hill Cipher

- Definition
  - <sub>n</sub> m: positive integer;  $P = C = (Z_{26})^m$
  - $_{n}$   $K = \{ m \times m \text{ invertible matrices over } Z_{26} \}$
  - $e_k(x) = xk$
  - $d_k(y) = yk^1$
- $_{n} K^{1} = ?$
- $_n$  det k = ?

CSG252

Classical Cryptography



### Permutation Cipher



- n Definition:
  - $_{\text{n}}$  m: positive integer; P = C =  $(Z_{26})^{\text{m}}$
  - <sub>n</sub>  $K = \{\pi: \text{ permutation of } \{1...m\}\}$
  - $_{n}$   $e_{k}(x_{1}, ..., x_{m}) = (x_{\pi(1)}, ..., x_{\pi(m)})$
  - $d_k(y_1, ..., y_m) = (y_{\pi^{-1}(1)}, ..., y_{\pi^{-1}(m)})$
- <sub>n</sub> Example:
- <sub>n</sub> Permutation matrix and it's inverse

CSG252

| Stream Ciphers                                                                                                                                                                                                                                                                          |   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| Block Ciphers: $y = y_1 y_2 = e_k(x_1) e_k(x_2)$ Stream Ciphers:  Generate a Keystream: $z = z_1 z_2$ Encryption: $y = y_1 y_2 = e_{z_1}(x_1) e_{z_2}(x_2)$ Synchronous Stream Cipher:  Keystream does not depend on the plaintext                                                      |   |
| <ul> <li>Definition of Synchronous Stream Cipher</li> <li>A tuple (P, C, K, L, E, D), and a function g s.t.:</li> <li>P (resp. C): finite set of possible plaintexts (resp. ciphertexts)</li> </ul>                                                                                     |   |
| <ul> <li>K: keyspace (finite set of possible keys)</li> <li>L: finite set called keystream alphabet</li> <li>g: keystream generator s.t. g(k) = z₁z₂ where z₁ ∈ L</li> <li>∀z∈L ∃e₂∈E, d₂∈D s.t. d₂²e₂ = Id</li> <li>Example: Vigenere Cipher as a synchronous stream cipher</li> </ul> |   |
| 2 CSG252 Classical Cryptography 16                                                                                                                                                                                                                                                      |   |
| Coosical or sprography                                                                                                                                                                                                                                                                  |   |
|                                                                                                                                                                                                                                                                                         |   |
|                                                                                                                                                                                                                                                                                         |   |
|                                                                                                                                                                                                                                                                                         |   |
| Stream Ciphers (Cont.)                                                                                                                                                                                                                                                                  |   |
| Periodic Stream Cipher with period diff:                                                                                                                                                                                                                                                |   |
| $_{n}$ $\forall i \ge 1$ $z_{i+d} = z_{i}$ $_{n}$ Example:                                                                                                                                                                                                                              |   |
| <sup>a</sup> Vigenere Cipher with keyword length m is a periodic stream cipher with period m                                                                                                                                                                                            |   |
| Stream ciphers usually have $L = Z_2$ :<br>$e_2(x) = (x+z) \mod 2$                                                                                                                                                                                                                      |   |
| $d_2(x) = (x/2) \mod 2$                                                                                                                                                                                                                                                                 |   |
|                                                                                                                                                                                                                                                                                         |   |
|                                                                                                                                                                                                                                                                                         |   |
| CSG252 Classical Cryptography 17                                                                                                                                                                                                                                                        |   |
|                                                                                                                                                                                                                                                                                         |   |
|                                                                                                                                                                                                                                                                                         |   |
|                                                                                                                                                                                                                                                                                         | 1 |
|                                                                                                                                                                                                                                                                                         |   |
| Stream Ciphers: LFSR                                                                                                                                                                                                                                                                    |   |
| Linear Feedback Shift Register (LFSR) can generate a synchronous linear keystream:                                                                                                                                                                                                      |   |
| ${\bf r}  z_{i+m} = \sum_{j=0}^{m-1} c_j  z_{i+j}$                                                                                                                                                                                                                                      |   |
| $c_j \in Z_2$ , and initializing the registers with $k_1$ , $k_2$ , $k_m$<br>Properties:                                                                                                                                                                                                |   |
| inearity (linear combination of previous terms) Degree $m$ (depends only on the previous $m$ terms) $c_0 = 1$                                                                                                                                                                           |   |
| Key is: (k <sub>1</sub> , k <sub>2</sub> ,, k <sub>m</sub> , c <sub>0</sub> , c <sub>1</sub> ,, c <sub>m-1</sub> ) (k <sub>1</sub> , k <sub>2</sub> ,, k <sub>m</sub> ) should be different from (0, 0,, 0)                                                                             |   |
| if $(C_0, C_1,, C_m)$ is carefully chosen and $(k_1, k_2,, k_m) \neq 0$ then the period of the keystream is $2^{m-1}$ .  Example: $m=4$ , $(C_0, C_1, C_2, C_3) = (1, 1, 0, 0)$                                                                                                         |   |
| Advantages of LFSR: easy to implement in HW,                                                                                                                                                                                                                                            |   |

| Non-Synchronous Stream Cipher                                                                                               |   |
|-----------------------------------------------------------------------------------------------------------------------------|---|
| Fungania Autolou Cinhau                                                                                                     |   |
| Example: Autokey Cipher $P = C = K = L = Z_{26}$                                                                            |   |
| $z_1 = k$ ; $z_i = x_{i-1}$ (for all $i > 1$ )                                                                              |   |
| $_{n}$ $e_{z}(x) = (x+z) \mod 26$                                                                                           |   |
| $_{n} d_{z}(y) = (y-z) \mod 26$                                                                                             |   |
| n Drawback?                                                                                                                 |   |
| n Diawback!                                                                                                                 |   |
|                                                                                                                             |   |
|                                                                                                                             |   |
| CSG252 Classical Cryptography 19                                                                                            |   |
|                                                                                                                             |   |
|                                                                                                                             |   |
|                                                                                                                             |   |
|                                                                                                                             |   |
|                                                                                                                             |   |
| Chyntanalycic                                                                                                               |   |
| Cryptanalysis                                                                                                               |   |
| n Kerckhoffs' Principle:                                                                                                    |   |
| The opponent knows the cryptosystem being used<br>(no security through obscurity)                                           |   |
| n Definition of attack models:                                                                                              |   |
| n Ciphertext only attack                                                                                                    |   |
| n Known plaintext attack                                                                                                    |   |
| <ul><li>Chosen plaintext attack</li><li>Chosen ciphertext attack</li></ul>                                                  |   |
| n Objective of the opponent:                                                                                                |   |
| Identify the secret key                                                                                                     |   |
|                                                                                                                             |   |
| CSG252 Classical Cryptography 20                                                                                            |   |
|                                                                                                                             |   |
|                                                                                                                             |   |
|                                                                                                                             |   |
|                                                                                                                             | , |
|                                                                                                                             |   |
| Statistical Cryptanalysis                                                                                                   |   |
|                                                                                                                             |   |
| Context:  Cipher-text only attack                                                                                           |   |
| Plaintext ordinary English (no punctuation, space)                                                                          |   |
| Letters' probabilities (Beker and Piper): A: 0.082, B: 0.015, C: 0.028,                                                     |   |
| E: 0.120; T, A, O, I, N, S, H, R: [0.06, 0.09]; D, L: 0.04; C, U, M,                                                        |   |
| W, F, G, Y, P, B: [0.015, 0.028]<br>V, K, J, X, Q, Z: < [0.01]                                                              |   |
| 30 most common digrams: TH, HE, IN, ER, AN, RE, ED, ON, ES, ST, EN, AT, TO, NT, HA, ND, OU, EA, NG, AS, OR, TI, IS, ET, IT, |   |
| AR, TE, SE, HI, OF  12 most common trigrams: THE, ING, AND, HER, ERE, ENT, THA,                                             |   |
| n 12 most common trigrams: THE, ING, AND, HER, ERE, ENT, THA, NTH, WAS, ETH, FOR, DTH                                       |   |

CSG252

## Cryptanalysis of the Affine Cipher Ciphertext (57 characters)= FMXVEDKAPHFERBNDKRXRSREFMORUDSDKDVSHVUFEDKAPRK DLYEVLRHHRH Occurences: a. R:8; D:7; E, H, K:5, F, S, V:4 First guess: R: e; D: t a. 4a + b = 17; $19a + b = 3 \Rightarrow (a, b) = (6, 19)$ but gcd(a, 26) = 2 > 1 illegal! Second guess: R: e; E: $t \Rightarrow a = 13$ illegal! Fourth guess: R: e; H: $t \Rightarrow$ illegal! Fourth guess: R: e; K: $t \Rightarrow$ (a, b) = (3, 5) Results in plaintext = algorithmsarequitegeneraldefinitionsofarithmeticprocesses CSG252 Classical Cryptography Cryptanalysis of the Substitution Cipher Identify possible encryption of e (most common letter) nt, a, o, i, n, s, h, r: will probably be difficult to differentiate $_{\scriptscriptstyle \rm n}$ Identify possible digrams starting/finishing with e: -e and e-<sub>n</sub> Use trigrams CSG252 Classical Cryptography Cryptanalysis of the Vigenère Cipher First step: identify the keyword length (m) n Kasiski test [Kasiski 1863, Babbage 1854]: Observation: two <code>identical</code> segments of plaintext are encrypted to the <code>same</code> ciphertext if they are $\delta$ positions apart s.t. $\delta=0$ mod m Find all identical segments of length > 3 and record the distance between them: $\delta_1,\,\delta_2,\,...$ $_{\text{n}}$ m divides $gcd(\delta_1, \delta_2, ...)$

### Index of Coincidence to Find keyword Length



Index of coincidence:  $x = x_1x_2 \dots x_n$ ;  $I_n(x)$  is the probability that two random elements of x are identical  $I_n(x)$  Let  $I_n(x)$  be the number of occurrences of A, B, ..., Z in the string x

Let 
$$f_0$$
,  $f_1$ , ...,  $f_{26}$  be the number of 
$$I_{\epsilon}(x) = \sum_{i=0}^{25} \binom{f_i}{2} = \sum_{i=0}^{25} f_i(f_i - 1) \\ \binom{n}{2} = \frac{1}{n(n-1)}$$

- If x is a string of English text:
- For a mono-alphabetic cipher  $I_c(x)$  is unchanged  $I_c(x) = \sum_{c}^{25} p_i^2 = 0.065$
- Try m=1,2,...Decompose  $\gamma$  in substrings:  $\gamma_1\gamma_{m+1}\gamma_{2m+2}...$ ;  $\gamma_2\gamma_{m+2}\gamma_{2m+2}...$ ...

  If for all substrings:  $I_c$  is close to 0.065 then m might be the length If wrong m, then  $I_c=26$  /  $26^2=0.038$

CSG252

Classical Cryptography

### Cryptanalysis of the Vigenère Cipher (Cont.)



### Given the keyword length, each substring:

- Length: n'=n/m
- Encrypted by a shift: k
- $\tt_n$  Probability distribution of letters:  $f_0/n',\,f_1/n',\,...,\,f_{25}/n'$
- <sub>n</sub> Therefore:
  - $f_k/n'$ ,  $f_{k+1}/n'$ , ...,  $f_{k+25}/n'$  should be close to  $p_{0_i}$  ...,  $p_{25}$
  - n Let:  $M_g = \sum_{i=1}^{25} p_0 f_{g+i}$
  - n If g = k,  $M_q \approx 0.065$
  - If  $g \neq k$ ,  $M_q$  significantly smaller then 0.065

CSG252

Classical Cryptography

### Cryptanalysis of the Hill Cipher

- More difficult to break with cipher-text only
- Easy with known plaintext
- n Goal: Find secret Matrix K
- n Assumption:
  - Known: m
  - Known: *m* distinct plaintext-ciphertext pairs:
- $\begin{array}{cccc} & & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ &$
- $_{\rm n}$  Y = XK
- $_{\text{\tiny n}}$  If X is invertible  $\Rightarrow$  K = X-1Y
- Mhat if X is not invertible?

| Cryptanalysis of the Hill Cipher  Example: $m = 2;$ $plantext: friday$ $Cophertext: PQCFKU$ $x = \begin{pmatrix} s & 17 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8 & 3 \end{pmatrix} x = \begin{pmatrix} s & 16 \\ 8$ |                                                                                                                                                                                                                                                                                                                             |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Example: $m = 2$ ; $m = 2$ ;  Plaintext: $friday$ $Ciphetext: PQCKU$ $x = {8 \atop 8} {317 \atop 8} y = {15 \atop 2} {16 \atop 5}$ $K = x^{-1} y = {15 \atop 2} {15 \atop 1} {15 \atop 5}$ $K = x^{-1} y = {15 \atop 2} {15 \atop 2} {15 \atop 5}$ $K = {7 \atop 8} {19 \atop 3}$ a. Can be verified using the third plaintext-ciphertext pair  Cryptanalysis of the LFSR Stream Cipher  Expression in the compute $x_1, \dots, x_n$ and $y_1, \dots, y_n$ Need to compute $x_1, \dots, x_n$ and $y_1, \dots, y_n$ Need to compute $x_1, \dots, x_n$ and $x_1, \dots, x_n$ allow us to compute $x_1, \dots, x_n$ Expression $x_1, \dots, x_n$ and $x_1, \dots, x_n$ allow us to compute $x_1, \dots, x_n$ Expression $x_1, \dots, x_n$ and $x_1, \dots, x_n$ allow us to compute $x_1, \dots, x_n$ Expression $x_1, \dots, x_n$ and $x_1, \dots, x_n$ allow us to compute $x_1, \dots, x_n$ Expression $x_1, \dots, x_n$ and $x_1, \dots, x_n$ allow us to compute $x_1, \dots, x_n$ Expression $x_1, \dots, x_n$ and $x_1, \dots,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                             |    |
| Example: $m = 2;$ $plaintext: friday$ $Cliphertext: PQCFAU$ $X = {5 \atop 8} \atop 3} Y = {15 \atop 2} \atop 5 \atop 5} $ $K = X^TY = {9 \atop 2} \atop 11/5 \atop 15 \atop 2} \atop 5 \atop 5 \atop 5} $ Can be verified using the third plaintext-ciphertext pair  Can be verified using the third plaintext-ciphertext pair  Cryptanalysis of the LFSR Stream Cipher $M = (3 \atop 8) \atop 15 \atop 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Cryptanalysis of the Hill Cipher                                                                                                                                                                                                                                                                                            |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cryptanarysis of the rim cipiter                                                                                                                                                                                                                                                                                            |    |
| Plaintext: $friday$ $Ciphertext: PQCFKU$ $x = {5 \atop 8 \atop 3} y = {15 \atop 2 \atop 15} {16 \atop 2 \atop 15}$ $K = X^{-1}y = {9 \atop 2 \atop 15} {1 \atop 2 \atop 15} {16 \atop 2 \atop 15}$ $K = {7 \atop 8 \atop 3}$ $Can be verified using the third plaintext-ciphertext pair $ CSG252  Classical Crystography  28  Cryptanalysis of the LFSR Stream Cipher  The Known-plaintext attack with known $m$ Given: $x_1,, x_n$ and $y_1,, y_n$ Need to compute $c_0,, c_{n-1}$ $x_1,, x_n$ and $y_1,, y_n$ allow us to compute $z_1,, z_n$ If $n \ge 2m$ we can obtain $m$ linear equations with $m$ unknowns using:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                             |    |
| Cryptanalysis of the LFSR Stream Cipher  Known-plaintext attack with known m  Given: X <sub>1</sub> ,, X <sub>n</sub> and Y <sub>1</sub> ,, Y <sub>n</sub> Need to compute C <sub>0</sub> ,, C <sub>m-1</sub> X <sub>1</sub> ,, X <sub>n</sub> and Y <sub>1</sub> ,, Y <sub>n</sub> allow us to compute z <sub>1</sub> ,, z <sub>n</sub> If n ≥ 2m we can obtain m linear equations with m  Linknowns using:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                             |    |
| $K = X^{-1}Y = \begin{pmatrix} 9 & 1 \\ 2 & 15 \end{pmatrix} \begin{pmatrix} 15 & 16 \\ 2 & 5 \end{pmatrix}$ $K = \begin{pmatrix} 2 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 2 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\$                                                                              |                                                                                                                                                                                                                                                                                                                             |    |
| $K = X^{-1}Y = \begin{pmatrix} 9 & 1 \\ 2 & 15 \end{pmatrix} \begin{pmatrix} 15 & 16 \\ 2 & 5 \end{pmatrix}$ $K = \begin{pmatrix} 2 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 2 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\ 8 & 3 \end{pmatrix}$ $E = \begin{pmatrix} 3 & 15 \\$                                                                              | y_(5 17),y_(15 16)                                                                                                                                                                                                                                                                                                          |    |
| Cryptanalysis of the LFSR Stream Cipher  a. Known-plaintext attack with known $m$ a. Given: $x_1,, x_n$ and $y_1,, y_n$ a. Need to compute $c_0,, c_{m-1}$ a. $x_1,, x_n$ and $y_1,, y_n$ allow us to compute $z_1,, z_n$ a. If $n \ge 2m$ we can obtain $m$ linear equations with $m$ unknowns using:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                             |    |
| Cryptanalysis of the LFSR Stream Cipher  Known-plaintext attack with known $m$ Given: $x_1,, x_n$ and $y_1,, y_n$ Need to compute $c_0,, c_{m-1}$ $x_1,, x_n$ and $y_1,, y_n$ allow us to compute $z_1,, z_n$ If $n \ge 2m$ we can obtain $m$ linear equations with $m$ Unknowns using:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $K = X^{-1}Y = \begin{pmatrix} 9 & 1 & 15 & 16 \\ 2 & 15 & 2 & 5 \end{pmatrix}$                                                                                                                                                                                                                                             |    |
| Cryptanalysis of the LFSR Stream Cipher  Known-plaintext attack with known $m$ Given: $x_1,, x_n$ and $y_1,, y_n$ Need to compute $c_0,, c_{m-1}$ $x_1,, x_n$ and $y_1,, y_n$ allow us to compute $z_1,, z_n$ If $n \ge 2m$ we can obtain $m$ linear equations with $m$ Unknowns using:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $K = \begin{pmatrix} 7 & 19 \\ 0 & 0 \end{pmatrix}$                                                                                                                                                                                                                                                                         |    |
| Cryptanalysis of the LFSR Stream Cipher  a Known-plaintext attack with known $m$ a Given: $x_1,, x_n$ and $y_1,, y_n$ Need to compute $c_0,, c_{m-1}$ a $x_1,, x_n$ and $y_1,, y_n$ allow us to compute $z_1,, z_n$ If $n \ge 2m$ we can obtain $m$ linear equations with $m$ unknowns using:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                             |    |
| Cryptanalysis of the LFSR Stream Cipher  Known-plaintext attack with known $m$ Given: $x_1,, x_n$ and $y_1,, y_n$ Need to compute $c_0,, c_{m-1}$ $x_1,, x_n$ and $y_1,, y_n$ allow us to compute $z_1,, z_n$ If $n \ge 2m$ we can obtain $m$ linear equations with $m$ unknowns using:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Can be verified using the third plaintext-ciphertext pair                                                                                                                                                                                                                                                                   |    |
| Cryptanalysis of the LFSR Stream Cipher  Known-plaintext attack with known $m$ Given: $x_1,, x_n$ and $y_1,, y_n$ Need to compute $c_0,, c_{m-1}$ $x_1,, x_n$ and $y_1,, y_n$ allow us to compute $z_1,, z_n$ If $n \ge 2m$ we can obtain $m$ linear equations with $m$ unknowns using:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                             |    |
| Known-plaintext attack with known $m$ Given: $x_1,, x_n$ and $y_1,, y_n$ Need to compute $c_0,, c_{m-1}$ $x_1,, x_n$ and $y_1,, y_n$ allow us to compute $z_1,, z_n$ If $n \ge 2m$ we can obtain $m$ linear equations with $m$ Unknowns using:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CSG252 Classical Cryptography                                                                                                                                                                                                                                                                                               | 28 |
| Need to compute $c_0$ ,, $c_{m-1}$ in $x_1$ ,, $x_n$ and $y_1$ ,, $y_n$ allow us to compute $z_1$ ,, $z_n$ If $n \ge 2m$ we can obtain $m$ linear equations with $m$ unknowns using:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                             |    |
| If $n \ge 2m$ we can obtain $m$ linear equations with $m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Known-plaintext attack with known m                                                                                                                                                                                                                                                                                         |    |
| unknowns using:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ". Known-plaintext attack with known <i>m</i> ". Given: x <sub>1</sub> ,, x <sub>n</sub> and y <sub>1</sub> ,, y <sub>n</sub> ". Need to compute c <sub>0</sub> ,, c <sub>m-1</sub>                                                                                                                                         |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>Known-plaintext attack with known m</li> <li>Given: x<sub>1</sub>,, x<sub>n</sub> and y<sub>1</sub>,, y<sub>n</sub></li> <li>Need to compute c<sub>0</sub>,, c<sub>m-1</sub></li> <li>x<sub>1</sub>,, x<sub>n</sub> and y<sub>1</sub>,, y<sub>n</sub> allow us to compute z<sub>1</sub>,, z<sub>n</sub></li> </ul> |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Known-plaintext attack with known $m$ n Given: $x_1$ ,, $x_n$ and $y_1$ ,, $y_n$ n Need to compute $c_0$ ,, $c_{m-1}$ n $x_1$ ,, $x_n$ and $y_1$ ,, $y_n$ allow us to compute $z_1$ ,, $z_n$ If $n \ge 2m$ we can obtain $m$ linear equations with $m$ unknowns using:                                                    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Known-plaintext attack with known $m$ n Given: $x_1$ ,, $x_n$ and $y_1$ ,, $y_n$ n Need to compute $c_0$ ,, $c_{m-1}$ n $x_1$ ,, $x_n$ and $y_1$ ,, $y_n$ allow us to compute $z_1$ ,, $z_n$ If $n \ge 2m$ we can obtain $m$ linear equations with $m$ unknowns using:                                                    |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Known-plaintext attack with known $m$ n Given: $x_1$ ,, $x_n$ and $y_1$ ,, $y_n$ n Need to compute $c_0$ ,, $c_{m-1}$ n $x_1$ ,, $x_n$ and $y_1$ ,, $y_n$ allow us to compute $z_1$ ,, $z_n$ If $n \ge 2m$ we can obtain $m$ linear equations with $m$ unknowns using:                                                    |    |

CSG252