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Element for El Gamal Scheme

s Motivation of design

= RSAis based on the difficulty of factoring large numbers
= El Gamal scheme is based on the difficulty of computing discrete
logarithms
= Order of an element of a multiplicative group (G, .):
= <a> ={a': 0<i<n1}; nis the order of o
= Discrete Logarithm:
= Given a multiplicative group (G, .), an element a O G with order
n, and an element B0 Gs.t. a? = B
= Question: find the unique integer 0 <a<1st. a?=f
= This is the same as finding log,(B)
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‘ El Gamal Cryptosystem

= Cryptosystem
= pprime s.it. (Z,, .) is infeasible
= Let abe a primitive element
nP=27)C=2,XZ,;
« x={(p, a4 p): B =a"mod p}
Public: p, a, B, Private: g;
ForK = (p, a, 4, p) and a secret number 40 Z,;
edx k) =y y) st
« )y = a*mod pand y, = x fsmod p;
aly y) =7
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| Example:

n p= 2579;

= a = 2 (primitive element modulo p)
m g=765

= =278 mod 2579 = 949

= Encrypt x = 1299; k= 853

= ) = 2853 mod 2579 = 435; y, = 1299*949853 mod
2579 = 2396

Decrypt (y1, ¥5) = (435, 2396)
= X = 2396/43575> mod 2579 = 1299
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| Algorithms for Discrete Logarithm

= El Gamal cryptosystem would be insecure if we
can compute the discrete logarithm

= Discrete logarithm is believed to be infeasible if:
= pis carefully chosen against known attacks
= 0o is a primitive element modulo p
= Example: 300 digits, p-1 has at least one “large”
prime factor
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Algorithms for Discrete Logarithm

Fa Assumption:
= Multiplication in G can be done in (1)

= Exhaustive search: Cost = O(n)

= Shank’s Algorithm (G, n, a, B) [time-memory tradeoff]
« m[nl
For j=0 to m-1 do Compute a”/
Sort the m pairs (Jj; a™) with respect to second coordinate = List L,
For i=0 to m-1 do compute Ba”’
Sort the m pairs (J; Ba~) with respect to second coordinate = List L,
Find a pair (j, ) 0L, and a pair (j ) OL, [Note: same )]
Log,B = (mj+i) mod n

= Complexity of Shank’s algorithm: Time? Space?
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Algorithms for Discrete Logarithm

F= Pollard Rho Discrete log
= Time: O(Vn)
= Pohlig-Hellman Algorithm
= Time: O(max(cVg)) s.t. n = g;<L... &
= Index Calculus Method:
= Specialized algorithm for Z,"and primitive element o
= Idea:
« Use a factor base B={p,, py, ..., Pgt
= Find the logarithms of the primes in the factor base
= Use these logarithms to compute the logarithm of B
= Lower bound on generic algorithms:
= Definition: a generic algorithm apaﬂlies to any group and does not use
any properties of the element of the group s.t. factorization, ...
= Any generic algorithm for discrete logarithm has a lower bound of time
complexity: Qg/n)
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Discrete Logarithm Algorithms in Practice

e setups:
= G= (Zp‘, .), pprime, o primitive element modulo p
= G= (Zp", .), pand gprime (p=1mod g), a element having order p
= G=(F,.), a primitive element modulo in F*
= Elliptic Curves modulo a prime or over a finite field

= Lenstra and Verheul report to be secure until year 2020:
= p =210 for elliptic curves
= p=21880for(Z%,.)

= Elliptic Curve implementations are the most efficient
= Mainly due to inexistence of an index calculus attack
. Adequate for low power/resources devices such as PDAs and smartcards

= Latest challenge:
= ECC2K-108 over F.=" (solved in April 2000) usin%QSDO computers about 50
times the computation effort required to factor the RSA challenge RSA-512
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Diffie-Hellman Problems

= Computational Diffie-Hellman

= Given a multiplicative group (G, .), an element a O G (order n), two
elements a?, ac 0 <a>

= Question: find a?c
= Decisional Diffie-Hellman

= Given a multiplicative group (G, .), an element a O G (order 1), three
elements a?, a¢, a0 <a>

= Question: Is d= bc?

= Turing Reductions:
= Decision Diffie-Hellman can be reduced to Computational Diffie-Hellman
= Computational Diffie-Hellman can be reduced to Discrete Logarithm

= Computational Diffie-Hellman can be used to decrypt El Gamal
ciphertext and vice versa
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| Diffie-Hellman Key Exchange

Fprivate: A Public Private: B
p: prime number,

X a: primitive element of Z,* y
compute: compute:
axmod p a¥ mod p
receive: receive:
a¥ mod p a*mod p

X Compute shared key:
Compute shared key: (@)Y mod p

(av)*mod p

= Based on the difficulty of computational Diffie-Hellman
= Works also in extension Galois fields: GF(p9), ...
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