Public Key Cryptosystems
Based on Discrete Logarithm Problem

Guevara Noubir
http://www.cs.nwu.edu/~noubi/Courses/CSC232V44
Readings: Chapter 6, Sections 6.1-6.4, and 6.7.3

Outline

- El Gamal Cryptosystem
- Algorithms for Discrete Logarithm
- Implementation Issues
- Diffie-Hellman Problems and Key Establishment

Element for El Gamal Scheme

- Motivation of design
 - RSA is based on the difficulty of factoring large numbers
 - El Gamal scheme is based on the difficulty of computing discrete logarithms
- Order of an element of a multiplicative group \((G, \cdot)\):
 - \(\langle \alpha \rangle = \{\alpha^i : i \in \mathbb{Z}_n\} \); \(n\) is the order of \(\alpha\)
- Discrete Logarithm:
 - Given a multiplicative group \((G, \cdot)\), an element \(\alpha \in G\) with order \(n\) and an element \(\beta \in G\) s.t. \(\alpha^n = \beta\)
 - Question: find the unique integer \(0 \leq a < n\) s.t. \(\alpha^a = \beta\)
 - This is the same as finding \(\log_\alpha(\beta)\)
El Gamal Cryptosystem

- Cryptosystem
 - \(p \) prime s.t. \(\langle Z_p^*, \cdot \rangle \) is infeasible
 - Let \(\alpha \) be a primitive element
 - \(\beta \) = \(Z_p^* \); \(\gamma \) = \(Z_p^* \times Z_p^* \)
 - \(x = \langle (\rho, \alpha, \beta) \rangle; \beta = \alpha^x \mod p \)
 - Public: \(\rho, \alpha, \beta \); Private: \(x \)
 - For \(K = (\rho, \alpha, \beta) \) and a secret number \(k \in Z_p^* \)
 - \(e_k(\gamma, \gamma) = (y_1, y_2) \) s.t.
 - \(y_1 = \alpha^x \mod p \) and \(y_2 = x \beta \mod p \)
 - \(d_k(y_1, y_2) = k \)

Example:

- \(p = 2579; \)
 - \(\alpha = 2 \) (primitive element modulo \(p \))
 - \(\beta = 765 \mod 2579 = 949 \)
 - Encrypt \(x = 1299; k = 853 \)
 - \(y_1 = 2^{853} \mod 2579 = 435; y_2 = 1299*949^{853} \mod 2579 = 2396 \)
 - Decrypt \((y_1, y_2) = (435, 2396) \)
 - \(x = 2396/435^{853} \mod 2579 = 1299 \)

Algorithms for Discrete Logarithm

- El Gamal cryptosystem would be insecure if we can compute the discrete logarithm
 - Discrete logarithm is believed to be infeasible if:
 - \(\rho \) is carefully chosen against known attacks
 - \(\alpha \) is a primitive element modulo \(p \)
 - Example: 300 digits, \(p \) has at least one "large" prime factor
Algorithms for Discrete Logarithm

- Assumption:
 - Multiplication in G can be done in $O(1)$
- Exhaustive search: Cost = $O(n)$
- Shank’s Algorithm (G, n, u, v) [time-memory tradeoff]
 - For $i=0$ to $m-1$ do Compute u^i
 - Sort the m pairs (i, u^i) with respect to second coordinate ⇒ List l_u
 - For $i=0$ to $m-1$ do compute $|u^i|
 - Sort the m pairs $(|u^i|, u^i)$ with respect to second coordinate ⇒ List $l_{|u|}$
 - Find a pair $(i, u^i) = l_u$ and a pair $(|i|, u^i) = l_{|u|}$ (Note: same i)
 - Complexity of Shank’s algorithm: Time? Space?

Algorithms for Discrete Logarithm

- Pollard Rho Discrete log
 - Time: $O(1)$
- Pohlig-Hellman Algorithm
 - Time: $O(n)$
- Index Calculus Method:
 - Specialized algorithm for Z^*_p and primitive element a
 - Idea:
 - Use a factor base $B = \{r_1, r_2, \ldots, r_k\}$
 - Find the logarithms of the primes in the factor base
 - Use these logarithms to compute the logarithm of b
- Lower bound on generic algorithms:
 - Definition: a generic algorithm applies to any group and does not use any properties of the element of the group s.t. factorization, ...
 - Any generic algorithm for discrete logarithm has a lower bound of time complexity: $\Omega(n)$

Discrete Logarithm Algorithms in Practice

- Setup:
 - $G = \{Z^*_p, \cdot\}$, p prime, a primitive element modulo p
 - $G = \{Z^*_q, \cdot\}$, p and q prime ($p = 1 \mod q$), a element having order p
 - $G = \{Z^*_q, \cdot\}$, a primitive element modulo in \mathbb{F}_p
 - Elliptic Curves modulo a prime or over a finite field
- Lenstra and Verheul report to be secure until year 2020:
 - $p = 2^{256}$ for elliptic curves
 - Elliptic Curve implementations are the most efficient
 - Adequate for low power/resource devices such as PDAs and smartcards
- Latest challenge:
 - ECCM-108 over $F_{2^{108}}$ (solved in April 2000) using 9500 computers about 59 times the computation effort required to factor the RSA challenge RSA-512
Diffie-Hellman Problems

- Computational Diffie-Hellman
 - Given a multiplicative group \((G, \cdot)\), an element \(a \in G\) (order \(r\)), two elements \(a^r, a^{r'} \in <a>\)
 - Question: find \(a^{r'}\)
- Decisional Diffie-Hellman
 - Given a multiplicative group \((G, \cdot)\), an element \(a \in G\) (order \(r\)), three elements \(a^r, a^{r'}, a^{r''} \in <a>\)
 - Question: Is \(d = ac\)?
- Turing Reductions:
 - Decision Diffie-Hellman can be reduced to Computational Diffie-Hellman
 - Computational Diffie-Hellman can be reduced to Discrete Logarithm
- Computational Diffie-Hellman can be used to decrypt El Gamal ciphertext and vice versa

Diffie-Hellman Key Exchange

<table>
<thead>
<tr>
<th>Private: A</th>
<th>Public</th>
<th>Private: B</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>(p): prime number, (\alpha): primitive element of (\mathbb{Z}_p^*)</td>
<td>(y)</td>
</tr>
<tr>
<td>compute: (\alpha^r \mod p)</td>
<td>compute: (\alpha^{r'} \mod p)</td>
<td>receive: (\alpha^r \mod p)</td>
</tr>
<tr>
<td>receive: (\alpha^{r'} \mod p)</td>
<td>receive: (\alpha^{r''} \mod p)</td>
<td></td>
</tr>
</tbody>
</table>

Compute shared key: \((\alpha^r)^y \mod p\)

- Based on the difficulty of computational Diffie-Hellman
- Works also in extension Galois fields: \(\text{GF}(p^t), \ldots\)