Element for El Gamal Scheme Motivation of design Fall'04: CSG252 - RSA is based on the difficulty of factoring large numbers - El Gamal scheme is based on the difficulty of computing discrete Classical Cryptography - Order of an element of a multiplicative group (G, .): - $<\alpha> = {\alpha^i : 0 \le i \le n-1}; n \text{ is the order of } \alpha$ - Discrete Logarithm: - Given a multiplicative group (G,.), an element $\alpha \in G$ with order n, and an element $\beta \in G$ s.t. $\alpha^{g} = \beta$ Question: find the unique integer $0 \le \alpha \le n$ -1 s.t. $\alpha^{g} = \beta$ This is the same as finding $\log_{\alpha}(\beta)$ | all'04: CSG252 | Classical Cryptograph | |----------------|-----------------------| | ali 04. C30232 | Ciassicai Cryptograpi | | | | 1 # El Gamal Cryptosystem • p prime s.t. $(Z_p^*, .)$ is infeasible • Let α be a primitive element • $p = Z_p^*; \ C = Z_p^* \times Z_p^*;$ • $\mathcal{K} = \{(p, \alpha, a, \beta) : \beta = \alpha^p \mod p\}$ • Public: $p, \alpha, \beta;$ Private: a;• For $K = (p, \alpha, a, \beta)$ and a secret number $k \in Z_p;$ • $e_k(x, k) = (y_1, y_2)$ s.t. • $y_1 = \alpha^k \mod p$ and $y_2 = x \beta^k \mod p;$ • $d_k(y_1, y_2) = ?$ FallO4: CSG252 Classical Cryptography 4 Example: • p = 2579;• $\alpha = 2$ (primitive element modulo p) ### ■ p = 2579; ■ $\alpha = 2$ (primitive element modulo p) ■ a = 765■ $\beta = 2^{765}$ mod 2579 = 949■ Encrypt x = 1299; k = 853■ $y_1 = 2^{853}$ mod 2579 = 435; $y_2 = 1299*949^{853}$ mod 2579 = 2396■ Decrypt $(y_1, y_2) = (435, 2396)$ ■ $x = 2396/435^{765}$ mod 2579 = 1299 ### Algorithms for Discrete Logarithm El Gamal cryptosystem would be insecure if we can compute the discrete logarithm Discrete logarithm is believed to be infeasible if: p is carefully chosen against known attacks α is a primitive element modulo p Example: 300 digits, p-1 has at least one "large" prime factor 04: CSG252 Classical Cryptography | Algorithms for Discrete Logarithm | | |--|---| | | | | Assumption:Multiplication in G can be done in C(1) | | | ■ Exhaustive search: Cost = O(n) | | | Shank's Algorithm (G, n, α, β) [time-memory tradeoff] | | | m ← √n For j=0 to m-1 do Compute α^{mj} | | | • Sort the m pairs (j, α^m) with respect to second coordinate \Rightarrow List L ₁
• For i=0 to m-1 do compute $\beta \alpha^j$ | | | • Sort the m pairs $(j, \beta \alpha^{\gamma})$ with respect to second coordinate \Rightarrow List L ₂
• Find a pair $(j, \gamma) \in L_1$ and a pair $(i, \gamma) \in L_2$ [Note: same γ] | | | • Log _{α} β = $(mj+i)$ mod n | | | Complexity of Shank's algorithm: Time? Space? | | | | | | Fall'04: CSG252 Classical Cryptography 7 | | | | | | | | | | | | | 1 | | | | | Algorithms for Discrete Logarithm | | | Pollard Rho Discrete log | | | ■ Time: O(√n) | - | | Pohlig-Hellman Algorithm Time: O(max(c_i√q_i)) s.t. n = q₁c¹ q_kck | | | Index Calculus Method: Specialized algorithm for Z_n* and primitive element α | | | ■ Idea: | | | Use a factor base β = ⟨ρ₁, ρ₂,, ρ_β⟩ Find the logarithms of the primes in the factor base Use these logarithms to compute the logarithm of β | | | Lower bound on generic algorithms: | | | Definition: a generic algorithm applies to any group and does not use
any properties of the element of the group s.t. factorization, Any generic algorithm for discrete logarithm has a lower bound of time | | | complexity: $\Omega(\sqrt{n})$ | | | | | | Fall'04: CSG252 Classical Cryptography 8 | | | | | | | | | | | | | 1 | | | | | Discrete Logarithm Algorithms in Practice | | | | | | Setups:
• $G = (Z_p^*, .), p$ prime, α primitive element modulo p | | | G = (Z_p[*], ·), p and q prime (p = 1 mod q), α element having order p G = (F_p[*], ·), α primitive element modulo in F_p[*] Elliptic Curves modulo a prime or over a finite field | | | | | | Lenstra and Verheul report to be secure until year 2020: p = 2160 for elliptic curves p = 21800 for (Z₀[*],) | | | p = 2^{-coo} for (Z_p , .) Elliptic Curve implementations are the most efficient | _ | | Mainly due to inexistence of an index calculus attack Adequate for low power/resources devices such as PDAs and smartcards | | | Latest challenge: Latest challenge: * (shipped in April 2000) using 0000 computing that 0000 computing the part of the computing | | | ECC2K-108 over F,* (solved in April 2000) using 9500 computers about 50 times the computation effort required to factor the RSA challenge RSA-512 | | | | | | L | I | ## Diffie-Hellman Problems Computational Diffie-Hellman Given a multiplicative group (G, .), an element α∈ G (order n), two elements α^ρ, α^ρ ∈ ⟨αρ⟩ Question: find α^ρ Decisional Diffie-Hellman Given a multiplicative group (G, .), an element α∈ G (order n), three elements α^ρ, α^ρ, α^ρ ∈ ⟨αρ⟩ Question: Is d = bc? Turing Reductions: Decision Diffie-Hellman can be reduced to Computational Diffie-Hellman Computational Diffie-Hellman can be used to Discrete Logarithm Computational Diffie-Hellman can be used to decrypt El Gamal ciphertext and vice versa