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Outline

N Concepts behind public key crypto
= Some number theory

= RSA cryptosystem

= Primality testing

» Factoring numbers and other attacks
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Applications

= Symmetric algorithms vs. asymmetric algorithms (public-key crypto
systems)
= About 1000 times faster!
= However, require a shared key!

= Practice:
= Use public key crypto to establish a shared key
= Examples
= Email:

» Choose a key for the symmetric algorithm ; encrypt it with the public key of the
destination

= Use the key K to encrypt the message and integrity protect it
» IPSec/IKE:

= IKE: establish a session key (using either public-key cryptosystem or shared
secrets)

= IPSec uses the session key to provide confidentiality and integrity
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Number Theory

s Z,": abelian group of numbers < 7, relatively prime to n

= Euclidean Algorithm (a, b):
= Computes the gcd(a, b)

= Extended Euclidean Algorithm(a, b):
= Computes 7, s, ts.t. sa+ bt= r=gcd(a, b)
« Ifr=1=s=a'mod b
W Ifrel1=7?
= Time complexity less than O(&) if aand b are encoded
in less than & bits.

Fall'04: CSG252 Classical Cryptography 5

Chinese Remainder Theorem

= Assume that m,, ..., m, are pairwise relatively prime

positive integers

= Chinese Remainder Theorem (CRT):
= Suppose &, ..., d,are integers s.t.
= x=a (mod m)
= X=a(mod m,)
= x=g,(mod m)
= There exists a unique x mod /m,m,...m, that satisfies all previous
equa;ions
x=YaMymodM M, =M/m;y, =M*
i=1
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‘ Other Known Results

= If Gis a multiplicative group of order 7 then the
order of any element of Gdivides n

= Order of Z," = ¢n)

= If O Z,7, then p%7) =1 (mod n)
= How about when nis prime?

= If pis prime then Z,"is a cyclic group
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| RSA Cryptosystem
Due to Rivest-Shamir-Adleman in 1977
Let n = pg, where p and g are primes

P=C=2,
K={(np g a b):ab=1(mod fn))}

= Encryption:

= g(X) =x'mod n
= Decryption:

= dy)=y'mod n

= Public key: nand b
= Private key: p, g, a
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| Example
p=101; g= 113 = n= 11413

= ¢{n) = 11200 = 26527

= Let b= 3533 = 4! = 6597
= How is b chosen?

= Encrypt plaintext: 9726

« Ciphertext = 9726332 mod 11413 = 5761
= Decryption ciphertext: 5761

» Plaintext = 5761657 mod 11413 = 9726
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Use of RSA

= Encryption (A want to send a message Mto B):
= Auses the public key of Band encrypts M(i.e., e {M))
= Since only Bhas the private key, only Bcan decrypt M (i.e.,, M= di{M)

= Digital signature (A want to send a signed message to B):

« Based on the fact that e,(d (M) = d (M)
Aencrypts Musing its private key (i.e., d\,(M)) and sends it to B
Bcan check that e (d (M) =M

Since only A has the decryption key, only him can generate this
message
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Security of RSA

- Security of RSA is based on the belief that:
= X)mod nis a one-way function

= The trapdoor is the knowledge of the
factorization of ninto pg

= Conjecture:
= RSA is as difficult as factoring numbers
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RSA Implementation

Fa" RSA Parameters Generation

Generate two large primes: p, ¢

n « pg,and gn) ~ (p-1)(g-1);

Choose a random b (1< b <¢{n)) s.t. gcd(b, ¢n)) =1
a - btmod ¢n)

Public key is (n1, b) and private key is (p, g, @)

= pand gshould be at least 512 bits long each
= = nis at least 1024 bits long

= Computation Complexity:
= Exponentiation cost: SQUARE-AND-MULTIPLY
« (m,)°mod ncan be computed in O(log(c)xA2)
= Modular inverse: Extended Euclidean Alg.
« (m,)" mod ncan be computed in O(K)
= Modular Muliplication:
« (mym,) mod 7 can be computed in O(4)
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Prime Numbers Generation

[ = Density of primes (prime number theorem):
. T(x) ~ x/In(x)
» E.g., arandom number of 512 bits has probability: 1/In(512) = 1/355 to be prime
= Sieve of Erathosténe
= Try if any number less than SQRT(n) divides n
= Fermat’s Little Theorem does not detect Carmichael numbers
= bri=1modn
» E.g., 561 is the smallest Carmichael number
= Solovay-Strassen primality test
 If nis not prime at least 50% of 4 fail to satisfy the following: b™?modn=2)
= Jacobi symbol can be computed in less than O((log n)?) "
= Jacobi symbol is a generalization of the Legendre symbol: if asomadp
2)=l1 it aisaquatatic resduemod p
P/ |1 i aisaquaratic non- resduemod p
= Probability of the Solovay-Strassen primality test failing to detect a composite number is less
then: (In 7-2)/(In n-2 + 2m+1)
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. Rabin-Miller primality test
= If nis not prime then it is not pseudoprime to at least 75% of random

a<n:
= 1= 2km,
= b @ mod 77

« If =1 mod nthen return(n prime)
= Fori=0to 41 do
= If b=-1 mod nthen return(n prime)
« Elseb - b
= return(n composite)
= Probabilistic test, deterministic if the Generalized Riemann Hypothesis is

true
= Deterministic polynomial time primality test [Agrawal, Kayal,
Saxena’2002]
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Attacks on RSA

I = Factoring

= Many factoring algorithms were proposed: quadratic sieve,
elliptic curve factoring, number field sieve, Pollard’s rho-method

= Capable of factoring a 512 bits modulus = 155 digits in 1999
using 8400 MIPS-years

= Other attacks:
= Computing ¢n)
= Decryption exponent: if ais known!
= Las Vegas algorithm (5.10) that will factor /2 with probability 2

= Semantic Security
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Rabin Cryptosystem

Fa Motivation:
= The difficulty of factoring does not necessarily prove RSA
security
= Hardness of factoring leads to security proof of Rabin’s
cryptosystem against chosen-plaintext attack
= Scheme:
= n= pg(pand gare two primes and p= g= 3 mod 4)
w P=C=2 K={(np @}
= gdx)=xmod n
= dfy) = Vymod n
= Note:
= Conditions: p

= g=3 mod 4 and Z," is for simplification of
decryption and s

ecurity proof purpose
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Rabin Cryptosystem

Fe Observation:
= Is the encryption function injective?
= Solution?
= How can we decrypt?
= Solution: CRT
= Consider xs.t.:

x=+y®"4 mod p
x = +y@ 4 mod
= X=ymod n y a
= When can we use this technique of decoding?
= Example:
= n=7x11
= Decrypt y =23
Fall'04: CSG252 Classical Cryptography 17

Security of Rabin Cryptosystem

Ko 1f Rabin cryptosystem can be broken then we can build a Las Vegas

probabilistic algorithm with success probability V2
= Rabin Oracle Factoring(n)

External RabinDecrypt

Choose a random r;

Lety — 7

x — RabinDecrypt());

= If x = +rreturn(failure)

Else return(p=gcd(x+r, n) ; q=n/p);

= Conclusion:
= Rabin cryptosystem is secure against a chosen plaintext attack

= Additional security results:
= Rabin cryptosystem is insecure against a chosen ciphertext attack
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