

Stream vs. Block Ciphers					
	Stream ciphers	Block Ciphers Groups of characters (in blocks)			
Encryption	Individual characters (usually bits)				
Speed	Faster	Slower			
Hardware Circuitry	Simpler	More complex			
Software Implementation	Not amenable	More efficient			
Data Buffering	None of limited required	More space required			
Error propagation	Limited – good for noisy channels	Propagates – good for assuring message integri			

Linear Feedback Shift Register

- Let $F(x_0, x_1, ..., x_{n-1}) = x_n = \sum_{i=0}^{n-1} a_i x_i$
- Using the shift operator E, we can express the equation as

$$x_{i+n} = \sum_{j=0}^{n-1} a_i E^j x_i$$
$$(E^n - \sum_{j=0}^{n-1} a_j E^j) x_i = 0$$

• The feedback polynomial
$$x^n = \sum_{i=1}^{n-1} a_i x^n$$

• A LFSR sequence has maximum period 2ⁿ-1 (known as *m-sequence*) if and only if the feedback polynomial is *primitive*

5

6

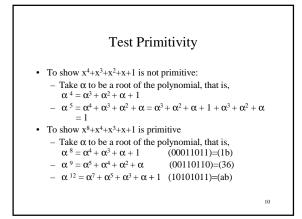
- Let $f(x) = x^4 + x^3 + x^2 + x + 1$ over GF(2)
 - initial loading is 0001: 00011
 - initial loading is 0101: 01010
 - initial loading is 0110: 01100
- Let $f(x) = x^4 + x + 1$ over GF(2)
 - initial loading is 0001: 000100110101111
 - $-\,$ note every quadruple appears exactly once except 0000
 - maximal period 2⁴-1=15
 - proving that f(x) is primitive

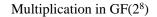
Finite Field

• $GF(2) = Z_2$

- $GF(2^n) = \{ (a_{n-1}, ..., a_1, a_0) \mid a_i \in GF(2) \}$ - Addition can be carried out bit by bit
 - Multiplication
 - Generation of GF(2n): done by polynomial modulo a primitive polynomial of degree n, m(x)
 - Elements of GF(2) can be represented as a polynomial $(a_{n-1}, ..., a_1, a_0) = a(x)$

 $\equiv a_{n-1}x^{n-1} + \ldots + a_1x + a_0 \mod m(x)$


Primitive Polynomial


- A polynomial f(x) over a field Q is said to be *irreducible* if f(x) cannot be factored over Q
- A polynomial f(x) over a field Q is said to be *primitive* if every root of f(x) generates the field Q
- Example.
 - $f(x) = x^4+x^3+x^2+x+1$ over GF(2) f(x) is irreducible but not primitive

 - $g(x) = x^4 + x + 1$ g(x) is primitive

Test Irreducibility

- To show x⁸+x⁴+x³+x+1 is irreducible:
 - If the number of terms is odd over GF(2), then it cannot be divisible by x+1
 - Try dividing by polynomials of degree 2, x² + x + 1
 - Try polynomials of degree 3, x^3+x+1 and x^3+x^2+1
 - Try polynomials of degree 4, $x^4+x^3+x^2+x+1$, x^4+x^3+1 , x^4+x^2+1 , x^4+x+1
 - Do not require any more testing beyond degree 4

- $\alpha^{9} * \alpha^{12} = \alpha^{9+12} = \alpha^{21 \mod 127}$
- (36) * (ab) = (00110110) * (10101011) = 11110010

Desired Properties of a Stream Cipher

- Long period
- Balanced O's and I's
- Bernoulli distribution of k-tuples for all k>1
- Good autocorrelation functions

$$A(\tau) = \sum_{i=0}^{p-1} (-1)^{s_i} (-1)^{s_{i+\tau}} = \begin{cases} p & \text{if } \tau = 0 \\ < \varepsilon & \text{if } \tau \neq 0 \end{cases}$$

where p is the period of the sequence

- · Generation algorithm should be simple and efficient
- No simple description of the generation mechanism
- Resilient to commonly known attacks

12

Commonly Known Attacks

- · Exhaustive Key search
 - key size has to be large
 - if the generation algorithm depends variables that are not known/fixed, then the key consists of the parameters governing the variables as well as the initial loading
 - if the parameters for the algorithm are publicly known, then the key consists of the initial loading only

Berlekamp-Massey Attack

- efficient algorithm to attack periodic sequencesCorrelation Attack
 - to find the initial loading

13

14

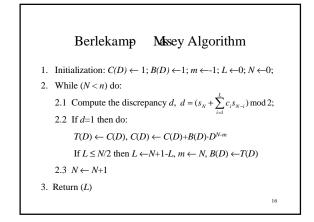
Berlekamp-Massey Attack

• Basic Idea: every periodic sequence can be generated by a deterministic finite state machine, namely

Find the smallest such finite state machine.

- Approach:
 - find the smallest machine that generates the sequence obtained thus far by solving a system of linear equations
 - compare output of the machine with sequence bits obtained next. If equal, then continue; otherwise, compute a new solution and increase the length if needed

Definitions for BM Agorithm


n=length of the sequence *sⁿ* being considered

- N = the N-th iteration of the sequence s^n being considered
- L = the linear complexity computed so far
- C(D) is the connection polynomial defined by

 $C(D) = 1 + a_{L-1}D + a_{L-2}D^2 + \dots + a_0D^L$

B(D) is the most recently computed connection polynomial: let *m* be the largest integer < N such that $L(s^n) < L(s^N)$, and B(D) is the connection polynomial that generates s^m .

NOTE: complexity of Berlekamp-Massey Algorithm is $O(n^2)$

Linear Complexity

• The goal is to find a Linear Feedback Shift Register that generates the sequence by solving for *a_i*, *i*≥0 in

 $F(x_0, x_1, ..., x_{n-1}) = x_n = \sum_{i=0}^{n-1} a_i x_i$

- *Linear complexity* of a sequence *s*, denoted by *L*(*s*) is (1) if *s*=(0), then *L*(*s*)=0;
 (2) if *s* is an infinite sequence, then *L*(*s*)=∞
 (3) otherwise, *L*(*s*) is length of the smallest LFSR that generates the sequence *s*
- Linear complexity profile must follow the L=n/2 line

LFSR Sequences

Desirable Properties:

- Simple and efficient

- Balanced 0's and 1's

- Bernoulli distribution of k-tuples for k>1

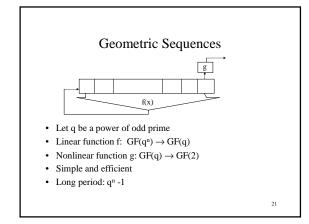
- 2-valued autocorrelation function

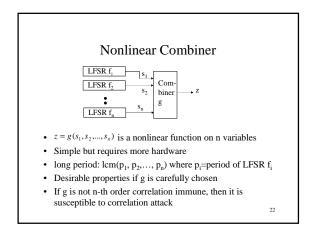
 $A(\tau) = \begin{cases} \rho & \text{if } \tau = 0\\ -1 & \text{if } \tau \neq 0 \end{cases}$

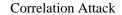
- Used for noise generation and simulations
- · Weakness:
 - susceptible to Berlekamp-Massey Attack, needs only $O(\log \rho)$ key bits to determine the key

18

Nonlinear Feedback Shift Register

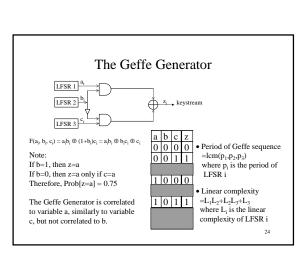

The feedback function contains AND-gates and converter


 $f(x_0, x_1, ..., x_{n-1}) = \sum a_{i_1 i_2 ... i_n} x_{i_1} x_{i_2} ... x_{i_n}$


- Simple and efficient: if the function f can be found
- Period can be long: but difficult to analyze
- Balanced 0's and 1's can be obtained
- Bernoulli distribution can be achieved
- Linear complexity can be high
- Weakness: lack of mathematical theory to identify the properties of f

19

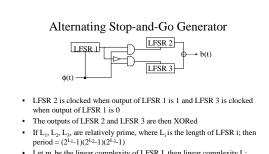
Nonlinear feedforward (filter) Nonlinear feedforward g Linear feedback f(x) Linear feedback f(x) Nonlinear feedback function: to guarantee long period Nonlinear feedforward: to introduce complexity Desirable properties can be achieved if g is carefully chosen Linear complexity is bounded above by $\sum_{i=1}^{k} \binom{n}{i}$ where k is the degree of the nonlinear function g



- Goal: to find the initial loading of the registersApproach:
 - Makes use of the fact that the output bits are correlated with some specific part of the registers.
 - Reduces the complexity of exhaustive search from $\prod_{i=1}^{n} m_i$ to $\sum_{i=1}^{n} m_i$ where m_i denotes the possibilities of the *i*-th variable and *n* is the number of variables of the function

23

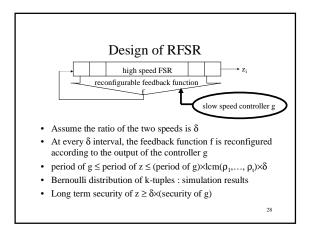
Correlation-immune functions



Correlation Immune

- A boolean function f(x₁,x₂,...,x_n) is said to be *m*-th order correlation immune if for every subset J of m random variables, the function value Z=f(x₁,x₂,...,x_n) is independent of the subset J; equivalently, I(Z;J)=0.
- A nonlinear function is *k*-th order correlation immune if the function does not contain any product terms of degree higher than *n*-*k*
- Example: any linear function is (n-1)-th order correlated immune

25

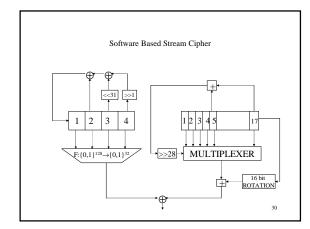

- Let m_i be the linear complexity of LFSR I, then linear complexity L: $(m_2+\,m_3)\,2^{m_1-l}< L<(m_2+\,m_3)\,2^{m_1}$
- Susceptible to Differential Analysis Attack

26

Reconfigurable Feedback Shift Register

• Motivation:

- for Next Generation Internet, real-time ultra fast speed encryption is needed
- high speed gate technology is extremely expensive and usually has other constraints
- Approach:
 - Uses a slow speed generator to control a high speed one
 - The high speed technology is to ensure speed, but not on security
 - The slow speed technology is to gain security



Software-Based Stream Ciphers

- Software Encryption Algorithm (SEAL)
- Generates large tables for table look-up
- RC2, RC4, RC6 (proposed by Rivest)
 RC4 is proprietary
 - RC6 is considered very efficient (AES candidate)
- FIbonacci Shrinking Generator (FISH)
- Software Stream Cipher 2 (SSC2)
 - Requires only 20 lines of C code and minimum memory

Strength of SSC2

Simple Operations:

- exclusive or; byte/word shifts; addition; logical operations
- Strong System Security
 long period

 - high linear complexity
 good statistical properties
 - resilient to correlation attacks

Stream Ciphers							
Message Size	Palm V	SC2 Palm IIIC	Al Palm V	C4 Palm IIIC	SI Palm V	EAL Palm IIIC	
2KB	32.604	44.582	30.768		2,469	3.427	
50KB	35,804	49,829	32,100	45,110	28,723	30,121	
4MB	35,501	49,434	31,699	44,501	51,396	71,980	
Memo	_{Figur} ory Re	e 1 Throug		ream Cipher	rs		

32