Shannon’s Theory for Secure Communication

Guevara Noubir

http://www.cis.osu.edu/People/Noobir/Courses/CIS229VT04

Reading: Chapter 2

Outline

- Recap of elementary probability theory
- Perfect secrecy
- Entropy
- Spurious keys & unicity distance
- Product cryptosystems

Basic Probability Theory

- Discrete random variable: X
 - Finite set \(X \)
 - Probability distribution function s.t. \(\Pr[x] \geq 0 \)
 - \(\sum_{x} \Pr[x] = 1 \)
 - Example: Probability that the sum of a pair of dice is 4
 - Joint Probability of \(X \) and \(Y \): \(\Pr[x, y] \)

- Conditional Probability: \(\Pr[x \mid y] \)
- Independent variables
- Bayes’ Theorem (\(\Pr[y] > 0 \))
- Corollary: characterizing independent variables
Approaches to Security

- Computational Security
 - If the best algorithm for breaking it requires at least a very large (specified) number of operations
 - Usually against some specific type of attacks (e.g., exhaustive key search)

- Provably Security
 - Reduction to a well-studied problem. Only relative proof!
 - Example: secure if a given number cannot be factored

- Unconditional Security
 - No bound placed on the computation capability of the adversary

Perfect Secrecy

Assumption:
- A cryptographic key is used for only one encryption
- Probability distribution function on the key
- Probability distribution function on the plaintext
- Key and Plaintext are independent random variables

Observations:
- P owns K; K induces pdf of C
 - P(x|a) = P(x)
 - P(C|a) = P(C)

Example:
- P = (a, b), P(a) = 1/2, P(b) = 3/4
- K = (k1, k2) with Prob. 1/2, 1/2
- C = (1, 2, 3, 4)
- P(1, 2, 3) = P(a|1, 3, 4) = P(b|1, 2, 4)

Perfect Secrecy

- A cryptosystem has perfect secrecy if
 - P(x|y) = P(x), for all x ∈ X, y ∈ Y

- A posteriori probability that the plaintext is x given the ciphertext is equal to the apriori probability

Theorem (shift cipher perfect secrecy):
- The shift cipher where the all keys have probability 1/26, has perfect secrecy (for any plaintext probability).

Theorem (characterizing perfect secrecy cryptosystems):
- Let (P, C, K, E, D) be a cryptosystem where |K| = |P| = |C|
- This cryptosystem has perfect secrecy if all keys have the same probability 1/|K|, and ∀x ∈ P, y ∈ C \{3 \}, k ∈ K: n_x(k) = y

Vernam’s Cipher perfect secrecy
Entropy
- Measure of uncertainty (in bits) introduced by Claude Shannon in 1948 [Information Theory]
- \(H(x) = \)
- Example 1:
 - \(\Pr[x_1] = \frac{1}{2} \); \(\Pr[x_2] = \frac{1}{4} \); \(\Pr[x_3] = \frac{1}{4} \)
- Example 2:
 - \(H(P) = 0.81 \)
 - \(H(K) = 1.5 \)
 - \(H(C) = 1.85 \)

Huffman Encoding
- Entropy of a string provides the minimum average number of bits required to encode a random source
- Huffman Encoding provides the rules allow an encoding with less than \(H(X) + 1 \) bits on average

Properties of Entropy
- Concave function:
- Strictly concave function:
- Jensen’s inequality:
- Theorem:
 - \(X \) random variable that can take \(n \) values with non-zero probability
 - \(H(X) < \log_2 n \)
 - Equality?
Entropy (Cont.)

- \(H(X, Y) \leq H(X) + H(Y) \)

- Conditional Entropy:
 - \(H(X|Y) = \frac{H(X,Y)}{H(Y)} \)
 - \(H(X|Y) = H(Y|X) \)
 - \(H(X,Y) = H(Y) + H(X|Y) \)
 - \(H(X|Y) \leq H(X) \) (when do we have equality?)

Spurious Keys and Unicity Distance

- Key equivocation: \(H(K|C) \)
- Definition:
 - Spurious key is a key possible but incorrect key
- Example:
 - Shift cipher: ciphertext = \(MN/NS/ \)
 - Plaintext can: river (\(k=5 \)) or arena (\(k=22 \))
- Goal:
 - Find a bound on the number of spurious keys
- Theorem:
 - \(H(K|C) = H(K) + H(P) - H(C) \)
 - Example:
 - \(H(P) = 0.81, H(K) = 1.5, H(C) = 1.85 \)
 - \(H(K|C) = 0.46 \) - also verified manually

Entropy of a Language

- Number of information bits per letter: \(H_i \)
- Example:
 - If all letters have the same probability, a first approximation would be: \(H_i = 4.7 \)
 - A first-order approximation of English language gives \(H(F) = 4.19 \)
 - Second-order approximation, ...
- Definition:
 - The entropy of a language \(L \) is: \(H_i = \frac{\log n}{n} \)
 - The redundancy of a language \(L \) is: \(R_i = 1 - \frac{H_i}{\log n} \)
 - English has \(1 \leq H_i \leq 1.5 \)
 - Redundancy = 0.75
Unicity Distance

Theorem:
- Suppose \((P, C, K, E, D)\) is a cryptosystem where \(|C| = |P|\) and the keys are chosen equiprobably. Let \(d\) be the redundancy of the underlying language. Then given a string of ciphertext of length \(n\), the expected number of equivalent keys satisfies:
\[
\frac{n}{d} \geq \frac{|K|}{|P|^d} - 1
\]

Definition:
- The unicity distance of a cryptosystem is the value \(n_u\), after which the expected number of equivalent keys becomes 0.
- It is the average amount of ciphertext required for an opponent to be able to compute the key (given enough computing time).

Example:
- Substitution cipher: \(n_u \approx 25\)
- For the substitution cipher on average the opponent needs at least a ciphertext of length 25.

Product Cryptosystems [Shannon 49]

Goal:
- Combine two cryptosystems to obtain a more "secure" cryptosystem

Product of Endomorphic cryptosystem: \(P = C\)
- \(S_1 = (P, P, K_1, E_1, D_1)\); \(S_2 = (P, P, K_2, E_2, D_2)\)
- Product cryptosystem \(S_1 \times S_2 = (P, P, K_1 \times K_2, E, D)\) s.t.
 - for every key \(k=(k_1, k_2)\) : \(e_{1,2}(x) = e_{1,2}(e_{2,1}(x))\)
- Probability distribution: \(Pr[k_1, k_2] = Pr[k_2] \times Pr[k_1]\)

Product of Cryptosystems

Example:
- Multiplicative cipher (M):
 - Key space: ?
- Multiplicative Cipher x Shift Cipher: \(M \times S = ?\)
 - \(S \times M = S \times S = ?\)
- Property:
 - \(S\) and \(M\) commute but this does not hold for all cryptosystems
- The product operation is Associativity
- Derives from ?
Product of Cryptosystems

- **Definition:**
 - $\text{S} \circ \text{S} = \text{S}$
 - $\text{S} \circ \text{S} \circ \ldots \circ \text{S} = \text{S}^n$ (n times)
 - If $\text{S} = \text{S}^n$ then S is called idempotent
 - Examples: Shift cipher, Substitution, Affine, Hill, Vigenère

- **Rule:**
 - If a cryptosystem is idempotent: there is no security increase by iterating (S^n)
 - If a cryptosystem is not idempotent: security can be increased by iteration
 - Example: Data Encryption Standard

- **Constructing non idempotent cryptosystems:**
 - Product of two different simple cryptosystems
 - Is there any obvious property that the two cryptosystems need to satisfy for the product not to be idempotent?
 - Example: product of substitution ciphers by permutation ciphers